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ABSTRACT
Collecting species presence data and then building models
to predict species distribution has been long practiced in
the field of ecology for the purpose of improving our under-
standing of species relationships with each other and with
the environment. Due to limitations of computing power as
well as limited means of using modeling software on HPC fa-
cilities, past species distribution studies have been unable to
fully explore diverse data sets. We build a system that can,
for the first time to our knowledge, leverage HPC to support
effective exploration of species similarities in distribution as
well as their dependencies on common environmental condi-
tions. Our system can also compute and reveal uncertainties
in the modeling results enabling domain experts to make in-
formed judgments about the data. Our work was motivated
by and centered around data collection efforts within the
Great Smoky Mountains National Park that date back to
the 1940s. Our findings present new research opportunities
in ecology and produce actionable field-work items for bio-
diversity management personnel to include in their planning
of daily management activities.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming—Parallel Pro-
gramming ; I.3.2 [Computing Methodologies]: Computer
Graphics—Graphics Systems - Remote Systems

Keywords
HPC, Species Distribution Modeling, Parallel Processing

1. INTRODUCTION
A major challenge in biology is to manage the vast di-

versity of living things found across the earth. Most geo-
graphic regions contain a large number of distinct species,
and many species are poorly known. Given this uncertainty,
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an important pre-requisite for any biodiversity management
plan is to predict the geographic distributions of individ-
ual species and to summarize this knowledge across many
species. To address these problems scientists have created
two ever-growing sources of data: (1) records on the occur-
rences of individual species and (2) geo-referenced datasets
on environmental conditions. Using these data, ecologists
can leverage machine learning algorithms or statistical mod-
els to estimate the probability of presence for individual
species. These models—hereafter Species Distribution Mod-
els or SDMs—constitute a simple scalable approach to use
limited information on the ecology of a species to predict its
geographic distribution. Unfortunately ecologists still lack
the tools to effectively compare, contrast, and explore trends
and relationships in the large number of SDMs that are cur-
rently being generated.

To fill this gap we develop tools for summarizing informa-
tion on the relationship between individual SDMs as well as
analyzing the uncertainty in the models. These tools play
a crucial role for meeting time-critical management needs
of national stewardship agencies with missions such as en-
suring long-term security of food production and detecting
early stages of irreversible damages at ecosystem-scale.

A scalable data analytics system is needed for such a chal-
lenging application. In such a system, the source of data
makes no fundamental difference. The data could be col-
lected by experts in the field, as with the ATBI, or by cit-
izens as with other recent data collection projects such as
eBird and Natureserve1. In this work, we focus on the ATBI
data for the following reasons: (1) proximity to the domain
experts and final users, (2) availability of both species inven-
tory data and also high-quality geo-referenced environmen-
tal data, and (3) availability of a production-quality model-
ing method, maximum entropy, whose results are acceptable
to the bio-inventory stewards at the National Park Service
(NPS) and US Geological Survey (USGS).

Our system uses high performance computing (HPC) and
has the following features: (1) reliable employment of SDM
models to construct species distribution predictions across
a large canvas of species, (2) an ability to test, record and
analyze varying environmental responses in each individual
model, (3) visualization of data quality in support of user
exploration, (4) on-demand hierarchical grouping of species
by similar distribution as well as similar environmental re-
sponses. We enable a user community unfamiliar with HPC

1http://ebird.org, http://www.natureserve.org



to greatly increase their productivity using their own legacy
code, for example burning through 90 CPU hours in just 25
minutes (see Table 2).

With these results, we also enable the testing of hypothe-
ses fundamental to developing management plans, such as:
When managing a specific aspect of an environment, which
species are the most affected? For a species central to a man-
agement goal, do we already have sufficient, quality data? If
not, which parts of the data are the most trustworthy? To
our knowledge, no systems exist to serve these needs, and
especially not on a scale as large as that of GSMNP.

2. BACKGROUND

2.1 Species Distribution Modeling
Our system explores one example of an extensive data

set on species occurrences, the All Taxa Biodiversity Inven-
tory (ATBI2) of The Great Smoky Mountains National Park
(GSMNP). The ATBI project began in 1998 as an effort to
document all forms of life in the Park [8]. To date, the in-
ventory has documented 7,391 new species to the Park and
922 species new to science. As with many projects that col-
lect data about the environment, the raw data will always
be too sparse to capture the full details of the subjects and
the targeted environment. Therefore, it is imperative to
use further modeling to make well-informed predictions of
species distribution, allowing for more comprehensive study
and development of actionable management plans.

GSMNP spans 2,200 km2 and represents an iconic system
to compare observations on biodiversity. The Park is one of
the most biologically diverse regions in North America. For
this reason it is both an International Biosphere Reserve
and a World Heritage Site. This region has been a focus
of diversity research for decades notably through Robert H.
Whittaker’s pioneering work in the 1940’s. In a series of pa-
pers, Whittaker argued that many species specialize in loca-
tions with similar elevations [14] and that these responses
to elevation varied dramatically from one species to another.

