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Abstract—Federated Learning (FL) enables multiple dis-
tributed clients (e.g., mobile devices) to collaboratively train a
centralized model while keeping the training data locally on
the clients’ devices. Compared to traditional centralized machine
learning, FL offers many favorable features such as offloading
operations which would usually be performed by a central
server and reducing risks of serious privacy leakage. However,
Byzantine clients that send incorrect or disruptive updates due
to system failures or adversarial attacks may disturb the joint
learning process, consequently degrading the performance of the
resulting model. In this paper, we propose to mitigate these
failures and attacks from a spatial-temporal perspective. Specif-
ically, we use a clustering-based method to detect and exclude
incorrect updates by leveraging their geometric properties in the
parameter space. Moreover, to further handle malicious clients
with time-varying behaviors, we propose to adaptively adjust the
learning rate according to momentum-based update speculation.
Extensive experiments on 4 public datasets demonstrate that our
algorithm achieves enhanced robustness comparing to existing
methods under both cross-silo and cross-device FL settings with
faulty/malicious clients.

Index Terms—federated learning, Byzantine robustness, aggre-
gation rule

I. INTRODUCTION

The rapid growth of machine learning model complexity and
demand for large training datasets has stimulated the interest
in distributing the learning task across multiple machines. As
an emerging distributed learning paradigm, federated learning
(FL) [1] allows multiple clients (e.g., mobile devices) to
collaboratively learn a shared model in a privacy-preserving
way. In contrast to conventional machine learning methods
that require all training data to be exposed to a central server,
FL allows privacy-sensitive data to be retained on each client.
In particular, each client computes an update of the model
on their local dataset, and a central server (e.g., the service
provider) coordinates the learning process by aggregating
the clients’ updates to maintain a global model. This strong
privacy guarantee of FL has spurred a broad spectrum of real-
world applications in areas like mobile computing [2] and
telemedicine [3].

Despite its favorable characteristics, FL still faces chal-
lenges from non-malicious failures (e.g., noisy data) as well as
adversarial attacks (e.g., Byzantine attacks [4] and backdoor
attacks [5], [6]). Moreover, the strong emphasis on clients’

privacy prevents the server from accessing and inspecting the
clients’ data directly, which makes detecting these failures and
attacks a challenging task [7]. The aggregation rule adopted
by the central server acts as the most crucial component in
ensuring the amount of robustness of FL systems. By default,
the server aggregates the local model updates by taking the
average value as the global model update [1]. However, it has
been shown that a single faulty/malicious client can impede
the convergence of the jointly learned model under this setting
[4], posing a serious risk to the security of such systems.

Recently, several theoretical approaches based on gradient
similarity [4] or robust statistics [8], [9] have been proposed to
achieve Byzantine-resilient learning. Although offering prov-
able guarantees, in practice these methods only provide a
weak level of tolerance to attacks and the resulting model
could still be significantly influenced by malicious clients.
To address this, Bulyan [10] proposes to execute another
robust aggregation rule for multiple iterations to provide a
stricter convergence guarantee at the cost of high compu-
tational burden. Other methods attempt to detect and re-
move malicious clients by estimating each client’s reliability
through calculating the descendant of the loss function [11]
or projecting the clients’ updates into a latent space using
a variational autoencoder [12]. However, these methods re-
quire prior knowledge on the clients’ data distributions for
loss descendent estimation or autoencoder training, which is
hard to satisfy in practice, especially for cross-device FL
where clients’ data are private and extremely heterogeneous.
To defeat time-coupled attacks, existing methods relying on
historical data have been proposed to adaptively estimate the
quality of client updates using a hidden Markov model [13] or
reduce the variance of benign gradients to expose malicious
clients via distributed momentum [14], [15]. However, these
methods assume a simple cross-silo scenario with a fixed set
of clients that continuously participate the learning process at
every communication round, while ignoring the more dynamic
cross-device scenario where clients may withdraw or rejoin the
FL at any time. Moreover, in order to keep track of and update
the reliability score of each client, some methods (e.g., [13])
require the server to keep track of the mapping between the
submitted updates and the clients’ identities, which may lead
to serious risks of privacy breaches (e.g., data inference [16],
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Fig. 1: Illustration of the federated learning framework.

