Z-buffer and Rasterization

Jian Huang
Visibility Determination

• AKA, hidden surface elimination
Hidden Lines

Wireframe
Hidden Lines Removed

Hidden Line Removal
Hidden Surfaces Removed

Hidden Surface Removal
Various Algorithms

- Backface Culling
- Hidden Object Removal: Painters Algorithm
- Z-buffer
- Spanning Scanline
- Warnock
- Atherton-Weiler
- List Priority, NNA
- BSP Tree
- Taxonomy
Where Are We?

- Canonical view volume (3D image space)
- Clipping done
- Division by \(w \)
- \(z > 0 \)
Back-face Culling

- Problems?
- Conservative algorithms
- Real job of visibility never solved
Back-face Culling

• If a surface’s normal is pointing to the same direction as our eye direction, then this is a back face
• The test is quite simple: if $\mathbf{N} \cdot \mathbf{V} > 0$ then we reject the surface
Painters Algorithm

- Sort objects in depth order
- Draw all from Back-to-Front (far-to-near)
- Is it so simple?

\[
\begin{array}{c}
\text{ at } z = 22, \\
\text{ at } z = 18, \\
\text{ at } z = 10,
\end{array}
\]
3D Cycles

- How do we deal with cycles?
- Deal with intersections
- How do we sort objects that overlap in Z?
Form of the Input

Object types: what kind of objects does it handle?

- convex vs. non-convex
- polygons vs. everything else - smooth curves, non-continuous surfaces, volumetric data
Object Space
- Geometry in, geometry out
- Independent of image resolution
- Followed by scan conversion

Image Space
- Geometry in, image out
- Visibility only at pixels

Precision: image/object space?

Form of the output

Object Space
- Geometry in, geometry out
- Independent of image resolution
- Followed by scan conversion

Image Space
- Geometry in, image out
- Visibility only at pixels
Object Space Algorithms

- Volume testing – Weiler-Atherton, etc.
 - input: convex polygons + infinite eye pt
 - output: visible portions of wireframe edges
Image-space algorithms

- Traditional Scan Conversion and Z-buffering
- Hierarchical Scan Conversion and Z-buffering
 - input: any plane-sweepable/plane-boundable objects
 - preprocessing: none
 - output: a discrete image of the exact visible set
Conservative Visibility Algorithms

- Viewport clipping
- Back-face culling
- Warnock's screen-space subdivision
Z-buffer

- Z-buffer is a 2D array that stores a depth value for each pixel.

- **InitScreen**: for \(i := 0 \) to \(N \) do
 - for \(j := 1 \) to \(N \) do
 - \(\text{Screen}[i][j] := \text{BACKGROUND_COLOR}; \ Zbuffer[i][j] := \infty; \)

- **DrawZpixel** \((x, y, z, \text{color})\)
 - if \((z \leq \text{Zbuffer}[x][y]) \) then
 - \(\text{Screen}[x][y] := \text{color}; \ Zbuffer[x][y] := z; \)
Z-buffer: Scanline

I. for each polygon do
 for each pixel (x,y) in the polygon’s projection do
 \[z := -(D + A \cdot x + B \cdot y) / C; \]
 DrawZpixel(x, y, z, polygon’s color);

II. for each scan-line y do
 for each “in range” polygon projection do
 for each pair (x₁, x₂) of X-intersections do
 for \(x := x₁ \) to \(x₂ \) do
 \[z := -(D + A \cdot x + B \cdot y) / C; \]
 DrawZpixel(x, y, z, polygon’s color);

If we know \(z_{x,y} \) at (x,y) than: \[z_{x+1,y} = z_{x,y} - A / C \]
Incremental Scanline

\[Ax + By + Cz + D = 0 \]

\[z = \frac{-(Ax + By + D)}{C}, C \neq 0 \]

On a scan line \(Y = j \), a constant

Thus depth of pixel at \((x_1 = x + \Delta x, j) \)

\[z_1 - z = \frac{-(Ax_1 + Bj + D)}{C} + \frac{-(Ax + Bj + D)}{C} \]

\[z_1 - z = \frac{A(x - x_1)}{C} \]

\[z_1 = z - \left(\frac{A}{C} \right) \Delta x \] , since \(\Delta x = 1 \),

\[z_1 = z - \frac{A}{C} \]
Incremental Scanline (contd.)