GSMNP management has used these iconic features to
pioneer creating and maintaining scientifically sound biodi-
versity inventories. In their latest ATBI database [8], the
Park has amassed data for over 17,000 species in the Park.
In addition to the geo-referenced species occurrence data,
the Park has collected environmental data such as geology,
soil, terrain, vegetation and climate which enables the mod-
eling of species distributions across many disparate taxa.

Since Whittaker’s time researchers have developed sev-
eral methods to model species’ distributions. Many of these
can be thought of as estimates of the probability that a
species is present. SDM methods can be divided into those
for presence-only data vs. those for presence as well as ab-
sence data. Our data is presence-only, and in this cate-
gory there are still many modeling options such as envelope
similarity models, ENFA (ecological niche factor analysis),
GARP (genetic algorithms for rule-set prediction), logistic
regression models, spatial point-process models and MaxEnt
(maximum entropy) models.

In general, predictions made by different SDM methods
will produce quite different patterns. Our application sci-
entists’ favorite method is MaxEnt, which works by con-
straining the estimated probability of presence to resem-

2http://www.dlia.org/atbi, http://www.nps.gov/grsm

ble the observed probability of presence. To do so, Max-
Ent constructs a model consisting of a number of features
such as descriptions of how environmental variables might
affect the probability of presence. It then performs model
optimization to minimize the information contained in the
residuals. MaxEnt assumes that presence-only samples are
random with respect to the species of interest, and that co-
variates of species occurrence probabilities are distinct and
independently distributed from covariates of species detec-
tion probabilities [11].

In this work, we direct our primary attention to the input,
output and important controlling arguments of the models,
and treat the internals of the modeling process as a “black
box”. In the following we make no further distinction be-
tween SDM methods because our data analytics system is
generally applicable to all models.

2.2 Complexity of Data Analysis and Visual-
ization

Many ecologists have studied the utility of SDM models.
However, these efforts still do not allow for a comprehen-
sive understanding of the choices necessary to make useful
SDMs. The current limit is our ability to understand the
consequences of the numerous input choices available to ap-
ply machine learning algorithms. Some choices are easy to
interpret such as the particular combination of variables in-
cluded as model input. Others are much more abstract such
as regularization parameters that penalize overly complex
models and threshold values that distinguish predicted pres-
ences from absences. Moreover these factors may interact in
unexpected ways making it important to consider the joint
influence of each variable. There is a pressing need for ap-
propriate ways to compare models and effective visualization
methods augmented by computation power to rigorously in-
vestigate a large parameter space.

Though SDMs are widely applied, the sources of error in-
herent in such analyses are poorly understood. Over the
last few years a tremendous amount of environmental data
has become available for analyzing species distributions in
the form of interpolated maps with environmental measure-
ments. However, the best way to use this ever-growing bank
of data is unclear, as ecologists face two seemingly contradic-
tory problems. First, species distributions are an amalgam
of many facets of the environment and these facets inter-
act non-linearly. For the foreseeable future we will not have
measurements of many of these processes and as a result we
must interpret SDMs that fail to incorporate much of what
we know about organisms [3]. Second, we have only a fi-
nite amount of data on the distribution of any one species.
As a result, there is a serious danger of generating overly
complex models that do not generalize well. Biodiversity
management will remain extremely challenging until tools
become available for visualizing uncertainties due to the in-
ternals of a model and the quality of input data.

The conclusions from SDMs are also susceptible to sam-
pling error. When fitting complex models with multiple in-
teracting sources of uncertainty, it is difficult to predict how
sensitive conclusions will be due to changes in the data used
to run the analyses. For this reason it is important to deter-
mine whether biological conclusions are robust to changes
in sampling protocols.

The Park’s natural resource managers need to visualize
and understand advanced biological analyses of virtually all



of the Park’s species, and, unfortunately, this capability is
currently lacking. The ATBI project has been in existence
since 1998. No other protected reserve possesses such a com-
prehensive set of biodiversity data (though there are spe-
cial purpose data repositories at similar scales for birds, for
example). The resource management and science staff at
GSMNP need a synthesis of these data to be able to answer
critical conservation questions, such as: What is the distri-
bution of species in the Park? Where are the most species-
rich sites? What natural factors in the environment affect
these distributions? Where do un-natural stressors likely
have the greatest impact on rare or vulnerable species and
biodiversity in general? These questions are becoming more
critical every day because of the wide variety in the Park’s
natural diversity, non-native invasive species, air pollutants,
habitat loss, and possibly rapid climatic changes.