property inference [17], [18], or membership inference [19]).
In this work, we seek to relax these constraints by proposing

a new aggregation strategy that can resist strong adversarial
attacks for achieving Byzantine-resilient federated learning.
Different from existing studies, we propose to examine the
local model updates from both spatial and temporal perspec-
tives. From the spatial perspective, we show that at each
round of communication, the updates from faulty/malicious
clients exhibit certain distinguishable geometric patterns in the
parameter space. Leveraging this observation, we can assess
the integrity of a client’s model update by inspecting its
cosine similarity with all updates and utilize a clustering-
based approach to detect and filter out malicious updates.
Moreover, to handle malicious clients with time-varying be-
havior, we propose to adaptively adjust the learning rate at
each communication round by comparing the received updates
with the speculated update according to historical data from
a temporal perspective. This enables our method to tolerant
abrupt and uncertain adversarial activities in cross-device FL
setting with highly unreliable clients. Different from existing
methods, our method does not rely on the prior knowledge of
the client’s data distribution or clients’ identities, and therefore
can be applied along with existing techniques such as secure
shuffling [20] and differential privacy [21] to ensure user’s
privacy.

We conduct extensive experiments to evaluate the proposed
method on four public datasets under two realistic federated
learning settings: (1) The cross-silo FL, which involves a fixed
set of clients that continuously participate in the learning
process; and (2) The cross-device FL, where the participat-
ing clients are dynamically selected and changing at each
communication round. Moreover, to investigate its robustness
against more advanced attacks, we also evaluate the proposed
method against two state-of-the-art time-coupled attacks [22],
[23]. The results demonstrate that our method achieves greater
robustness in the presence of noisy, faulty or malicious clients
comparing to the current state-of-the-art aggregation methods
such as Krum [4], Median [9], and Trimmed Mean [9].

II. BACKGROUND AND RELATED WORK

A. Federated Learning

Federated Learning (FL) (or Collaborative Learning) is a
distributed learning framework that allows multiple clients
to collaboratively train a machine learning model under the

coordination of a central server, while keeping their private
training data locally on the device without being shared or
revealed to the server or other clients. Federated learning can
be conducted among a small set of reliable clients (cross-silo)
or among a large number of mobile and edge devices (cross-
device). Let C denote the set of participating clients, each of
which holds a local dataset Dk; k 2 C of nk data samples.
D =

S
k2C Dk is the joint training dataset and N =

P
k2C nk

is the total number of data samples. L(w;Dk) represents the
empirical loss over a model w 2 Rd and dataset Dk. The
objective of federated learning can be formulated as:

min
w2Rd

(
L(w;D) =

X
k2C

nk

N
L(w;Dk)

)
: (1)

Initially, the central server randomly initializes a global model
w0. Then at each communication round, the following steps
are performed to achieve the learning objective, as shown in
Figure 1:
� Step I: Broadcast Latest Model. The central server broad-

casts the latest global model wt to all the clients (usually in
cross-silo FL) or a subset of clients (Ct) that are selected to
participate in this round of training (usually in cross-device
FL).

� Step II: Clients Compute Local Updates. Each client
computes an update of the model on its local dataset by
performing several iterations of gradient descent: wk

t+1  
wk

t+1 � �rwL(wk;Dk), with � being the learning rate.
� Step III: Aggregate Client Updates. The server updates the

global model by aggregating the local updates according to a
certain aggregation rule A(�): wt+1  A(fwk

t+1 : k 2 Ctg).

B. Byzantine-resilient Aggregation Rules

The most widely-used aggregation rule for communication-
efficient FL is Federated Averaging (FedAvg) [1], which ag-
gregates the client updates by computing a weighted average:
wt+1  

P
k2Ct

nk

N wk
t+1. However, FedAvg is not fault-

tolerant and even a single faulty/malicious client can prevent
the global model from converging [4], [9]. To address this,
several robust aggregation techniques have been proposed:

Krum [4]. At each communication round, Krum selects m
of the jCtj local model updates for computing the global model
update by comparing the similarity between the provided local
updates. Suppose f out of jCtj clients are malicious, Krum
assigns a score for each local model update wk by computing
the sum of Euclidean distances between wk and jCtj � f � 2
neighboring local updates that are closest to wk. The m local
model updates with the smallest scores will be selected and
the average will be computed as the global model update.

