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ABSTRACT

Selecting meaningful features is central in the analysis of scientific
data. Today’s multivariate scientific datasets are often large and
complex making it difficult to define general features of interest
significant to scientific applications. To address this problem, we
propose three general, spatiotemporal metrics to quantify the sig-
nificant properties of data features–concentration, continuity and
co-occurrence, named collectively as CO3. We implemented an in-
teractive visualization system to investigate complex multivariate
time-varying data from satellite remote sensing with great spatial
resolutions, as well as from real-time continental-scale power grid
monitoring with great temporal resolutions. The system integrates
CO3 metrics with an elegant multi-space user interaction tool to
provide various forms of quantitative user feedback. Through these,
the system supports an iterative user-driven analysis process. Our
findings demonstrate that the CO3 metrics are useful for simplifying
the problem space and revealing potential unknown possibilities of
scientific discoveries by assisting users to effectively select signifi-
cant features and groups of features for visualization and analysis.
Users can then comprehend the problem better and design future
studies using newly discovered scientific hypotheses.

Keywords: Multivariate, Interactive Feature Selection, Large
Data, Metrics

1 INTRODUCTION

Current computing power has greatly accelerated both simulation
capabilities and the collection of experimental and observational
data. Datasets with an increasing number of variables paired with
greater spatial and temporal resolutions are now common, posing
significant complications for data analysis. It is crucial for domain
scientists to differentiate and extract important information from a
complex problem space. Hence, an adaptable, effective, and inter-
active visualization system to accomplish this goal is valuable for
scientific discoveries.

Traditional feature extraction techniques are commonly utilized
in many data analysis applications that involve large-scale mul-
tivariate spatiotemporal datasets. With the growth of computing
power and data size, extraction of features with much finer detail is
more affordable than ever before. While more features potentially
contain more information, the amount of extracted features has be-
come overwhelming to users – simple enumeration through these
features is no longer plausible for analyzing the features in most
cases. Interactive feature selection is called for such that a user can
navigate, evaluate, and separate a complex problem space based on
application-specific interest and significance.

In this work we propose three spatiotemporal metrics to enhance
the feature analysis process by quantifying the significance of indi-
vidual features and the correlation among multiple features. The
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metrics are Concentration, Continuity, and Co-occurrence—
known collectively as CO3. Integrated into the traditional workflow
for large-scale multivariate data analysis, the CO3 metrics can be
interactively explored in concert using our prototype system called
CO3 Inspector.

The CO3 metrics are general across application domains and are
applicable in both the spatial and temporal domains. They are use-
ful in the following ways:

• Enabling users to better specify what is ‘interesting’—both
strong and weak properties among the three metrics can be
potentially significant to an application;

• Enabling users to identify and group features that are inher-
ently correlated and analyze them simultaneously for possible
scientific discoveries.

While the metrics serve as the backend of the analysis, our pro-
totype system CO3 Inspector provides a visualization and analysis
front end by multi-linking the data, metrics, and statistical infor-
mation together such that the users can explore the feature space
effectively. Additionally, our user interface provides access to dif-
fering levels of granularity by which a user may customize how
features are generated and how the three properties are evaluated.

We illustrate the effectiveness of CO3 by exploring two datasets:
continental-scale time-varying phenology data captured with satel-
lites at 250-meter resolution, and continental-scale power grid mon-
itoring data collected at sub-second resolution. The phenology data
is acquired by the NASA MODIS satellite which covers the entire
globe every 8 days at 250 meter resolution and has been collecting
data since the year 2000. The power grid data are collected using
49 synchrophasor sensors distributed across the Eastern Intercon-
nect of North America (47 in the United States, and 2 in Canada).
These sensors collect multivariate data at 10 times per second and
timestamp each record using GPS, resulting in 864,000 timesteps
per day. These data provide an unprecedented view into how a real-
world complex system, such as the power grid, operates in a large
variety of conditions, including how it recovers from failure.

CO3 Inspector’s interactive techniques have allowed our scien-
tists to select meaningful patterns from large scale datasets which
were not known a priori. For example, we were able to distinguish
modes of multivariate variation that are characteristic of normal op-
erational states of the power grid system as well as those specific to
“Storm Periods” resulting from two simultaneous major generator
failures. In the 500 GB MODIS dataset, we were able to quickly
identify very rare characteristic patterns such as those correspond-
ing to irrigation systems built within chronically dry areas. These
small patterns, which are often mistaken for noise, easily stand out
using the CO3 metrics.

We describe user needs of the driving applications and related
previous work in Section 2. We then define the attribute space and
show how it is built in Section 3. We present the CO3 spatiotem-
poral metrics in Section 4 and detail the interactive visualization
component in Section 5. Major results demonstrating the use of our
system in selecting significant features and feature groups in the
two driving applications are described in Section 6.