We must note that other leading researchers have reported
recent success on using analytics for other pressing applica-
tions, most notably, a powerful birdVis [2] system for the
eBird project, analytics for epidemic monitoring [1] and an-
alytics for maritime resource allocation [7]. We find the pri-
mary differences between our work and theirs to be different
application needs. Our needs use HPC to take SDM-based
studies from tens of species at a time to now hundreds or
thousands at a time, and from previously using environmen-
tal data at 1 kilometer resolution to now 30-meter resolution.
In addition, we work on visualizing similarities between hi-
erarchically organized groups as well as the uncertainties
involved, but do not focus on visualizing events, especially
the temporal aspects of events as in [1, 2, 7]. Our ultimate
goal is to create a system for production use by non-technical
end users such as bioinventory managers and park rangers.
As future consumers of HPC technology, these users in gen-
eral lack the background or the desire to understand the
technical intricacies. Instead, their daily job function in-
volves problem-solving in their own domain. In this respect,
they differ from the researchers who are typically the main
users of scientific gateways which provide a set of tools allow-
ing remote computation-intensive study without geographic
limitations [15]. Although we realize this fundamental differ-
ence, we do notice that our cyberinfrastructure requirements
such as central data repositories and data analytic capabil-
ities, are similar to other gateway efforts such as geospatial
modeling gateways [5], climate modeling environments [16],
and the iPlant Collaborative [6].

3. ADDRESSING LARGE PROBLEMS US-
ING HPC

Software tools for biologists and ecologists are just re-
cently coming to terms with very large data and parameter
spaces that call for parallel processing with HPC. With cur-
rent modeling methods which seek to quantify and predict
species habitat, computing power is often a major limita-
tion. The work by Webster et.al in 2008 [13] represents the
state of the art in this popular research direction.

Our collaboration with biologists and ecologists using Max-
Ent for species modeling is just one example of a common
occurrence where a popular “black box” software tool needs
to scale up to address a larger problem size. The challenge
is to develop quick, simple ways for new users to begin this
scaling process in an HPC environment, using existing, fa-
miliar tools. Just leveraging computing power, however, is

Parallel Modelling 
Runs

Parallel Similarity 
Analysis

Clustering & 
Hierarchy 

Construction

Data Processing & 
Visualization Web Interface

Figure 1: Overall workflow of our system incorpo-
rating HPC in species distribution modeling.

Bedrock geology categorical
Digital elevation model continuous
Leaf on canopy cover categorical
Slope measured in degrees categorical
Solar radiation data continuous
Soil organic type categorical
Terrain shape index continuous
Topographic convergence index continuous
Understory density classes categorical
Vegetation classes categorical

Table 1: Ten environmental layers provided by the
GSMNP.

only the start of the solution. Interpreting the large vol-
umes of computation results and creating useful and seman-
tically meaningful abstractions to describe groups of coex-
isting species presents a challenge of its own.

We address these challenges in our overall workflow as
shown in Figure 1. On the left side of the workflow diagram,
the components include parallel orchestration of serial SDM
models for scalability, parallel similarity analysis, and on-
the-fly hierarchical abstraction creation through on-demand
hierarchical clustering. The results are then amalgamated
through parallel data processing and visualization and sub-
sequently are delivered through a fully interactive web in-
terface to stakeholders that include Park natural resource
managers as well as ecology researchers.

3.1 The Data
The current standard for modeling species distributions is

to use coarse resolution (∼1 kilometer) environmental lay-
ers when generating models [4]. Superseding the breadth
and depth of this standard, GSMNP provided us with ten
environmental layers uniformly set on a common grid at 30-
meter resolution (Fig. 2).

These environmental layers include abiotic factors, such as
elevation (Fig. 2a) and soil types (Fig. 2b), as well as biotic
layers on vegetation cover (Fig. 2c). These data are all scalar
variables on a common grid, and each environmental layer
can be either a continuous or a categorical variable (Table 1).
Each layer amounts to 15–30MB in raw format.

To ensure high quality SDMs we restrict our attention to



(a) Digital Elevation (b) Soil Classes

(c) Vegetation Classes (d) Sample SDM result

Figure 2: Environmental layers and SDM example
from the GSMNP.

species with 30 or more distinct records. Each record con-
tains GPS coordinates, species sighted, time of sighting as
well as other metadata, and can be geo-referenced with the
environmental layers. Since the initial focus on ATBI was
heavily directed towards finding rare, special, unique and
previously unknown species, our selection criteria trimmed
down the species count to around 500, about half of which
comprise bird and tree species in the Park.

3.2 Modeling With HPC
Among the many alternative SDM methods for presence-

only data, maximum entropy is well understood [11] and has
recently gained much popularity, to no small extent due to
the availability of a production quality software that imple-
ments the method. This software is MaxEnt3 [10], written in
Java. The inputs to MaxEnt consist of species records (coor-
dinates of observed locations) plus environmental layer data.
To control the process of fitting a model, there are several
parameters such as convergence threshold, maximum itera-
tions, regularization value (β), selection of included features,
and selection of environment layer input.

The MaxEnt software is only available as an executable
jarfile; it is not open source but free for academic and re-
search use. Originally designed for personal computer plat-
forms, MaxEnt employs inherently serial steps, although
Java threads are used when convenient. There are a few key
issues to address before we can use this “black box” code in
an HPC environment.