Median [9]. Median is a coordinate-wise aggregation rule
that considers each model parameter independently. Specifi-
cally, to decide the ith parameter of the global model update,
the server sorts the ith parameter of the submitted jCtj local
model updates and takes the median value. Median aggregation
can achieve order-optimal statistical error rate if the loss
function is strongly convex.
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Fig. 2: Visualization of client updates.

Trimmed Mean [9]. Trimmed Mean is another coordinate-
wise aggregation rule. At each round of communication, given
a trim rate  ( 2 (0; 1

2 )), the server first sorts the ith
parameter of the submitted jCtj local model updates, removes
the smallest and largest jCtj values , and then computes the
mean of the remaining (1�2)jCtj values as the ith parameter
of the global model update. It is proven that trimmed mean
can achieve order-optimal error rate for strongly convex losses
if a �  < 1

2 , where a = f
jCtj is the ratio between the number

of byzantine clients over the total number of clients.
Other methods. Bulyan [10] iteratively executes another

byzantine-resilient aggregation rule (e.g., Krum) multiple
times to achieve enhanced robustness, but is not scalable
due to high computational cost. Zeno [11] computes the
descendant score for each update and only aggregates the
top jCtj � b updates with the highest scores, where jCtj is
the total number of clients and b is a hyperparameter that
needs to be specified in advance and should be no less than
the number of malicious clients. A more recent study [12]
proposes to use a variational autoencoder to project client
updates into a latent space where malicious updates can be
detected. However, this method is based on the assumption
that the server has access to data that are drawn from the
same distribution as the client’s private data to train the
autoencoder, which is hard to satisfy in practice. Other studies
aim to achieve robust federated learning by identifying and
blocking the malicious clients through adaptive model quality
estimation [13] or clustered federated learning [24]. However,
these methods require the server to keep track of the identity of
each client to maintain a trustworthiness score or to establish
the cluster structure and therefore cannot be applied to the
scenarios where privacy-preserving techniques (e.g., secure
shuffling [20]) are applied. Additionally, methods based on
distributed momentum [17], [18] have been proposed to defeat
time-coupled attacks that aim to stealthily diverge the model
by accumulating small perturbations over time. Despite their
effectiveness in overcoming time-coupled perturbations, only
the simple cross-silo scenario has been considered, leaving the
more dynamic and realistic cross-device scenario unexplored.

Differently, in this work, we aim to design an aggregation
scheme that can tolerant attacks or failures in a more dynamic
FL scenario while achieving privacy preservation, i.e., without
requiring prior knowledge on the number of faulty/malicious
clients, the distribution of the client’s data, or the mapping

between the submitted model updates and the clients’ iden-
tities. Moreover, different from existing Byzantine-resilient
aggregators (e.g., Krum, Median, and Trimmed Mean), our
method can tolerant stronger attacks that have large negative
impact on the joint model with few malicious clients, such
as targeted data poisoning attacks [25] and time-coupled
attacks [22], [23].

III. METHODOLOGY

Our algorithm inspects the client updates from two critical
perspectives. (1) Spatial perspective: We leverage geometric
patterns to filter out malicious updates within each round
of communication; and (2) Temporal perspective: We utilize
historical data from previous communication rounds to detect
temporal outliers.

A. Spatial Perspective

1) Geometric Property of Malicious Updates: We first
perform a preliminary study to compare the distributions
of the model updates computed by benign clients and the
updates from faulty/malicious clients. We simulate a simple
federated learning task with 50 clients, 34% of which are either
faulty clients that contain noisy data or malicious clients that
perform Byzantine or label-flipping attack (detailed settings
are described in Section IV-A). The learning objective is to
jointly train a simple multi-layer perceptron model with one
hidden layer of 200 neurons on the MNIST dataset [26]. We
let each client perform 5 iterations of gradient descent with
a learning rate of 0:01 on its local dataset and report the
model update. Figure 2 shows the visualization of the clients’
updates selected from an arbitrary communication round in
a 2-dimensional space using t-SNE [27]. From the plots we
can observe that these malicious updates diverge from benign
updates, causing the aggregated global update to be biased
and deviate from the direction of the true gradient, which in
turn results in degraded performance of the learned model.
However, on the other hand, the divergent model updates
produce identifiable patterns that can potentially be utilized
for detecting and removing these anomalous model updates to
improve the robustness of the aggregation rule.

