Texture Mapping

Jian Huang

This set of slides references the ones used at Ohio State for instruction.
Can you do this …
What Dreams May Come
Texture Mapping

- Of course, one can model the exact micro-geometry + material property to control the look and feel of a surface.
- But, it may get extremely costly.
- So, graphics use a more practical approach – texture mapping.
Texture Mapping

- Particles and fractals
 - gave us lots of detail information
 - not easy to model
 - mathematically and computationally challenging
Texture Mapping

- (Sophisticated) Illumination models
 - gave us “photo”-realistic looking surfaces
 - not easy to model
 - mathematically and computationally challenging

- Phong illumination/shading
 - easy to model
 - relatively quick to compute
 - only gives us dull surfaces
Texture Mapping

- Surfaces “in the wild” are very complex
- Cannot model all the fine variations
- We need to find ways to add **surface detail**
- How?
Texture Mapping

- Solution - (it's really a cheat!!)

MAP surface detail from a predefined multi-dimensional table ("texture") to a simple polygon

- How?
Textures Make A Difference

- Good textures, when applied correctly, make a world of difference!
Do you wonder what they may look like with textures on?
Do you wonder what they may look like with textures on?
A Texture can be?

- \(F(u,v) \) ==> a continuous or discrete function of:
 - \{ R(u,v), G(u,v), B(u,v) \}
 - \{ I(u,v) \}
 - \{ index(u,v) \}
 - \{ alpha(u,v) \} (transparency)
 - \{ normals(u,v) \} (bump map)
 - \{ surface_height(u,v) \} (displacement map)
 - Specular color (environment map)
 - ...

The Generalized Pipeline

The generalized pipeline of texture mapping

- Compute obj space location
- Use proj func to find \((u,v)\)
- Use corre func to find texel
- Apply value transform func
- Modify equation or fragment color

- Fragment: after rasterization, the data are not pixels yet, but are fragments. Each fragment has coordinate, color, depth, and undergo a series of tests and ops before showing up in the framebuffer
Texture Mapping

Problem #1

- Fitting a square peg in a round hole
- We deal with non-linear transformations
- Which parts map where?
Inverse Mapping

- Need to transform back to obj/world space to do the interpolation
- Orientation in 3D image space
 - (.5, 1) (.8, 1)
 - (.1, .6) (.6, .2)

- Foreshortening
Texture Mapping

Problem #2

- Mapping from a pixel to a “texel”
- Aliasing is a huge problem!
Mapping to A Texel?

- Basically map to an image
- Need to interpolate
- Same as
 - How can I find an appropriate value for an arbitrary (not necessarily integer) index?
 - How would I rotate an image 45 degrees?
 - How would I translate it 0.5 pixels?
Interpolation

Nearest neighbor

Linear Interpolation
How do we get $F(u,v)$?

- We are given a discrete set of values:
 - $F[i,j]$ for $i=0,...,N$, $j=0,...,M$

- Nearest neighbor:
 - $F(u,v) = F[\text{round}(N\times u), \text{round}(M\times v)]$

- Linear Interpolation:
 - $i = \text{floor}(N\times u)$, $j = \text{floor}(M\times v)$
 - interpolate from $F[i,j], F[i+1,j], F[i,j+1], F[i+1,j+1]$

- Filtering in general!
How do we get $F(u,v)$?

- Higher-order interpolation
 - $F(u,v) = \sum_i \sum_j F[i,j] \cdot h(u,v)$
 - $h(u,v)$ is called the reconstruction kernel
 - Gaussian
 - Sinc function
 - splines
- Like linear interpolation, need to find neighbors.
 - Usually four to sixteen
Texture and Texel

- Each pixel in a texture map is called a Texel.
- Each Texel is associated with a \((u,v)\) 2D texture coordinate.
- The range of \(u, v\) is \([0.0, 1.0]\).
For any \((u,v)\) in the range of \((0-1, 0-1)\), we can find the corresponding value in the texture using some interpolation.
The Projector Function

1. Model the mapping: \((x,y,z) \rightarrow (u,v)\)
2. Do the mapping
Image space scan

For each y /* scan-line */
 For each x /* pixel on scan-line */
 compute u(x,y) and v(x,y)
 copy texture(u,v) to image(x,y)

- Samples the warped texture at the appropriate image pixels.
- inverse mapping
Image space scan

Problems:

- Finding the inverse mapping
 - Use one of the analytical mappings
 - Bi-linear or triangle inverse mapping
- May miss parts of the texture map
Texture Parameterization

Definition:

- The process of assigning texture coordinates or a texture mapping to an object.