First of all, large-scale runs of MaxEnt constitute an atyp-
ical HPC usage pattern which calls for a tool to aid in
scheduling. Most codes on an HPC platform are designed to
run in parallel either using message passing (MPI) or threads
(OpenMP or pthreads). It is far from practical to require
that a proven machine learning SDM model be rewritten to
operate with great internal parallel scalability. We have to
explore ways to achieve scalability external to these black
box models. From this respect, this need is general to al-
most all fields that use complex models to interpret data
and make predictions.

For this project we developed a tool called Eden which
achieves coarse-grained parallelism by managing concurrent
runs of serial code. Eden is simply a master-worker frame-
work that allows the user to submit a list of commands to run
on a given number of cores. The problem it solves is quite

3http://www.cs.princeton.edu/ schapire/maxent

general—run a list of N single-processor jobs on P proces-
sors, where N is far greater than P . The single-process jobs
can have highly varying running time, can fail due to an
array of reasons such as internal bugs, saturating disk I/O
channels or saturating runtime limits of concurrent threads.

After exploring several existing tools for managing such
concurrency, we found that most did not fit our specific need.
Tools such as Swift 4, the Nimrod toolkit 5, Condor 6, and
Hadoop 7 are all comprehensive tools designed for running
concurrent jobs across many heterogeneous computing re-
sources. In our case, we need to run many small serial jobs
on a single system and make this as easy as possible for the
user. Therefore we wanted to avoid any added burden to
the user such as learning a new language (as with Swift)
or requiring installations at the system administrator level
(as with Condor). Other barriers to using these tools for
our project include runtime errors and lack of support for
the Nimrod toolkit, and the dependence on Java for Hadoop.
We also explored GNU’s Parallel utility 8 but found its com-
mand line interface daunting for inexperienced users.

Eden is light-weight and operates entirely at user level,
running with very low privileges and definitely not as an
admin or daemon process. This is for security and stability
reasons for large-scale systems with high concurrencies. To-
talling only 450 lines of code, Eden is entirely script-based
and requires no compilation or building process. Offered as
an open source project 9 since July 2011, Eden works with
typical job queuing systems as on Nautilus as well as with
any generic multi-processor system or fat node without a
job scheduler. For a user wishing to scale their code, Eden
provides a two-step process: first trying Eden on their own
multiprocessor system (e.g. a desktop machine) and working
out any issues with concurrent runs; then using Eden with
the same simple interface to scale their code on Nautilus.

Eden’s architecture is shown in Figure 3. It uses mostly
Bourne shell with a few tcl scripts to handle socket commu-
nication. To use Eden, the user must first provide a job list
and specify the number of processors to use (P ). When Eden
is launched, the initial eden.sh script configures the run and
then launches adam.sh, typically on the login/master node.
The adam.sh script launches P worker processes (abel.sh),
one on each of the P processors. On a typical PBS queuing
system, this involves creating a PBS script and submitting it
using the qsub command. The abel.sh processes then each
retrieve a job from adam.sh via a socket connection, execute
the job, and then request a new job, continuing until the
command list is exhausted. For each command completed,
stderr, stdout, and timing information are written to indi-
vidual files on disk. Finally, the eve.sh script cleans up and
distills these files into a single summary file.

Once we have a way to efficiently run many MaxEnt in-
stances, we next have to deal with I/O issues. MaxEnt by
default outputs images of the species distribution maps as
well as various other charts and figures relating to the sta-
tistical details of the model. This could result in 10 to 12
output files for a single MaxEnt run. When running hun-

4http://www.ci.uchicago.edu/swift/main/
5http://www.messagelab.monash.edu.au/Nimrod
6http://research.cs.wisc.edu/condor/
7http://hadoop.apache.org/
8http://www.gnu.org/software/parallel/
9http://sourceforge.net/projects/rdaveden



.

.

.

adam.sh

abel.sh

abel.sh

abel.sh

abel.sh

commands PBS
script Torque

params

commands
done

make_
commands.sh

eden logs

summary.csv

eve.sh

eden.sh

qsub

Figure 3: The Eden framework for managing con-
current modeling runs.

dreds or thousands of runs concurrently, this deluge of files
would easily overwhelm the file system. By judicious use
of command line flags, we restricted the MaxEnt output to
the minimum allowable, seven files per run, with the most
substantial being the SDM overlaid on a raw ASCII grid
of 30 meter resolution. But even with these improvements,
we generally had to limit the number of concurrent runs to
prevent overwhelming the file system.

Of course, by forfeiting the output of images from Max-
Ent, we had need of other means of rendering the SDM. We
chose to use a popular scientific data visualization tool VisIt
to produce custom maps of the models. VisIt can easily be
scripted using Python and run in parallel through a batch
system, optimizing the production of these images from the
raw SDM data. In our rendering, the black dots indicate the
original observation points, dark brown indicates very low
probability of presence and green represents high probability
of presence. Also, a white contour line marks the threshold
value suggested by the MaxEnt model that separates pres-
ence prediction from absence prediction. A sample of the
rendered results is shown in Fig. 2d.