2 BACKGROUND

With today’s data collection technology, the creation of large, high
resolution datasets has become commonplace. As is the case with
each of our driving applications, the ability to effectively handle
such data is necessary to observe the behavior of a very complex
system such as the earth or the power grid. The setting of our re-
search is general to many other data-intensive applications.

The challenge is to derive previously unknown knowledge about
the multivariate patterns in such complex physical systems. In a
change from the past, with these new data intensive applications,
it is quite possible to obtain millions of features using existing
techniques, such as clustering [17, 21, 22] , geo-spatial-temporal
queries [6] and variable space range queries [13, 5].

Ground truth about the relationships among these features, how-
ever, is largely lacking—it can sometimes be simulated, but only in
a very limited manner. Hence the starting point of research involves
questions like, “Which features are important?,” “Which groups of
features occur together?,” and “In what order and with what conse-
quence.” These questions motivated us to develop the CO3 metrics
and the Inspector system to verify the efficacy of the CO3 metrics.
In the following we review the background of our applications and
the relevant existing methods in the visualization literature.

2.1 Characterizing Phenology of Forest Ecosystems

Understanding and safeguarding the health of the planet’s ecosys-
tems is pivotal to our security, economical prosperity, quality of life,
and the stewardship of our natural and cultural heritage. To this end,
a key aspect is to understand and separate “normal” or healthy pat-
terns of variation in an ecosystem from those that are abnormal and
indicate threats to ecosystem health that may require intervention.
Here we explore such spatiotemporal variations in forest ecosys-
tems using remotely sensed vegetation patterns of growth and dete-
rioration, or phenology. Previous works including Mills et al. [17]
have successfully applied methods for geospatiotemporal data min-
ing of multi-year land surface phenology data in detecting threats
to forest ecosystems. The dataset we use consists of Normalized
Difference Vegetation Index (NDVI) values, a measure of “green-
ness”, from the Moderate Resolution Imaging Spectroradiometer
(MODIS).

2.2 Power Grid Situation Awareness

The power grid is a critical fixture in our current industrial era. Our
society depends on its consistent availability. Power grid failures
could paralyze a city, region, or in the worst case, an entire country.
Situation awareness visualization plays a significant role in help-
ing grid operators to better monitor the current environment and to
recognize, prevent or recover from major system failures [12, 18].

Our data was collected on the Eastern Interconnect of the U.S.
on April 27, 2011 - a day when two major power generators tem-
porarily went offline and caused widespread oscillation in the power
grid. A total of 49 FNET (Frequency monitoring NETwork [25])
devices distributed across the Eastern Interconnect recorded data at
0.1 second resolution. We were given the rough time of major gen-
erator trips. The duration of load shedding and severe oscillation
is referred to as the “Storm Period”. Frequency, voltage and phase
angle are three variables measured by the devices. We refer to this
dataset as FNET.

2.3 Previous Work

The study of features in multivariate scientific data has been a cen-
tral topic for visualization research. Broadly defined, a transfer
function for volume rendering is a method of feature selection.
There has been abundant work on extracting features from the at-
tribute space as well as the spatial/temporal dimensions from mul-
tivariate spatiotemporal data. Due to the complexity, it has become

prevalent to use multiple linked views to simultaneously show, ex-
plore, and analyze different aspects of multivariate data. Examples
include SimVis [2] and follow-up research works like [3, 11] that
demonstrates the ability of multiple linked views to enable iterative
feature specification and hypotheses generation. Our work also
follows the same practice.

Many previous works on feature extraction undertook the per-
spective of classification. A common goal is to classify voxels into
a few classes, after which a user could interactively (but manually)
enumerate through and control how they are rendered. For exam-
ple, Tzeng and Ma [21] classified volume data using a clustering
algorithm while Ip et al. [9] applied a hierarchical segmentation
method. As the amount of potentially viewable features increases,
the appeal of automatic feature extraction is likewise magnified.
There are methods to automatically assign rendering settings based
on regions of interest [23] and leverage non-parametric clustering
in transfer function space to guide transfer function generation [14].