2) Clustering-based Anomalous Update Detection: Moti-
vated by the geometric property of the malicious updates, we
thus propose to adopt a clustering-based method for achieving
unsupervised anomalous model update detection. Since it
has been shown that different underlying data distribution of
clients can be distinguished by inspecting the cosine similarity
between their model updates [28], we use cosine similarity as
the metric for computing the affinity matrix. Different from
conventional clustered federated learning framework [24],
[28], we construct clusters per each communication round and
the cluster structure is not carried over to the consecutive
rounds after each partition. This disentangles the mapping
between the model update and the client’s identity to prevent
data inference attacks [16] and ensures that our method is
scalable to cross-device scenario with a large crowd of clients.
Specifically, at each communication round t, we first construct



the affinity matrix S prior to the aggregation by computing
the pairwise cosine similarities between the different clients’
updates:

S  [si;j ]; si;j  
< �wi

t+1;�w
j
t+1 >�wi

t+1

�wj
t+1

 (8i; j 2 Ct); (2)

where �wi
t+1 = wt � wi

t+1. We then apply agglomerative
clustering with complete linkage [29] to partition the clients’
updates into clusters of singleton nodes and iteratively merge
the currently most closest pair of clusters into a new cluster,
until there are only two candidate clusters left:

c1; c2  arg min
c1[c2=C

( min
i2c1;j2c2

si;j): (3)

Then we compute the largest similarity between the two
candidate clusters as the criterion for partitioning:

s(c1; c2) max
i2c1;j2c2

si;j : (4)

The partition process will be proceeded if s(c1; c2) is less than
a preset threshold st 2 (�1; 1). Based on the assumption that
the majority of clients are not faulty/malicious, we consider
the larger cluster of the two as the benign cluster c. If
s(c1; c2) � st, we consider all client updates in this round
to be benign. We aggregate the updates that are decided to be
benign according to a certain aggregation rule A(�):

w  A(fwk
t+1 : k 2 cg): (5)

In our experiment, we choose to use Median as the default
aggregation rule for the proposed algorithm as it does not
require prior knowledge on the quantity of malicious clients.
The subsequent operations will only be performed on the
aggregated benign updates until the next communication round
when a new clustering structure is formed.

B. Temporal Perspective

Different from cross-silo FL where the clients are almost
always available, in cross-device FL scenario, the participating
clients are usually a large number of mobile or edge devices
that are highly unreliable due to their varying battery, usage,
or network conditions. To ensure training speed and avoid
impacting the user of the device, the server usually only
selects a fraction of clients that are available for computing
the global update at each communication round. As a result,
the number of faulty clients selected in each communication
round is dynamic and highly variable. In addition, a client
may continue to send genuine updates until some point in the
learning process when it is compromised by an adversary. Thus
solely relying on spatial patterns is insufficient, especially
when facing a sudden violent perturbation.

1) Adaptive Learning Rate Adjustment via Momentum-
based Update Speculation: To cope with these time-varying
behaviors and achieve temporal robustness, we propose to
assess the quality of the aggregated update by comparing it
with a speculated value of update that is predicted according
to historical statistics. The intuition is that if the current update

Algorithm 1: Robust Aggregation via Spatial-temporal
Pattern Analysis

Input: Client updates fwk
t+1 : k 2 Ctg, global model

wt, aggregation rule A(�)
Parameter: Clustering threshold st, initial learning

rate �0, momentum �
Output: Updated global model wt+1

1: S  [si;j ]; si;j  
<�wi

t+1;�wj
t+1>

k�wi
t+1kk�wj

t+1k
(8i; j 2 Ct)

2: c1; c2  arg minc1[c2=C(mini2c1;j2c2 si;j)
3: s(c1; c2) maxi2c1;j2c2 si;j

4: if s(c1; c2) < st then
5: c arg maxc2c1;c2(jcj)
6: else
7: c c1 [ c2
8: end if
9: w  A(fwk

t+1 : k 2 cg)
10: �w  wt � w
11: v  � � v + (1� �) ��w
12: � <�w;v>

k�wkkvk
13: if � � 0 then
14: wt+1  wt

15: else
16: wt+1  wt � � � v; � = �0 � �
17: end if
18: return wt+1

significantly deviates from previous results, this can indicate
an abrupt change in the state of the participating clients (e.g.,
in extreme case all clients involved in the current round are
malicious).