Finally, we found the need to replace built-in capabilities
with custom procedures to increase parallelism. MaxEnt
provides a cross-validation capability by performing multi-
ple runs for a particular species, with each run holding back
a different subset of samples for testing. This allows for
evaluation of the fit of the model. Using MaxEnt’s cross-
validation feature, unfortunately, led to much longer run
times per species for a couple of reasons: MaxEnt has no in-
herent parallelism (so, for instance, a 10-way cross-validation
is equivalent to doing 10 serial runs), and then several sum-
mary results are serially created by default. To optimize
the opportunities for parallelism, we externally orchestrated
cross-validation runs, which involved creating subsets of the
sample data, doing independent MaxEnt runs, and making
summary plots with our own custom C code.

3.3 Similarity Analysis with HPC
Newer and faster capabilities to handle large SDM runs

will not remedy the need for carefully filtering the resulting
data and for analyses of interpretational pitfalls. It is always
up to the expert users to use new capabilities properly to
advance our understanding of SDM output and conservation

implications. For this purpose, we use similarity metrics
as an indirect way to measure data quality by comparing
cross-validation results and also as a direct way to construct
groups of species with known relationships to establish basic
context and support and guide further exploration.

With SDM models, there are several ways to measure sim-
ilarity: (1) Sørensen Index, (2) Jaccard Index, and (3) χ2

Index. Our expert users chose the Sørensen similarity index
(SSI) which, when comparing the SDMs of two species, is
calculated by the fraction:

2a

2a+ b+ c

where a is the number of shared presence locations, b is the
number of presence locations for only species 1, and c is
the number of presence locations for only species 2. The
SSI value will be between 0.0 and 1.0 with 1.0 indicating an
exact match. Other measures are plausible, notably Jaccard
and the squared distance between observed and expected
counts [9]. However, many biological questions correspond
to determining if two species will encounter one another, and
so we have focused our analyses on Sørensen’s similarity.

We use SSI to compare cross-validation runs of a single
species and also to compare all possible pairs of species
SDMs. Figure 4D shows an example of a cross-validation
similarity matrix computed using SSI as the metric. The
matrix shows similarity between models from 10 cross-validation
runs using ATBI data of the Cedar Waxwing (Bombycilla ce-
drorum). A traditional “hot-cold” color map is used, where
red indicates an SSI of 1.0 (exactly similar) and blue indi-
cates and SSI of 0.0 (no commonality). We can see from this
example that the cross-validation results moderately vary
from one another due to the orange and yellow colors.

3.4 Visualization - MDS and Hierarchical Clus-
tering

Once we have SSI information on how every species com-
pares to every other species we naturally want to see how
similar species form clusters. One way to show clustering is
through multi-dimensional scaling (MDS). MDS is a method
of producing a mapping of objects where the relative posi-
tions of the objects provide a graphical representation of
their interrelationship. In our case, the objects are SDMs
and their interrelationship is the degree of similarity based
on the SSI metric. The 2D MDS plot provides a view of
similarities among all species in one space. We used the
Vegan package in R to perform the MDS mappings. The
MDS plot appears in the lower left corner of the interface
(Figure 4E). The current species is indicated by a red square
and the other points are colored according to the SSI bins.

Hierarchical clustering is another way to examine clusters
of similar species. When comparing between two species,
there are potentially three metrics.

Metric 1: The pair-wise SSI metric that distinctly states
how similar the two species are distributed.

Metric 2: The environmental responses. Together with
each MaxEnt prediction, a feature vector is also pro-
vided to show the weight given to each environmental
layer. In our case with 10 environmental layers, the en-
vironmental response vector is 1 × 10. Exploring this
vector allows users to hypothesize about the environ-
ment’s role in modeling a particular distribution.



Figure 4: The web interface.

Metric 3: Similar coexisting pattern with the species across
all taxa. Given a particular species and a total of
S species in the study, we can form a 1 × S vector
where each element is the SSI value between the cur-
rent species and one other species from the study. By
comparing these vectors among species, scientific users
can hypothesize about different kinds of species co-
existence.

Users can decide, on the fly, which metric to use to form
the feature vector. In the subsequent hierarchical clustering
step we cluster by Euclidean distance between the feature
vectors. We start the clustering process with each species
being treated as a single cluster. We recursively cluster to-
gether species that are similar (i.e. feature vectors within
some threshold distance). The threshold value increases at
each level so that clusters are gradually merged together.
The stopping criteria is when no new clusters can be found
within some predetermined threshold distance. A virtual
root node is always added in the last step so that the forest
of cluster hierarchies becomes a tree that is easier to manage.

To ensure biologically meaningful results, we add an ad-
ditional stopping criteria—no clusters can have an average
of pair-wise SSI below a given threshold. That is, all of the
species within a cluster should demonstrate basic similarity
as a group. This threshold is typically set at a very loose
SSI value of 0.2.

As part of our interface, we visualize cluster hierarchies
as dendrograms and aim to show the detailed merging of
hierarchies among the clusters. In the dendrogram layout,
edges simply mean a parent-child relationship in the tree
hierarchy. Users can choose to see the current grouping of
similar species as a list of SDM maps or as a dendrogram.