Many researchers have incorporated statistical properties of data
to the workflow of data analysis. Recent examples include a rank-
by-feature framework proposed by Seo et al. [20] that enables users
with better understanding of subspaces of multidimensional data
by ranking them using quantitative criterions, work to statistically
analyze time activity curve by Fang et al. [4], a method to automati-
cally select turbulent flow features using local statistical analysis by
Janicke et al. [10], an approach to create a transfer-function space
based on statistical properties derived from neighborhood of each
sample point by Haidacher [7] and an approach to abstract attribute
space by using information metrics detailing the relationship be-
tween attributes of the multivariate volume data by Maciejewski et
al. [13]

Correlation within data becomes an interesting analysis subject
as well as an assistive tool. Chen et al. [1] devised a sampling-based
approach to correlation classification for time-varying multivariate
data. Mehta et al. [16] derived three spatiotemporal relationships–
directional, topological and navigational. They incorporated spatial
and temporal graphs to display the spatial and temporal trajectories
of scientific objects. Yang et al. [24] developed the Value and Re-
lation Display method to effectively and efficiently explore large
datasets with several hundred dimensions based on relationships
among the dimensions.

This paper uses CO3 metrics to analyze the properties and corre-
lations of features extracted through hierarchical clustering. How-
ever, the metrics differ from the existing clustering metrics like
homogeneity and completeness [19] since these existing cluster-
ing metrics are designed to measure the quality of clustering al-
gorithms, whereas CO3 measures the spatiotemporal properties of
the clusters. Furthermore for these clustering metrics, there is an
assumption that correct cluster assignment is known. Our research
is complementary to the existing work in that our goal is to study
how to select features when there are much more than just a few
hundred. The aim is for users to explore a large number of fea-
tures from a high data-rate real-time observation of a real-world
system, such that they can hypothesize about which groups of fea-
tures occur together, how those groups of features occur together,
and consequently which groups of features are important for recog-
nizing application domain issues. For each feature, CO3 assigns its
significance according to in which neighborhoods or among which
group the feature consistently appears.

3 ATTRIBUTE SPACE

CO3 operates in two different spaces. Attribute Space is where
multivariate data is processed and abstracted into features based on
similarity. Physical Space is where we distinguish how features
are distributed across space and time and whether they are mutually
coincident in the spatial or temporal neighborhoods.

Multivariate feature extraction in the attribute space is a separate



preprocessing module from the CO3 Inspector system. CO3 met-
rics can handle features extracted from any methods that produce
spatially or temporally distributed features. This is an important
process that requires high efficiency and accuracy, especially for
large-scale datasets. In this work, we use a customized parallel hier-
archical clustering algorithm to create abstractions of the dataset at
multiple scales, offering the users the capability to analyze the prob-
lems at varying granularity. Our hierarchical clustering is imple-
mented in a bottom-up fashion. Small grained clusters are merged
together as long as the distance between cluster centroids is under
a pre-set threshold. As hierarchical clustering progresses to coarser
levels, the distance threshold increases linearly. Each cluster is a
multivariate feature regardless of which level or scale.

MODIS: As the yearly vegetation variation is one of the re-
search focuses of climate scientists, treating the vegetation indices
collected at different times in the year as different variables is use-
ful for the analysis purpose. The whole satellite observational data
is structured as a regular grid of 19732 (longitude) x 13571 (lati-
tude) x 11 (year) x 46 (variable). Utilizing sophisticated dimension-
reduction techniques and hierarchical clustering algorithms, the
whole dataset is abstracted into a hierarchy of clusters. The number
of clusters varies from 14225 at the bottom level to 223 at the top
level.

FNET: The whole power grid dataset is structured as a regular
grid of 864000 (time step) x 49 (location) x 3 (variable). In addi-
tion to the three measured variables in the dataset, variation of these
variables are also included in the feature extraction process as rec-
ommended by the domain experts. The resulting hierarchy contains
49642 clusters at the lowest level and 1680 at the highest one.

4 SPATIOTEMPORAL FEATURE METRICS

4.1 Multi-Scale Physical Space Overview

It has been a common assumption that all features can potentially
play an important role. Hence, many techniques render features di-
rectly in their original spatiotemporal space and leave it to the users
to determine what features deserve further exploration. That as-
sumption is less than ideal for handling features that may be noise-
corrupted, redundant or less informative.

The purpose of developing metrics is to provide a general way
of quantifying significance among a large number of features. Our
CO3 metrics, concentration, continuity, and co-occurrence, encap-
sulate properties that are readily identifiable in the physical space,
both spatially and temporally. The metrics represent three desir-
able properties when exploring for interesting features by domain
experts.

CO3 metrics are defined on a per-cluster basis and assume that
the 4-dimensional space including the spatial and temporal domain
has been partitioned into coarse grained bins, referred to as reg-
ular bins. All dimensions are treated equally in the partitioning.
In general, the granularity of each regular bin is defined in the 4-
dimensional space [x, y, z, t]. As for different analysis focuses of
datasets, MODIS is partitioned spatially to study the distribution
of yearly vegetation growing pattern in geographical space while
FNET is partitioned temporally to study the dynamics of power grid
over time. Example granularities could be [5 km, 5 km, −, 1 year]
or [−, −, −, 1 second], where the ‘−’ symbol denotes an undefined
or unpartititioned dimension.

