ECE 422/522
Power System Operations & Planning/
Power Systems Analysis II
Spring 2014
Course Outline

Instructor:
Kai Sun
Information

• Contact:
 Email: kaisun@utk.edu Tel: 865-9743982

• Office hours:
 Thursday 3:00-4:30pm/by appointment @ MK612

• GTA:
 Nan Duan (nduan@utk.edu)

• Website
 http://web.eecs.utk.edu/~kaisun/ECE422-522
References

- Text book
- References
 - Other reports, journal papers and notes.
Prerequisite

• ECE 421/521 – Electric Energy Systems / Power System Analysis I (Chapters 1-7 in Saadat’s book)
 – Overview of power systems and electric power generation
 – Basic principles
 – Generator & transformer models, and Per-Unit system
 – Transmission line parameters
 – Line model and performance
 – Power flow analysis
 – Optimal dispatch of generation

• Slides and materials are available at http://web.eecs.utk.edu/~kaisun/ECE421-521/index.htm
Course Overview

• This course covers
 – modeling, analysis and mitigation of power system stability and control problems
 – planning and operations of a modern interconnected power grid under disturbances to ensure system performance and reliability
 – analytical and numerical methods to tackle realistic stability and control problems
 – minor work of programming in MATLAB or using professional power system software, and
 – some emerging issues and techniques on modern power systems
Course Outline

<table>
<thead>
<tr>
<th>Content</th>
<th>Time/Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>General background on modern power systems</td>
<td>3 lectures</td>
</tr>
<tr>
<td>Power system modeling</td>
<td>6-7 lectures</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>Mid-February</td>
</tr>
<tr>
<td>Control of real and reactive powers</td>
<td>6 lectures</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>Mid-March</td>
</tr>
<tr>
<td>Power system stability problems and mitigation measures</td>
<td>8-9 lectures</td>
</tr>
<tr>
<td>Project Presentations</td>
<td>Mid-April</td>
</tr>
<tr>
<td>Other topics on grid operations and planning</td>
<td>2-3 lectures</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Late April</td>
</tr>
</tbody>
</table>
Course Outline

1. General background
 - Structure of a power system
 - US Electric Industry (utilities, deregulation, energy resources)
 - Overview of power system reliability and NERC guidelines
 - Introduction of power system stability
 • Basic concepts and definitions
 • Examples on stability problems
Course Outline (cont’d)

2. Power system modeling
 - Modeling of a synchronous machine
 • Winding circuits
 • Park’s (dq0) transformation
 • Equivalent circuits
 • Swing equations
 • Detailed and classic generator models
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hydraulic Units</th>
<th>Thermal Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Reactance</td>
<td>X_d</td>
<td>0.6 - 1.5</td>
</tr>
<tr>
<td></td>
<td>X_q</td>
<td>0.4 - 1.0</td>
</tr>
<tr>
<td>Transient Reactance</td>
<td>X_d'</td>
<td>0.2 - 0.5</td>
</tr>
<tr>
<td></td>
<td>X_q'</td>
<td>-</td>
</tr>
<tr>
<td>Subtransient Reactance</td>
<td>X_d''</td>
<td>0.15 - 0.35</td>
</tr>
<tr>
<td></td>
<td>X_q''</td>
<td>0.2 - 0.45</td>
</tr>
<tr>
<td>Transient OC Time Constant</td>
<td>T_{d0}'</td>
<td>1.5 - 9.0 s</td>
</tr>
<tr>
<td></td>
<td>T_{q0}'</td>
<td>-</td>
</tr>
<tr>
<td>Subtransient OC Time Constant</td>
<td>T_{d0}''</td>
<td>0.01 - 0.05 s</td>
</tr>
<tr>
<td></td>
<td>T_{q0}''</td>
<td>0.01 - 0.09 s</td>
</tr>
<tr>
<td>Stator Leakage Inductance</td>
<td>X_l</td>
<td>0.1 - 0.2</td>
</tr>
<tr>
<td>Stator Resistance</td>
<td>R_a</td>
<td>0.002 - 0.02</td>
</tr>
</tbody>
</table>

Notes:
1. Reactance values are in per unit with stator base values equal to the corresponding machine rated values.
2. Time constants are in seconds.
Course Outline (cont’d)

– Load modeling
 • Static and dynamic load models
 – ZIP and exponential models
 – Frequency dependency
 – Motor loads
 • Acquisition of model parameters
 – Component-based approach
 – Measurement-based approach
Course Outline (cont’d)

3. Control of real and reactive powers
 – Active power and frequency control
 • Speed governing system (turbine & governor models)
 • AGC (Automatic Generation Control) for multi-generator systems
 • Under-frequency protection
 – Reactive power and voltage control
 • Excitation system
 • Var compensators
 • Secondary voltage control
4. Power system stability problems and mitigation measures
 - Small-signal stability
 • Linearized model
 • PSS (Power system stabilizer) model
 • Power oscillations in interconnected power systems
Course Outline (cont’d)

– Transient stability
 • Single-machine-infinite-bus system
 • Direct methods (energy function)
 • Numerical methods (dynamic simulation)
 • Short-circuit analysis (balanced and unbalanced faults)
Voltage stability

- P-V and V-Q curves
- Short-term and long-term voltage stability problems
- Analysis methods and mitigation measures
5. Other topics on grid operations and planning
 – Mitigation of cascading events and restoration from a blackout
 – Emerging issues and techniques
 • Penetration of intermittent resources
 • Wide-area monitoring and control
Course Requirements

• Two mid-terms and a final exam
• 8-9 homework assignments
• Course project with a presentation
 – Contingency and stability analysis for a power system model using commercialized software tools

• Grading
 Homework 20%
 Course project 20%
 Exams (2) 30% (15% each)
 Final Exam 30%
 Total 100%
Course Policies

• ECE 522 students have more assignments and exam questions. ECE 422 students who also accomplish the ECE 522 assignments will receive additional credits.

• For homework assignments, you may work together in groups but each individual must hand in their own work.

• For take-home exams, please work independently