- All that was about increment for pixels on each scanline.
- How about across scanlines for a given pixel?
- Assumption: next scanline is within polygon

\[
\begin{align*}
 z_1 - z &= \left(-\frac{Ax + By_1 + D}{C}\right) + \left(\frac{Ax + By + D}{C}\right) \\
 z_1 - z &= \frac{A(y - y_1)}{C} \\
 z_1 &= z - \left(\frac{B}{C}\right)\Delta y, \text{ since } \Delta y = 1, \\
 z_1 &= z - \frac{B}{C}
\end{align*}
\]
Non-Planar Polygons

Bilinear Interpolation of Depth Values

\[
\begin{align*}
 z_a &= z_1 + (z_4 - z_1) \frac{(y_1 - y_s)}{(y_1 - y_4)} \\
 z_b &= z_1 + (z_2 - z_1) \frac{(y_1 - y_s)}{(y_1 - y_2)} \\
 z_p &= z_a + (z_b - z_a) \frac{(x_a - x_p)}{(x_a - x_b)}
\end{align*}
\]
Z-buffer - Example

Z-buffer

Screen
Non Trivial Example?

Figure 4-57 Penetrating triangle. (a) Three-dimensional view; (b) two-dimensional projection.

Rectangle: P1(10,5,10), P2(10,25,10), P3(25,25,10), P4(25,5,10)

Triangle: P5(15,15,15), P6(25,25,5), P7(30,10,5)

Frame Buffer: Background 0, Rectangle 1, Triangle 2

Z-buffer: 32x32x4 bit planes
Example
Z-Buffer Advantages

- Simple and easy to implement
- Amenable to scan-line algorithms
- Can easily resolve visibility cycles
Z-Buffer Disadvantages

- Does not do transparency easily

- Aliasing occurs! Since not all depth questions can be resolved

- Anti-aliasing solutions non-trivial

- Shadows are not easy

- Higher order illumination is hard in general
Scanline Rasterization

- Polygon scan-conversion:
- Intersect scanline with polygon edges and fill between pairs of intersections

For $y = y_{\text{min}}$ to y_{max}

1) intersect scanline y with each edge
2) sort intersections by increasing x
3) fill pairwise ($p_0 > p_1$, $p_2 > p_3$,)
Scanline Rasterization Special Handling

• Make sure we only fill the interior pixels
 – Define interior: For a given pair of intersection points \((X_i, Y), (X_j, Y)\)
 – Fill ceiling\((X_i)\) to floor\((X_j)\)
 – Important when we have polygons adjacent to each other

• Intersection has an integer X coordinate
 – If \(X_i\) is integer, we define it to be interior
 – If \(X_j\) is integer, we define it to be exterior
 – (so don’t fill)
Scanline Rasterization Special Handling

- Intersection is an edge end point, say: \((p0, p1, p2)\) ??
- \((p0,p1,p1,p2)\), so we can still fill pairwise
- In fact, if we compute the intersection of the scanline with edge e1 and e2 separately, we will get the intersection point \(p1\) twice. Keep both of the \(p1\).
Scanline Rasterization Special Handling

- But what about this case: still \((p_0, p_1, p_1, p_2)\)
Rule

• Rule:
 – If the intersection is the y-min of the edge’s endpoint, count it. Otherwise, don’t.
• Don’t count p1 for e2
Performance Improvement

• The goal is to compute the intersections more efficiently. Brute force: intersect all the edges with each scanline
 – find the ymin and ymax of each edge and intersect the edge only when it crosses the scanline
 – only calculate the intersection of the edge with the first scan line it intersects
 – calculate dx/dy
 – for each additional scanline, calculate the new intersection as \(x = x + dx/dy \)
Data Structure

• Edge table:
 – all edges sorted by their ymin coordinates.
 – keep a separate bucket for each scanline
 – within each bucket, edges are sorted by increasing x of the ymin endpoint
Edge Table

- Edge structure: ymax, xmin, dx/dy, next

AB:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>-5/2</td>
</tr>
</tbody>
</table>
Active Edge Table (AET)

- A list of edges active for current scanline, sorted in increasing x

$y = 9$

$y = 8$
Polygon Scan-conversion Algorithm

Construct the Edge Table (ET);
Active Edge Table (AET) = null;
for y = Ymin to Ymax
 Merge-sort ET[y] into AET by x value
 Fill between pairs of x in AET
 for each edge in AET
 if edge.ymax = y
 remove edge from AET
 else
 edge.x = edge.x + dx/dy
 sort AET by x value
end scan_fill