3.5 Remote Visualization - Web Interface
Modeling and subsequent analysis results are accessed via

a web browser interface. The interface provides immediate
access to all results from the MaxEnt modeling runs allowing
the user to visually compare SDMs as well as explore clus-

tering results. The stakeholders involved in the mission of
data-driven natural resource management are geographically
dispersed, and it is difficult to deploy highly synchronous vi-
sualizations to managers, scientists, and team leads in the
field. Also, it is unique to this field that a large number
of non-profit groups are collaborating on this mission, ei-
ther with each other or directly with the national parks.
Given such a dynamic environment, we opted to use asyn-
chronous remote visualization and utilize a web browser as
the delivery tool on the user end. Dynamic information vi-
sualization is still implemented on the user end, but only
after the data has been heavily reduced to a small set (e.g.
less than 100 species). Our working website is located at
http://seelab.eecs.utk.edu/alltaxa. It is recommended for
use with Safari, Chrome, or Firefox browsers and has known
issues with Internet Explorer.

When accessing the website, the user first chooses a par-
ticular group to explore. Currently, we have species divided
into 10 taxonomic groups suggested by our expert users.
The user is then presented the screen shown in Figure 4.

The sections of the web interface are labeled as follows:

A species picture, scientific name and common name, and
total number of distinct records in ATBI

B plot of SDM model result – this is an average taken over
10 cross-validation runs

C bar chart of environment layer contributions, again aver-
aged over 10 runs

D data quality metrics including a matrix comparing SSI
values over 10 cross-validation runs and a Tukey box-
plot of AUC scores for the 10 runs.

E multidimensional scaling (MDS) plot showing species sim-
ilarity (Metric 1) over entire group

F ability to view different groups of species based on distri-
bution similarity, either by list or dendrogram (Metric
1 or 3)

G ability to query for similar environment response (Metric
2) and view results as list or dendrogram

For each individual species, the user can view the overall
results from a 10-way cross-validation MaxEnt run. The
SDM is shown as a map (Fig. 4B), averaged over the 10 runs,
where dark brown indicates low probability of presence and
dark green indicates high probability. The black dots show
the original sample points. Environment contributions are
shown in the bar chart below the map (Fig. 4C).

Information relating to data and model quality for an in-
dividual species is shown in the top right panel (Fig. 4D).
Here, the user can get a sense of the outcome from the 10-
way cross-validation runs by viewing an SSI matrix relat-
ing to the current species. If the 10×10 matrix contains
mostly red, that indicates that there was very little variabil-
ity between the 10 SDMs—meaning a consistent model was
produced no matter what subset of the data was set aside
for testing. On the other hand, lots of variability in the
matrix with colors ranging toward orange and yellow indi-
cates inconsistency across the 10 cross-validation runs and
might indicate a data quality issue. For example, in Fig. 4D,
cross-validation run 4 stands out as having lower SSI values
compared with the others. This indicates that the 10% of



the data withheld in that run has a substantial leverage on
the results and calls for closer inspection.

To the right of the SSI matrix (still in Fig. 4D), the AUC
side bar shows a Tukey plot. AUC is the “area under curve”
metric given by MaxEnt for measuring quality of fit of the
model. The Tukey plot shows min, max, median, and the
bottom and top quartile of test AUC scores for the 10 runs.
The box surrounding the Tukey plot indicates the full dy-
namic range of AUC scores, 0.0 to 1.0.

Besides viewing modeling information for a single species,
the interface provides three ways to examine similarities
among species through panels E, F and G in Fig. 4. Panel
E shows the 2D MDS plot showing overall species similari-
ties. The current species is indicated by a red square a little
larger than the surrounding squares. Individual points are
colored corresponding to the partitioning of the SSI values
into five bins. The topmost bin, colored red, denotes SSI
values between 0.8 and 1.0. The other bins span intervals of
0.2 in descending order of orange, green, blue and pink. The
number of species falling into each bin is displayed on the
right of panel E and is clickable. In the example of Fig. 4, the
top two bins (SSI of 0.8–1.0 and 0.6–0.8) are empty, and 26
species have an SSI between 0.4 and 0.6 compared with the
current species of Cedar Waxwing (Bombycilla cedrorum).
The most similar species, the Hairy Woodpecker (Picoides
villosus), appears at the top of the list with an SSI of 0.54.

Panel G (Fig. 4G) allows the user to perform queries based
on environmental responses. Users can ask, for example,
“Which species models have elevation and vegetation con-
tributing at least 60 percent to the model?” Any combina-
tion of environment layers can be chosen along with three
options for a contribution threshold. Results are shown as
either a sorted list or dynamically generated dendrogram.
Fig. 4G shows the dendrogram view.