The CO3 metrics are computed based on the distribution of clus-
ters on the partition of the physical space, hence, the choice of bin
size affects the values of the metrics. The CO3 Inspector system
empirically provides a pre-set of bin sizes: 5, 10, 15 and 20 km for
MODIS and 1, 2, 5, 10 second for FNET. These pre-set bin sizes are
based on the rough spatial/temporal scale of application problems
that domain experts are interested in. For instance, 10 seconds is
considered to be a long period of time in which power transmission
on the grid would vary much.

To properly define these metrics for feature properties, we need
the following notations and quantities:

Fi: Cluster i
Ei: Number of elements of Fi.
Eib: Number of elements of Fi in regular bin b.
t: The percentage threshold for identifying significant bins.

For a given cluster Fi, the set of significant bins is the smallest set
needed to represent some percentage t of all data points belonging
to cluster Fi. For example, in Figure 1, a cluster Fi contains 28 data
points and is spread over 5 bins, A through E. We sort the bins in
decreasing order of Eib and then traverse the array, computing the
prefix sum of Eib. We stop the traversal as soon as the prefix sum
has reached t. For a value of t = 90%, the significant bins would
be A through D. The concept of significant bins elegantly handles
noise-like anomaly data, the choice of t is application dependent.

Bin A          Bin B          Bin C         Bin D          Bin E

E  = 11       E  = 8        E  = 5         E  = 3        E  = 1
ib ib ib ib ib

0%          39%           68%           86%           96%          100%

Figure 1: An illustration of determining significant bins. Given a clus-
ter (Fi) and the number of its data points per bin (Eib, in decreasing
order), the set of significant bins is the smallest group of bins that can
represent Fi’s presence above a given percentage threshold (t).

In the following subsections, we describe the three CO3 metrics.

4.2 Concentration

The concentration metric, C1, denotes the average occupancy of
bins in the set of significant bins for a given cluster. It indicates the
properties of a cluster with respect to both physical distribution and
size and is calculated as:

C1i =
Ei ∗ γ

Ki
(1)

where γ is the percentage of elements within significant bins for
a given cluster Fi.

Since C1i depends on Ki, the number of significant bins, this
guarantees that C1 is unaffected by outlier data in the cluster.
Highly concentrated features have a high representation in a small
number of significant bins and will therefore have a high C1 value.
Clusters with a smaller representation across bins will stack on the
lower end of the C1 axis. A concentrated feature can be a domi-
nant pattern across a large portion of the physical space because of
its large volume of data elements. It can also be a smaller-sized
feature representative of certain locale in the physical space.

Figure 2(a) illustrates the space formed by concentration vs.
cluster size. The metrics are computed using a 5 km bin size. On
a 250-meter resolution grid, this amounts to 400 geographic lo-
cations in every bin. A C1 value of 200 or more indicates that a
cluster monopolizes more than half of its significant bins. When a
user examines highly condensed patterns such as vegetation dam-
age due to insect infestation, those feature patterns are small yet
highly concentrated. The clusters corresponding to them will not
appear among the large ones. The search should start from the left
side of Figure 2(a), populated by smaller clusters.

Also in Figure 2(a), several individual clusters are labeled for
comparison. Cluster “1” and “2” are both large but have very dif-
ferent concentration properties. Cluster “1” is one of the largest
features on the continental U.S., yet it is so concentrated that it
takes up almost half of each physical bin. That cluster happens to
correspond to the mountainous areas of the western United States.
Cluster “2” is large but does not monopolize any 5 km-square geo-
graphical bins. Cluster “2” distributes over the middle and eastern
part of the United States. Cluster “3” is similar in size to cluster “4”,
but is more concentrated with its spatial presence concentrated on



(a) Concentration vs. Cluster size (b) Concentration vs. Continuity (c) Co-occurrence graph layout

Figure 2: Statistics views based on CO3 metrics. Various examples of utilizing CO3 metrics in visualization and analysis. The utility of the
visualizations in the subfigures (along with corresponding labels) are discussed in Sections 4.2, 4.3, and 4.4. (Year 2003, 5 km bin size)

lakes and other water bodies. Clusters appearing at the right-bottom
corner of this plot are likely widespread noise in the data.

