ECE-517: Reinforcement Learning in Artificial Intelligence

Lecture 2: Evaluative Feedback (Exploration vs. Exploitation)

August 25, 2015

Dr. Itamar Arel

College of Engineering
Electrical Engineering & Computer Science Department
The University of Tennessee
Fall 2015
Outline

- Recap
- What is evaluative feedback
- N-arm Bandit Problem (test case)
 - Action-Value Methods
 - Softmax Action Selection
 - Incremental Implementation
 - Tracking nonstationary rewards
 - Optimistic Initial Values
 - Reinforcement Comparison
 - Pursuit methods
 - Associative search
Recap

RL revolves around learning from experience by interacting with the environment
- Unsupervised learning discipline
- Trial-and-error based
- Delayed reward - main concept (value functions, etc.)

Policy maps from situations to actions

Exploitation vs. Exploration is key challenge

We looked at the Tic-Tac-Toe example where:

\[V(s) \leftarrow V(s) + \alpha[V(s') - V(s)] \]
What is Evaluative Feedback?

- RL uses training information that evaluates the actions taken rather than instructs by giving correct actions
 - Necessitates trail-by-error search for good behavior
 - Creates need for active exploration

- Pure evaluative feedback indicates how good the action taken is, but not whether it is the best or the worst action possible

- Pure instructive feedback, on the other hand, indicates the correct action to take, independent of the action actually taken
 - Corresponds to supervised learning
 - e.g. artificial neural networks
n-Armed Bandit Problem

Let’s look at a simple version of the \textit{n}-\textit{armed bandit problem}

- First step in understanding the full RL problem

Here is the problem description:

- An agent is repeatedly faced with making one out of \(n \) actions
- After each step a reward value is provided, drawn from a stationary probability distribution that depends on the action selected
- The agent’s objective is to maximize the expected total reward over time
- Each action selection is called a \textit{play} or \textit{iteration}

Extension of the classic slot machine (“one-armed bandit”)
n-Armed Bandit Problem (cont.)

- Each action has a value – an expected or mean reward given that the action is selected
 - If the agent knew the value of each function – the problem would be trivial
- The agent maintains estimates of the values, and chooses the highest
 - Greedy algorithm
 - Directly associated with (policy) exploitation
- If agent chooses non-greedily – we say it explores
 - Under uncertainty the agent must explore
 - A balance must be found between exploration & exploitation
- Initial condition: all levers assume to yield reward = 0
- We’ll see several simple balancing methods and show that they work much better than methods that always exploit
We’ll look at simple methods for estimating the values of actions.

Let $Q^*(a)$ denote the true (actual) value of a, and $Q_t(a)$ its estimate at time t.

- The true value equals the mean reward for that action.

Let’s assume that by iteration (play) t, action a has been taken k_a times – hence we may use the sample-average...

$$Q_t(a) = \frac{1}{k_a} \sum_{i=1}^{k_a} r_i = \frac{r_1 + r_2 + \ldots + r_{k_a}}{k_a}$$

The greedy policy selects the highest sample-average, i.e.

$$a^* = \arg \max_a Q_t(a) \quad \rightarrow \quad Q_t(a^*) = \max_a Q_t(a)$$
Action-Value Methods (cont.)

- A simple alternative is to behave greedily most of the time, but every once in a while, say with small probability ε, instead select an action at random.
 - This is called an ε-greedy method.

We simulate the 10-arm bandit problem, where ...

- $r_a \sim N(Q^*(a),1)$ (noisy readings of rewards)
- $Q^*(a) \sim N(0,1)$ (actual, true mean reward for action a)

We further assume that there are 2000 machines (tasks), each with 10 levers.

The rewards distributions are drawn independently for each machine.

Each iteration, choose a lever on each machine and calculate the average reward from all 2000 machines.
Action-Value Methods (cont.)

\[\epsilon = 0.1 \]
\[\epsilon = 0.01 \]

Average reward

\[\% \text{ Optimal action} \]
\[\epsilon = 0.1 \]
\[\epsilon = 0.01 \]
\[\epsilon = 0 \text{ (greedy)} \]
Side note: the optimal average reward

\[E\left\{ \max \left(z_1, z_2, \ldots, z_n \right) \right\} \]

\[z_i \sim N(0,1) \]
The advantage of ε-greedy methods depends on the task

- If the rewards have high variance \Rightarrow ε-greedy would have stronger advantage
- If the rewards have zero variance \Rightarrow greedy algorithm would have sufficed

If the problem was non-stationary (true rewards values changed slowly over time)

- ε-greedy would have been a must
- Q: Perhaps some better methods exist?
So far we assumed that while exploring (using ϵ-greedy) we chose equally among the alternatives.

This means we could have chosen really bad, as opposed (for example) to choosing the next-best action.

The obvious solution is to **rank the alternatives** ...

- Generate a probability density/mass function to estimate the rewards from each action.
- All actions are ranked/weighted.
- Typically use Boltzmann distribution, i.e. choose action a on iteration t with probability

$$ Pr\{\text{action } = a\} = \pi_a(t) = \frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^{n} e^{Q_t(b)/\tau}} $$
Softmax Action Selection (cont.)