4. PERFORMANCE AND SCALABILITY
For our computation and analysis, we used the supercom-

puter Nautilus at the NSF Center for Remote Data Anal-
ysis and Visualization (RDAV) at the National Institute
for Computational Sciences, University of Tennessee. Nau-
tilus10 is an SGI Altix 1000 machine with 1024 cores and 4
TB of global shared memory in a single system image. Be-
cause of having a single operating system image running on
a large number of cores, Nautilus is particularly well-suited
to such atypical HPC jobs as running hundreds of instances
of serial code like MaxEnt. Nautilus allows the use of shared
libraries so that languages such as Python and Java can be
used on the entire machine. Often, large capability HPC
systems such as Kraken or Jaguar do not allow these types
of languages due to restrictions of the light-weight OS in-
stances running on compute nodes.

Table 2 lists timings for the various workflow components
of a representative run involving 530 species. Using the
Eden tool to manage concurrent runs on 256 cores, we were
able to perform 10-way cross-validation MaxEnt runs on 530
species (totaling 5300 individual runs) in 25 minutes wall
time. These runs included converting the MaxEnt output
from ASCII to binary. Each MaxEnt run takes, on average,
61 seconds, and ranges between 37–147 seconds. Summing
up the wall clock times of each individual model amounts to
90 hours of CPU time. This corresponds to a parallel uti-

10http://rdav.nics.tennessee.edu/nautilus

lization of 84.4%. We also experimented with concurrently
running two Edens using 128 cores each to perform half of
the SDM runs. The total running time is no different from
using a single Eden run with 256 cores.

The input for the runs consists of species sample files and
environmental layer data, both totaling less than 80 MB af-
ter compression. Our Eden run automatically decompresses
data before feeding data into MaxEnt. This design has
greatly reduced the input part of the I/O bottleneck. The
output from 5300 MaxEnt runs totals to 167 GB in 37100
files. We convert the ASCII output grids to binary, reducing
the overall file output to 90 GB. Due to this large amount
of I/O from the runs and the limitation of the filesystem
on Nautilus, we were limited to using only a small portion
of the machine, usually 256 cores, to reduce the number of
concurrent reads and writes.

Other steps in our overall workflow shown in Table 2 in-
volved using Eden to run scripts in parallel for such things
as data pre-processing (wall time of 3 minutes), rendering
of SDM maps using VisIt with Python (wall time of 4 min-
utes), and aggregating cross-validation results and summary
statistics (wall time of 3 minutes). For performing pair-wise
comparisons on the SDMs, we developed custom C code us-
ing pthreads. Nautilus was particularly well-suited for this
task because of its large global shared memory, allowing all
SDMs to be resident in memory at the same time for com-
parisons. Our code could produce an SSI matrix for 530
maps (139,920 comparisons of 2899×1302 grids) in just 26
seconds wall time using 256 cores on Nautilus. With all
of the miscellaneous runs, most of the wall clock time was
spent in reading data. For future studies on continuously
updated data of 8,000–10,000 species, we will have to em-
ploy advanced techniques in parallel I/O. However, because
the data is continuously updated by the data collectors, it
is very unlikely to be in a format ideal for parallel I/O. Pre-
computing to reorganize the input data will be unavoidable.

Finally, hierarchical clustering on 530 species takes less
than 3 seconds. Dendrograms are computed on the fly using
Javascript in the web browser. Depending on how many
species are chosen in a query, these functionalities can range
from highly interactive to having a lag of a few seconds.

We considered three kinds of scalability during our design
stage: in terms of input data, in terms of model analysis, and
in terms of access to the analysis. Not all are related to com-
puting power and the priorities would vary significantly for
different management purposes. For the scope of this work,
which is very basic compared to that of an overall long-term
project in support of natural resource management by the
National Park Service, we could only address the scalability
of model analysis and the access to the analysis.

In orchestrating large scale modeling, our system is sta-
ble and the running time increases linearly as species are
added. Assuming that a monthly run schedule would be suf-
ficient and the set of species will number around 10,000 , our
modeling running time (including cross-validation) would be
approximately 7.8 hours, which is acceptable. The SSI sim-
ilarity analysis requires comparing every species pair which
leads to a big-O squared complexity. This corresponds to a
running time of ∼ 3 hours for comparing 10,000 species.

Our Eden framework is a general purpose tool and has
proven to be beneficial for several other science projects on
Nautilus including tornado simulation analysis (Java and
Matlab), building energy efficiency modeling (Python and



CPU Time Wall Time Type of Parallelism Num. Parallel Utilization
hh:mm:ss hh:mm:ss Cores (%)

Pre-processing Species Records 00:19:05 00:03:17 scripts via Eden 64 9.1
MaxEnt Runs 90:01:00 00:25:23 legacy code MaxEnt via Eden 256 84.4
Aggregating Cross-validation 01:21:30 00:02:48 scripts/C code via Eden 64 45.5
VisIt Rendering of SDMs 01:46:00 00:04:27 VisIt and Python via Eden 128 18.6
SDM Comparisons 01:15:42 00:00:26 pthreads 256 68.2
Hierarchical Clustering 00:00:03 00:00:03 – 1 –

Table 2: CPU time incurred by each workflow component vs. wall-clock time with parallel acceleration.