4.3 Continuity

C2 denotes the continuity of significant bins for a given cluster.
Bins are connected if they comprise spatiotemporally continuous
regions. Connected significant bins are grouped into significant re-
gions and C2 is calculated as:

C2i = 1.0−
Ri

Ki
(2)

where Ri is the number of significant regions and Ki is the num-
ber of significant bins. Hence, C2 can range from 0.0 (no bins con-
nected) to 1.0 (all bins connected, 1.0 not included).

When paired, continuity and concentration create an interesting
space. We believe the C1 vs. C2 space can be divided into four
areas in which clusters that fall in the same area share similar spa-
tiotemporal properties. For example, Figure 2(b) shows a sample
plot of C1 vs. C2 with labeled regions. In this space, low con-
centration and low continuity likely represent noisy data elements
(A); high concentration and high continuity represent a cluster that
is well represented in distinct spatial regions of the data (C); and
low concentration and high continuity could easily represent ele-
ments of data that define “normal” data elements for given regions
(B). Defining features of interest is entirely dependent on the ap-
plication however. Figure 3 provides a map view of the clusters in
regions (A), (B) and (C).

Figure 3: Clusters in quadrants A, B and C (left to right) in Figure 2(b).

Note that clusters “1” and “3” in Figure 2(a) are still clearly dis-
tinguishable in Figure 2(b). From that, we can tell both of those
clusters are highly concentrated and continuous and are likely fea-
tures representative of a geographic area. Cluster “2” in Figure 2(a)
is also highly continuous as the agricultural growing pattern repre-
sented by Cluster “2” is more or less common in the middle and
eastern US though not prevalent.

4.4 Co-occurrence

While concentration and continuity quantify global properties of a
single cluster, we also desire to assess clusters locally and within the
context of one another. Co-occurrence, or C3, measures the degree
to which clusters reside near each another (i.e. are collocated) and
assists in the analysis of relationships between features. Unlike C1

and C2, C3 is calculated from all bins, not just significant bins.

C3i j =
∑b∈Vi j

min(Eib,E jb)

(Ei +E j)/2
(3)

For two clusters Fi and Fj, Vi j is the set of regular bins in which
Fi and Fj overlap. C3i j measures how much Fi overlaps Fj in spa-
tial presence on the granularity of spatial bins. Hence, C3 will range
from 0.0 (no overlap) to 1.0 (perfect spatial overlap). This metric
is very well-conditioned to be directly used for edge weights in a
force-directed graph layout algorithm (discussed in Section 5.2).
We threshold edge weights and filter out edges before performing
the graph layout. Figure 2(c) is an example with a threshold corre-
sponding to keeping only top 40% of edges and a bin granularity of
5 km. We omitted edges to reduce over-plotting.

With concentration and continuity, users can specify signifi-
cant features based on the strong or weak properties; however, co-
occurrence is more complex to understand because co-occurrence
can not be examined using the concept of ‘high’ or ‘low’. How-
ever, by employing a graph layout algorithm to embed the features
into a two-dimensional graph, users can better visualize and ana-
lyze this metric. In the graph, the position of a particular feature
has no physical meaning. The distances between features are the
only measurement related to C3. If features are close to each other
in the graph, it means these features are near each other spatially or
they occur in similar period of time.

The significance of C3 is shown by our driving applications. Cli-
mate scientists are always interested in discovering exact causes of
abnormal growing patterns. Two co-occurred features imply cer-
tain ecological scenarios. It could be that they are both conse-
quences of the same event, like unexpected regional drought. Or
it could be that one of them is the cause of other co-occurred fea-
tures. Similarly for the power grid application, unusual events that
occur shortly before or after abnormal power grid operation states,
like large-scale frequency oscillation, are significant. Understand-
ing the reasons for and the consequences of an abnormal event is
crucial for handling similar occurrences in the future.

Although initially more complex to understand, C3 actually
presents a great deal of information about feature combinations
which is often neglected or missed in traditional attribute analyses.
In Section 6, we present some interesting groups of features dis-
covered from the co-occurrence graph of the CO3 Inspector system
that were not known a priori.

5 INSPECTOR - THE USER INTERFACE

Figure 4 shows the initial view of CO3 for MODIS. The inter-
face has three components: a spatiotemporal view, a co-occurrence
graph, and statistics plots.

All clusters are assigned different colors based on cluster cen-
troids, and the same color scheme is used across all views and clus-
tering levels. Since the system is designed for visualizing a large
number of clusters and the color represents the multivariate prop-
erties of clusters rather than categories, repetitive color assignment,



as used in Dimstiller [8], is not a choice in this case. In MODIS,
the colormap is indexed according to the primary and secondary
principle components. In FNET, the red, green and blue channels
are assigned according to changes in frequency, voltage and phase
angle, respectively. Missing data is transparent.