To make a speculation of the update using historical data,
we take inspiration from momentum [30], which utilizes the
past gradients to smooth out the current update to achieve
fast and stable convergence. Specifically, we first estimate the
gradient using the aggregated updates: �w  wt � w. Then
we compute an exponential moving average of the gradient
according to:

v  � � v + (1� �) ��w; (6)

where � is the decay factor, and v can be seen as a speculated
value of the gradient from past updates. The cosine similarity
� between the gradient �w and the averaged value v can be
obtained. If � � 0, all updates in the current round will be
discarded. Otherwise, we update the global model according
to

wt+1  wt � � � v; (7)

where � is the learning rate which is adaptively adjusted
according to � based on the initial learning rate �0: � = � ��0.
This indicates that our algorithm will take a small step if v
and �w disagrees. A complete procedure of our algorithm is
described in Algorithm 1.
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Fig. 3: Comparison of the baseline methods with the proposed STPA aggregation in the cross-silo FL scenario under 4 different
settings. From top to bottom, each row shows the result of the MNIST, Fashion, Spambase, and CIFAR-10 datasets, respectively.

IV. EXPERIMENTS

A. Experimental Setup

1) Federated Learning Scenarios: Real-world FL systems
in production are usually optimized to keep the number of
faulty/malicious clients at a low level (<1%) using a variety of
system-level protections. In this paper, in order to better show
the superiority of the proposed algorithm, unless mentioned
otherwise, we consider an extreme case where around 34%
of clients are malicious. More specifically, we consider the
following two federated learning scenarios:
� Cross-silo FL: There are 20 clients that continuously par-

ticipate in every round of communication. We assume that
7 of them are faulty/malicious. This simulates the federated
learning scenario that involves a small number of reliable
clients such as different organizations.

� Cross-device FL: We assume that a total number of 100
clients are involved and 34 of which are faulty/malicious. At
each round of communication, only 20 clients are selected
randomly to compute the model update. This simulates the
federated learning scenario which involves a large number
of mobile and edge devices that are unreliable due to varying
battery or network conditions.
2) Baseline Aggregations and Parameter Selection: In each

FL scenario, we compare our proposed spatial-temporal pat-
tern analysis (STPA) algorithm with FedAvg and 3 represen-
tative baseline methods: Krum [4], Median [9], and Trimmed
Mean [9]. For fair comparison, we carefully choose the
parameters for baseline methods: for Krum, we assume the
number of Byzantine updates (f) is known to the server and

set m to be within the range of [1; jCtj�f�2] to be Byzantine-
resilient; for Trimmed Mean, we set the trim ratio to be within
5%-34%, which is the percentage of the simulated Byzantine
clients over total clients. For our STPA algorithm, we set the
st to 0:02, � to 0:5, and �0 to be within the range of [1:0; 1:6].

3) Datasets and Models: We conduct our experiments on 4
public datasets: MNIST [26], Fashion-MNIST (Fashion) [31],
Spambase [32], and CIFAR-10 [33]. The MNIST and Fashion-
MNIST datasets both contain 70; 000 28 � 28 gray-scale
images from 10 classes, 60; 000 of which are used for training
and the rest are used for testing. The Spambase dataset
is a binary classification problem with 4; 601 instances to
decide whether an email is spam or not. We keep the first
54 attributes which indicate whether a particular word was
frequently occurring in the e-mail. The dataset is randomly
split into training and test sets with a ratio of 8 to 2. The
CIFAR-10 dataset contains 60; 000 32�32 color images from
10 classes, with 50; 000 of them being used for training and the
rest for testing. For the MNIST and Fashion dataset, we train
a convolutional neural network (CNN) with 2 convolutional
layers and 2 fully-connected (FC) layers. For Spambase, we
train a simple Logistic regression (LR) model. For CIFAR-10,
we train a CNN with 2 convolutional layer, 1 max-pooling
layer, and 3 FC layers. A summary of the dataset and model
configurations is presented in Table I.

4) Adversary Model: For each scenario, we consider the
following settings in the experiments:

� Normal. In each communication round, all selected clients
perform 5 steps of gradient descent on their local datasets at
a learning rate of 0:01, and report the genuine local update