- **$\tau = 1$**
- **$\tau = 4$**
- **$\tau = 20$**

Action index

Average value

- $\tau = 1$
- $\tau = 4$
- $\tau = 20$
Incremental Implementation

- Sample-average methods require linearly-increasing memory (storage of reward history)
- We need a more memory-efficient method ...

\[
Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i \\
= \frac{1}{k+1} \left(r_{k+1} + \sum_{i=1}^{k} r_i \right) \\
= \frac{1}{k+1} \left(r_{k+1} + Q_k + Q_k - Q_k \right) \\
= \frac{1}{k+1} \left(r_{k+1} + Q_k (k+1) - Q_k \right) \\
= Q_k + \frac{1}{k+1} \left[r_{k+1} - Q_k \right]
\]
The previous result is consistent with a recurring theme in RL which is

$$\text{New_Estimate} \leftarrow \text{Old_Estimate} + \text{StepSize} [\text{Target} - \text{Old_Estimate}]$$

The StepSize may be fixed or adaptive (in accordance with the specific application)
Tracking a Nonstationary Problem

- So far we have considered stationary problems
- In reality, many problems are effectively nonstationary
- A popular approach is to weigh recent rewards more heavily than older ones
- One such technique is called fixed step size

\[
Q_k = Q_{k-1} + \alpha[r_k - Q_{k-1}]
\]

\[
= \alpha r_k + (1 - \alpha)Q_{k-1} = \alpha r_k + (1 - \alpha)\alpha r_{k-1} + (1 - \alpha)^2 Q_{k-2}
\]

\[
= \alpha r_k + (1 - \alpha)\alpha r_{k-1} + (1 - \alpha)^2 r_{k-2} + ... + (1 - \alpha)^{k-1} \alpha r_1 + (1 - \alpha)^k Q_0
\]

\[
= (1 - \alpha)^k Q_0 + \sum_{i=1}^{k} \alpha(1 - \alpha)^{k-i} r_i
\]

- This is a weighted average that exponentially decreases
Optimistic Initial Values

- All methods discussed so far depended, to some extent, on the initial action-value estimates, $Q_0(a)$
- For sample-average methods - this bias disappears when all actions have been selected at least once
- For fixed step-size methods, the bias disappears with time (geometrically decreasing)
- In the 10-arm bandit example with $\alpha = 0.1$...
 - If we were to set all initial reward guesses to +5 (instead of zero)
 - Exploration is guaranteed, since true values are $\sim N(0,1)$
Reinforcement Comparison

An intuitive element in RL is that …
- higher rewards → made more likely to occur
- lower rewards → made less likely to occur

How is the learner to know what constitutes a high or low reward?
- To make a judgment, one must compare the reward to a reference reward - \bar{r}_t
 - Natural choice - average of previously received rewards
 - These methods are called reinforcement comparison methods

The agent maintains an action preference value, $p_t(a)$, for each action a

The preference might be used to select an action according to a softmax relationship

$$\pi_t(a) = \frac{e^{p_t(a)}}{\sum_{b=1}^{n} e^{p_t(b)}}$$
Reinforcement Comparison (cont.)

- The reinforcement comparison idea is used in updating the action preferences

\[p_{t+1}(a_t) = p_t(a_t) + \beta [r_t - \overline{r}] \]

- High reward increases the probability of an action to be selected, and visa versa

- Following the action preference update, the agent updates the reference reward

\[r_{t+1} = r_t + \alpha [r_t - \overline{r}] \]

→ allows us to differentiate between rates for \(r_t \) and \(p_t \)
Pursuit Methods

Another class of effective learning methods are *pursuit* methods.

They maintain both *action-value estimates* and *action preferences*.

The preferences continually “pursue” the greedy actions.

Letting a_{t+1}^* denote the greedy action, the update rules are:

$$
\pi_{t+1}(a_{t+1}^*) = \pi_t(a_{t+1}^*) + \beta \left[1 - \pi_t(a_{t+1}^*) \right] \\
\pi_{t+1}(a_{t+1}) = \pi_t(a_{t+1}) + \beta \left[0 - \pi_t(a_{t+1}) \right]
$$

for $a = a_{t+1}^*$

for $a \neq a_{t+1}^*$

The action value estimates, $Q_{t+1}(a)$, are updated using one of the ways described (e.g. sample averages of observed rewards).
Pursuit Methods (cont.)

% Optimal action

ϵ-greedy
$\epsilon = 0.1, \ \alpha = 1/k$

reinforcement comparison

pursuit

Plays

0 200 400 600 800 1000

0% 20% 40% 60% 80% 100%
Associative Search

So far we've considered *nonassociative* tasks in which there was no association of *actions* with *states*

- Find the single best action when task is stationary, or
- Track the best action as it changes over time

However, in RL the goal is to learn a *policy* (i.e. state to action mappings)

A natural extension of the *n*-arm bandit:

- Assume you have *K* machines, but only one is played at a time
- The agent maps the state (i.e. machine played) to the action

This would be called an *associative search* task

- It is like the full RL problem in that it involves a policy
- However, it lacks the long-term reward prospect of full RL
Summary

- We’ve looked at various action-selection schemes
- Balancing exploration vs. exploitation
 - ϵ-greedy
 - Softmax techniques
- There is no “single-best” solution for all problems
- We’ll see more of this issue later …