5.1 Spatiotemporal Rendering

Spatiotemporal View

Statistics View

Graph View

Graph 
Expanding

Co-occurrence
Threshold

Bin Size 

Clustering Level

Temporal Histogram

Figure 4: (Top) A snapshot of CO3 Inspector showing the spatiotem-
poral view, graph view, and statistics view; (bottom) Spatiotemporal
view adapted for the power grid application.

The spatiotemporal view is specifically designed for different
datasets. For MODIS, 2D image-based rendering is implemented
while FNET uses an adapted view with a temporal histogram above
the map and sensor locations represented by colored disks. In the
temporal histogram, the entire day’s data is partitioned into roughly
15-minute intervals and the height of a bar corresponds to the num-
ber of occurrences of chosen clusters during the 15-minute interval.

In both cases, spatiotemporal renderings color each location ac-
cording to its cluster membership.

5.2 Co-occurence Graph

We use a graph layout to visualize co-occurrence. At any level in
the cluster hierarchy, we can consider each cluster as a node v in a
graph G(V,E) with edge weights assigned by the C3 metric.

The graph layout is computed using a force-directed method with
an energy barrier [15]. Proximal clusters are represented as proxi-
mal nodes in the final layout. Also, we capture the animated process
during which a graph layout converges. Users find the functional-
ity of being able to view at least the final steps of a converging
graph layout to be very useful in examining subtle differences in
co-occurrence. This is demonstrated in Section 6.2.

5.3 Statistics Plots

In the data exploration process, statistics are a classical way for
domain experts to explore local or global characteristics of data.
When coupled with more complex rendering techniques, this nu-
merical exploration can effectively assist with user interaction. In
our application, the statistics view offers an easy and flexible inter-
face to control the multi-levels of clustering results. Furthermore,
it provides users with useful quantitative feedback. CO3 Inspector
provides four widgets: a scatterplot widget of C1 vs. C2, a scat-
terplot widget of C1 vs. cluster size, a histogram of the number of
clusters in any hierarchical level and a parallel coordinates plot ac-
tivated upon selection of clusters in any space (Figure 10(e)). The

parallel coordinates plot is used to display the multivariate values
of cluster centroids.

5.4 Multiple-view Coordination

Each view in the interface is fully coordinated with all other views
such that any action taken in one view is immediately reflected in
all others. In this context, analysis is an iterative and user-driven
approach with each step providing instant feedback while refining
focus.

During the interactive visualization phase of CO3, only clus-
ters are analyzed, oblivious of the raw multivariate time-varying
data. Brushing is enabled to select clusters in any of the view-
ports. Selected clusters are highlighted with a semi-transparent plus
sign. Brushing using the left mouse button makes ‘fresh’ selections
whereas brushing done with the right mouse button selects a subset
of the already selected clusters. Brushing operations can be arbi-
trarily chained together as a result of iterative user interactions.

5.5 Implementation

The Inspector system employs image-based rendering techniques.
Matplotlib, a python plotting library, is used to generate statistics
plots and co-occurrence graphs. These are pre-generated only once
after the feature extraction and evaluation of the CO3 metrics. Such
preprocessing improves the speed of interaction and provides the
system with comprehensive plotting features. The Inspector sys-
tem then offers visualization functionalities interactively to provide
immediate feedback on a single laptop computer. The rendering
preprocessing, including the calculation of the co-occurrence graph
layout, is executed in parallel. This takes about 7 minutes for FNET
and 60 minutes for MODIS on a 12-core Linux workstation in the
setting presented in the paper.

6 RESULTS

With both application datasets, navigating through the multi-level
feature space formed by hierarchical clustering is particularly diffi-
cult for domain users since the total number of features is beyond
a person’s ability for the traditional click-and-view analysis pro-
cess. Analyses become even more complex when feature correla-
tion is included. Highly correlated features are intuitive to analyze
in groups and exhibit promising opportunities for scientific discov-
eries. Our CO3 Inspector greatly reduces users’ work by highlight-
ing the important solitary features and, more importantly, groups
of features. Domain experts are then able to carry out analyses
following the visual hot spots that appear along the road to discov-
ery. The usefulness of the CO3 system is demonstrated in the fol-
lowing two categories of examples: selecting significant individual
features and selecting significant groups of features. Our system
is designed with an emphasis on new scientific discovery; the ex-
amples discussed in this paper are therefore focused on detecting
outlier patterns over those commonly occurring.

The features extracted from MODIS dataset provide information
on the vegetation growing pattern year-wide. Mills et al. [17] have
termed these phenology class assignments phenostates. For FNET,
the features describe sets of 1-second events that share the same
operational behaviors in the power grid.