The mapping can be applied:

- Per-pixel
- Per-vertex
Interpolation Concepts

T is texture
Find textures at vertices first!
Bilinear Interpolation of Depth Values
Texture space scan

For each \(v \)
 For each \(u \)
 compute \(x(u,v) \) and \(y(u,v) \)
 copy texture\((u,v)\) to image\((x,y)\)

- Places each texture sample to the mapped image pixel.
- Forward mapping
Texture space scan

Problems:
- May not fill image
- Forward mapping needed
Simple Projector Functions

- Spherical
- Cylindrical
- Planar

For some model, a single projector function suffices. But very often, an artist may choose to subdivide each object into parts that use different projector
Planar

- **Mapping to a 3D Plane**
 - Simple Affine transformation
 - rotate
 - scale
 - translate
Mapping to a Cylinder

- Rotate, translate and scale in the uv-plane
- \(u \rightarrow \theta \)
- \(v \rightarrow z \)
- \(x = r \cos(\theta), \ y = r \sin(\theta) \)
Spherical

- Mapping to Sphere
 - Impossible!!!!
 - Severe distortion at the poles
 - $u \rightarrow \theta$
 - $v \rightarrow \phi$
 - $x = r \sin(\theta) \cos(\phi)$
 - $y = r \sin(\theta) \sin(\phi)$
 - $z = r \cos(\theta)$
Two-pass Mapping

- Idea by Bier and Sloan
- S: map from texture space to intermediate space
- O: map from intermediate space to object space
Two-pass Mapping

- Map texture to intermediate:
 - Plane
 - Cylinder
 - Sphere
 - Box
- Map object to same.
Texture Mapping

- O mapping:
 - reflected ray (environment map)
 - object normal
 - object centroid
 - intermediate surface normal (ISN)

- that makes 16 combinations
- only 5 were found useful
Texture Mapping

- **Cylinder/ISN (shrinkwrap)**
 - Works well for solids of revolution

- **Plane/ISN (projector)**
 - Works well for planar objects

- **Box/ISN**
- **Sphere/Centroid**
- **Box/Centroid**

Works well for roughly spherical shapes
Texture Parameterization

- What is this ISN?
 - Intermediate surface normal.
 - Needed to handle concave objects properly.
 - Sudden flip in texture coordinates when the object crosses the axis.
Texture Parameterization

- Flip direction of vector such that it points in the same half-space as the outward surface normal.
Texture Parameterization

- Plane/ISN
Texture Parameterization

- **Plane/ISN**
 - Draw vector from point (vertex or object space pixel point) in the direction of the texture plane.

 - The vector will intersect the plane at some point depending on the coordinate system.
Texture Parameterization

- Plane/ISN
 - Resembles a slide projector
 - Distortions on surfaces perpendicular to the plane.
Texture Parameterization

- Cylinder/ISN
 - Distortions on horizontal planes
 - Draw vector from point to cylinder
 - Vector connects point to cylinder axis
Texture Parameterization

- Sphere/ISN
 - Small distortion everywhere.
 - Draw vector from sphere center through point on the surface and intersect it with the sphere.
Interpolating Without Explicit Inverse Transform

- Scan-conversion and color/z/normal interpolation take place in screen space, but really, what space should it be in?
- What about texture coordinates?
 - Do it in clip space, or homogenous coordinates
In Clip space

- Two end points of a line segment (scan line)
 \[Q_1 = (x_1, y_1, z_1, w_1) \quad Q_2 = (x_2, y_2, z_2, w_2) \]

- Interpolate for a point \(Q \) in-between
 \[Q = (1 - t)Q_1 + tQ_2 \]
In Screen Space

- From the two end points of a line segment (scan line), interpolate for a point Q in-between:

 \[Q^g = (1 - t^g)Q_1^g + t^gQ_2^g \]

- Where: \(Q_1^g = Q_1/w_1 \) and \(Q_2^g = Q_2/w_2 \).

- Easy to show: in most occasions, \(t \) and \(t^s \) are different.
From t^s to t

- Change of variable: choose
 - a and b such that $1 - t^s = a/(a + b)$, $t^s = b/(a + b)$
 - A and B such that $(1 - t) = A/(A + B)$, $t = B/(A + B)$.

- Easy to get
 \[Q^s = \frac{aQ_1/w_1 + bQ_2/w_2}{(a + b)} = \frac{AQ_1 + BQ_2}{Aw_1 + BW_2} \]

- Easy to verify: $A = aw_2$ and $B = bw_1$ is a solution
Texture Coordinates

- All such interpolation happens in homogeneous space.
- Use A and B to linearly interpolate texture coordinates
- The homogeneous texture coordinate is: \((u,v,1)\)
Homogeneous Texture Coordinates

- \(u^l = \frac{A}{A+B} u_1^l + \frac{B}{A+B} u_2^l \)
- \(w^l = \frac{A}{A+B} w_1^l + \frac{B}{A+B} w_2^l = 1 \)
- \(u = u^l/w^l = u^l = (Au_1^l + Bu_2^l)/(A + B) \)
- \(u = (au_1^l + Bu_2^l)/(A + B) \)
- \(u = (au_1^l/w_1^l + bu_2^l/w_2^l)/(a^l/w_1^l + b^l/w_2^l) \)
Homogeneous Texture Coordinates

- The homogeneous texture coordinates suitable for linear interpolation in screen space is computed simply by
 - Dividing the texture coordinates by screen \(w \)
 - Linearly interpolating \((u/w, v/w, 1/w)\)
 - Dividing the quantities \(u/w\) and \(v/w\) by \(1/w\) at each pixel to recover the texture coordinates