(a) Distribution Prediction (b) Cross Valida-
tion

Figure 5: (a) SDM distribution prediction for Fraser
Fir and the environment responses, and (b) the cor-
responding cross validation result.

Matlab), and ecology parameter sweep studies (Python and
R). Using Eden, four different projects on Nautilus have
burned at least 42798 CPU hours over the past year [12].

5. SAMPLE USER EXPLORATION PROCESS
We illustrate the utility of our visualization approach us-

ing an example of a species of conservation concern in GSMNP.
Fraser fir (Abies fraseri) is a tree species only found in moun-
tains in the southeastern United States. There are extensive
populations of this species within GSMNP, however over the
last few years it has suffered population declines due to at-
tack by the Balsam wooly adelgid (Adelges piceae).

When faced with a declining species, one of the first prob-
lems is to understand the extent of its geographic distri-
bution. As an example, we query Fraser fir as part of the
overall subset of species including bird and plant taxonomic
groups, as we plan to subsequently compare this species to
other well-sampled taxa. We select “Fraser fir” from the
interface species menu and find that this species has been
extensively sampled with 358 records. By examining the
SDM (Figure 5a) we note that most of these records (black
dots) correspond to a narrow band in the eastern portion of
the park. The SDM for this species predicts a high proba-
bility of presence in this region of the park (beige and green
portions of the map) and a low probability of presence (dark
brown shading) in other regions.

After noting that our SDM predicts presence in a narrow
band of habitat it is useful to determine our confidence in
this conclusion. Examining the 10-way cross-validation re-
sults, we note that there is substantive agreement between
each of the individual runs (Figure 5b). To see this, note
that within the SSI matrix most of the individual squares are
bright red or orange indicating very high similarity between
runs. The Tukey plot to the right of the matrix indicates
that the median AUC score from these runs was quite high
and that there is little variation among the 10 runs. These

(a) by Distribution (b) by Environment Response

Figure 6: Dendrograms that recursively group
species by similar predicted presence vs. similar en-
vironmental influences.

results reinforce our conclusion that Fraser fir is restricted
to a narrow band of habitat within GSMNP.

Next we explore the community of species with similar
distributions, both to identify species that may be suscep-
tible to similar threats and to find species likely to respond
to changes in the population size of Fraser fir. We select the
list option to find species with similar SSI scores. We first
set the threshold to SSI of 0.8, indicating the top most sim-
ilar species, and find the American Mountain Ash, another
tree species with a similarly restricted distribution. When
we expand our list out by lowering the SSI threshold to 0.6,
we get a list of seven additional species with similar distri-
butions. We then switch to the dendrogram view, which is
shown in Figure 6a. The dendrogram includes Fraser Fir,
the current species, and also 8 species similar to it with SSI
greater than 0.6. In this list we see Red Spruce, another tree
susceptible to the same insect.

Finally, we may investigate the environmental variables
which predict the distribution of Fraser fir. Note the bar



chart to the lower right of the map listing the percent contri-
bution of each environmental variable to the SDM for Fraser
fir (Figure 5a). This chart shows that the DEM (Digital Ele-
vation Model) is the highest contributor. We can query this
information to find species that are likewise best modeled by
elevation. To do this we click on the tick box below the blue
square and the “60%” option to query for SDMs in which
DEM made at least a 60% contribution. From the list option
we obtain a number of species. We may then switch to the
dendrogram view to obtain groups of species best predicted
by elevation, with Fraser fir and similar species constituting
a cluster at the bottom of our graph (Figure 6b).

Together, this information gives a concise summary on the
current state of knowledge on the Fraser fir (Abies fraseri), a
species of concern. We know that this species has been well
sampled but that it has a comparatively narrow distribution
within the park. A number of other species have similarly
restricted distributions including some that are susceptible
to the same environmental threats. Also, the comparatively
narrow distribution of this species is best predicted by the
elevation of a location.

The above describes the process that our ecology co-author
used to study the Fraser fir, a species iconic to the south-
east US that is currently in danger. This system has already
been provided to the park managers, but so far it has not
been put into use for management purposes.

6. CONCLUDING REMARKS
This paper reports early progress on a long-term project

for supporting the decision making process of natural re-
source managers. Their needs include finding correlations
as predicted by current data, understanding the uncertain-
ties with the predictions, devising plans to improve data or
performing small scale field work to verify predictions, de-
signing and carrying out intervention plans, and continuing
monitoring of results. This process is cyclic and comes with
time pressure of many kinds. Our work is in essence only
a pilot study on the way to meeting these goals. Our fu-
ture plans include extending the web interface capabilities
so that student users as well as researchers and biodiversity
managers can more efficiently conduct their own studies and
experiments based on sophisticated modeling using HPC re-
sources. The interface will allow non-technical users to ef-
fectively leverage HPC resources to answer key questions in
their field. We hope to fully automate our workflow so that
researchers can easily configure their own MaxEnt runs to
be performed on Nautilus and then explore the results inter-
actively through the web interface. We also plan to extend
the multivariate visual analytic capabilities of the interface.
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