6.1 Selecting Significant Individual Features

Using the statistics view widgets of the CO3 Inspector, users are
able to specify significant features by selecting the strong or weak
properties of the CO3 metrics.

Example 1 (MODIS): Figure 5 shows an example of one unique
feature extracted from the MODIS dataset. View A in Figure 5
shows the concentration vs. continuity space while View C in the
same figure shows the concentration vs. cluster size space. In both
views, dozens of phenostates stand out from the whole population
in the space and spotting them is straightforward. The selected one



Figure 5: A highly continuous and concentrated feature in the MODIS
data that captures areas of salt plains and white sands - The Bon-
neville Salt Flats (1), White Sands National Monument (2), and other
salt flats (3) are highlighted. (Year 2000, 15km bin size)

(in red) is small but has a relatively high concentration and con-
tinuity. The map in View D shows the geographic locations with
the phenological properties defined by the phenostate selected. The
three labeled regions in the figure represent salt flats and areas with
white sands. The Bonneville Salt Flats near the Great Salt Lake is
the most contiguous and concentrated feature. The other areas in-
cluding the White Sands National Monument capture similar phe-
nological properties— areas of the United States that remain a very
white color year round (in contrast with snow, which is seasonal)
and have absolutely no vegetation.

Example 2 (FNET): Similarly, in the FNET dataset, a small
number of features standing out from the majority in the metric
space represent possibilities of discovery. A tiny, highly concen-
trated and continuous feature (in the top left of Figure 6(b) and the
top right of Figure 6(c)) proves to be unique after further study.
The corresponding operation state dominantly appears across most
of the Eastern Interconnect but only within a very short period after
the two generators’ temporary failure (shown by the solitary tall bar
in the temporal histogram). This feature has an exceptionally low
frequency but a large phase angle shift. Its dominance indicates
that this state is characteristic of the gradual process of the grid re-
covering to normal operation. Further study of this would assist in
understanding the recovery process and help technicians respond
quickly to severe power grid failures.

(a)

(b) (c)

Figure 6: An example from the FNET data showing a highly concen-
trated and continuous feature, with an exceptionally low frequency
but a large phase angle shift. Temporal histogram (a) shows this fea-
ture is exclusive to a small window of time after the “Storm Period”.
(1s bin size)

6.2 Selecting Significant Groups of Features

Selecting significant individual features can become overwhelming
for a large number of features. As discussed earlier, simple enumer-
ation is no longer plausible in actual analysis and discovering the
important correlations among features in a complex feature space
is very challenging. The co-occurrence graph layout of the CO3

Inspector, linked with the other metric views, enables users to navi-
gate through the feature space, and select both interesting individual
features as well as interesting groups of features.

Example 1 (MODIS): Exploring the co-occurrence graph relat-
ing to the salt flat phenostate mentioned above, we find a related
feature group spreading out sparsely over the whole continental
U.S. By further drilling down on some of the co-occurring phenos-
tates, a set of small phenostates shows very interesting spatial dis-
tribution and is illustrated in Figure 7. The three labeled areas in the
figure are representative of arid lands that contain significant green
areas because of human activity and irrigation. These clusters are
phenologically similar to the salt plains in that they are regions with
a severe lack of available water.

(a)

(b)

Figure 7: An example feature group in the MODIS data. The se-
lection starts from the example feature of salt flats and white sands.
After a series of navigation and selection refinement steps, users are
able to discover such a feature group. These phenostates reside in
some large irrigated lands in dry areas. (Year 2000, 15km bin size)

Example 2 (MODIS): Starting from the co-occurrence metric in
the MODIS dataset with a 5km bin size, we notice a feature group
in the co-occurrence graph which is highlighted in the spatial view
(Figures 8(a) and 8(b)). It appears that this feature group repre-
sents the outline of the Central California Valley and other areas in
the Southern Great Plains, both of which undergo rather irregular
growing patterns due to the terrain of the Sierra Nevada mountain
range and the highly varied weather patterns in the southern part of
the Great Plains. By looking at an earlier stage of the graph layout
convergence process, as shown in Figures 9(b) and 9(d), we can see
that the original feature group is now expanded into two distinct
areas. The top half of the group gives a near-exact outline of the
Central California Valley.

We iteratively adjust the bin size to 20km (Figures 8(c) and 8(d)).
We notice that the group of clusters gets tighter. However, the two
main parts in the original group of features become separated when
the bin size is 20km, leaving the Central California Valley directly
selectable without going back to the earlier layout process. In this
result, with larger bin sizes, we were able to select structures be-
longing to larger spatial scales.

Example 3 (FNET): With the FNET dataset, we can analyze
the uncommon event called a “Storm Period” by computing the co-
occurrence graph composed solely of the features that occurred dur-
ing that time (Figure 10). The co-occurrence graph layout clearly
reveals 6 characteristic groups that provide additional information
upon further examination. Figure 10(a) reveals that one group
(highlighted in red) involves features with both high frequency vari-



(a) (b)

(c) (d)

Figure 8: An example feature group in the MODIS data. The spa-
tial distribution a the feature group containing areas in the Southern
Great Plains and the outline of the Central California Valley (Year
2003, (a, b) 5km bin size, (c, d) 20km bin size).

ation and high voltage variation and occurred most frequently dur-
ing the first half of the day (UTC time 00:43:12 to 08:52:48). Fig-
ure 10(b) shows another feature group that had a heavier presence
in the second half of the day (UTC time 12:00:00 to 21:07:12) and
exhibited smaller variations in frequency but larger ones in voltage.
As visualized by the parallel coordinate rendering in Figure 10(e)
vs. Figure 10(f), the contrasting behavior could help to motivate
further domain science research to explain the cause and progres-
sion of a “Storm Period”.

Discussion: The feature groups identified in the above exam-
ples show characteristic multivariate properties that might be sig-
nificant to domain-specific users. However, without a proper tool,
it is difficult to select these groups of features from the cluttered
attribute space.

As an example, the first feature group representing salt flats and
white sands contains 17 clusters, all of which are small with no
distinguishing traits in terms of concentration or continuity. Se-
lecting individual features from among the whole population is not
straightforward. Even enumerating all features in the attribute space
(223 clusters) would not help much in this case since each is too
similar to the others to attract a user’s attention. //none of them is
unique enough to attract the user’s attention. Also, these features
might be well hidden among other small features and mistakenly
considered to be noise. By selecting them, the spatial distribution
reveals a meaningful and significant pattern.

There are many existing approaches for multivariate feature vi-
sualization. Using parallel coordinates, users are able to specify
ranges for one or multiple variables to select a subset of all the fea-
tures. Figure 11(b) is a parallel coordinates plot corresponding to
the first selected feature group shown in Figure 7. All features in
the same attribute space are plotted in orange and shown in Fig-
ure 11(a). Here, the selected features share similar variation pat-
terns while the actual values of the vegetation indices are not par-
ticularly close to each other. In Figure 11(a), the multi-dimensional
curves of all features do not show a clear structure or pattern to
assist users in making a selection, as in Figure 11(b).

Similarly, Figures 11(c) and 11(d) demonstrate the advantage of
selecting a significant group of features using our tool. In these two
figures, the original features are colored in orange and the feature
groups selected using our tool are colored in red. Figures 11(c)
and 11(d) correspond to the example feature group illustrated in

(a) (b)

(c) (d)

Figure 9: We expand the graph in Figure 8(b) and refine the selec-
tion to two individual parts that initially appeared together. The area
showed on the top row is almost totally correlated to the Central Cal-
ifornia Valley. (Year 2003, 5km bin size)

Figures 10(a) and 10(b), respectively. Additionally, we highlight
two example selections of features using two different range queries
in the same plot (blueish color). The queries are conducted on fre-
quency (11(c)) and frequency variation (11(d)) variable, based on
the exact distribution of the corresponding example feature group.
In Figures 11(c) and 11(d), the total number of features is 1680.
The queries on parallel coordinates results in selections of 1059 and
684 features respectively while the selection using CO3 Inspector
contains only 52 and 32 characteristically similar features. In both
cases, simple compound range queries could not reveal the patterns
found using our tool.

7 CONCLUSION AND DISCUSSION

CO3 represents a new possible solution to facilitate visual and in-
teractive feature analysis and selection by developing quantitative
metrics that combine physical and attribute domains. Our capabil-
ity to effectively select significant groups of features demonstrates
the power of the CO3 metrics in exposing previously unknown pos-
sibilities to users. The feature selection capability we demonstrate
is crucial as datasets consistently and quickly grow in size and com-
plexity. CO3 metrics are especially useful to summarize physical
space properties of features extracted from attribute space. Our use
of coarse grained bins is general and novel for handling high res-
olutioned spatial and temporal datasets. Our domain experts from
climate modeling and power systems find CO3 metrics and the In-
spector system to be useful for analyzing historical data. They were
intrigued by the feature groups discovered by the Inspect system,
and expressed a perception of a high level of utility and future po-
tential. Our work also has a few limitations. First, our method
requires non-trivial parallel preprocessing. Next, the color scheme
we employed was chosen out of convenience. Finally, our method
would not offer significant benefit over previous methods, if the
dataset is relatively manageable or the feature set is already well
understood.
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