Today:
- All Pairs Shortest Paths
Reading Assignments

• Today’s class:
 – Chapter 25.1-25.2

• Reading assignment for next class:
 – Chapter 16.1-16.2

• Announcement: Exam 1 is on Tues, Feb. 18
 – Will cover everything up through dynamic programming
All Pairs Shortest Paths (APSP)

- **given**: directed graph $G = (V, E)$, weight function $\omega : E \rightarrow \mathbb{R}$, $|V| = n$

- **goal**: create an $n \times n$ matrix $L = (l_{ij})$ of shortest path distances i.e., $l_{ij} = \delta(i, j)$

- **trivial solution**: run a SSSP algorithm n times, one for each vertex as the source.
All Pairs Shortest Paths (APSP)

- **all edge weights are nonnegative**: use Dijkstra’s algorithm
 - Priority Queue = linear array: $O(V^3 + VE) = O(V^3)$
 - Priority Queue = binary heap: $O(V^2 \log V + EV \log V) = O(V^3 \log V)$
 - better only for sparse graphs
 - Priority Queue = Fibonacci heap: $O(V^2 \log V + EV) = O(V^3)$
 - better only for sparse graphs

- **negative edge weights**: use Bellman-Ford algorithm
 - $O(V^2 E) = O(V^4)$ on dense graphs
Shortest Paths and Matrix Multiplication

Assumption: negative edge weights may be present, but no negative weight cycles.

(Step 1) Structure of a Shortest Path (new Optimal Substructure argument):

• Consider a shortest path p_{ij}^m from v_i to v_j such that $|p_{ij}^m| \leq m$
 ▶ i.e., path p_{ij}^m has at most m edges.

• no negative-weight cycle \Rightarrow all shortest paths are simple
 \Rightarrow m is finite \Rightarrow $m \leq |V| - 1$

• $i = j$ \Rightarrow $|p_{ii}| = 0$ & $\omega(p_{ii}) = 0$

• $i \neq j$ \Rightarrow decompose path p_{ij}^m into p_{ik}^{m-1} & $v_k \rightarrow v_j$, where $|p_{ik}^{m-1}| \leq m - 1$
 ▶ p_{ik}^{m-1} should be a shortest path from v_i to v_k by optimal substructure property.
 ▶ Therefore, $\delta(i, j) = \delta(i, k) + \omega_{kj}$
Shortest Paths and Matrix Multiplication

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem:

- l_{ij}^m = minimum weight of any path from v_i to v_j that contains at most “m” edges.

- $m = 0$: There exists a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

 $$l_{ij}^0 = \begin{cases}
 0 & \text{if } i = j \\
 \infty & \text{if } i \neq j
 \end{cases}$$

- $m \geq 1$: $l_{ij}^m = \min \{ l_{ij}^{m-1}, \min_{1 \leq k \leq n \land k \neq j} \{l_{ik}^{m-1} + \omega_{kj}\}\}$

 $$= \min_{1 \leq k \leq n} \{l_{ik}^{m-1} + \omega_{kj}\} \text{ for all } v_k \in V,$$

 since $\omega_{jj} = 0$ for all $v_j \in V.$
Shortest Paths and Matrix Multiplication

• To consider all possible shortest paths with \(\leq m \) edges from \(v_i \) to \(v_j \)
 ▶ consider shortest path with \(\leq m - 1 \) edges, from \(v_i \) to \(v_k \), where \((v_k, v_j) \in E\)
Shortest Paths and Matrix Multiplication

(Step 3) Computing the shortest-path weights bottom-up:

- Given $W = L^1$, compute a series of matrices $L^2, L^3, ..., L^{n-1}$, where $L^m = (l_{ij}^m)$ for $m = 1, 2, ..., |V| - 1$
 - final matrix L^{n-1} contains actual shortest path weights, i.e., $l_{ij}^{n-1} = \delta(i, j)$

- **SLOW-APSP**(W)

 $L^1 \leftarrow W$

 for $m \leftarrow 2$ to $n-1$ do

 $L^m \leftarrow \text{EXTEND}(L^{m-1}, W)$

 return L^{n-1}
EXTEND \((L, W)\)
\[L = (l_{ij}) \text{ is an } n \times n \text{ matrix} \]
\[
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\hspace{1cm} \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\hspace{2cm} l_{ij} \leftarrow \infty \\
\hspace{2cm} \text{for } k \leftarrow 1 \text{ to } n \text{ do} \\
\hspace{3cm} l_{ij} \leftarrow \min\{l_{ij}, l_{ik} + \omega_{kj}\} \\
\]
\[\text{return } L\]

MATRIX-MULT \((A, B)\)
\[C = (c_{ij}) \text{ is an } n \times n \text{ result matrix} \]
\[
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\hspace{1cm} \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\hspace{2cm} c_{ij} \leftarrow 0 \\
\hspace{2cm} \text{for } k \leftarrow 1 \text{ to } n \text{ do} \\
\hspace{3cm} c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj} \\
\]
\[\text{return } C\]
Shortest Paths and Matrix Multiplication

- Relation to matrix multiplication $C = A \times B$: $c_{ij} = \sum_{1 \leq k \leq n} a_{ik} \times b_{kj}$,
 - $L^{m-1} \leftrightarrow A$ & $W \leftrightarrow B$ & $L^m \leftrightarrow C$
 - “min” $\leftrightarrow “+”$ & “+” $\leftrightarrow “\times”$ & “∞” $\leftrightarrow “0”$

- Thus, we compute the sequence of matrix products
 - $L^1 = L^0 \times W = W$; note L^0 = identity matrix,
 - $L^2 = L^1 \times W = W^2$
 - $L^3 = L^2 \times W = W^3$
 - \vdots
 - $L^{n-1} = L^{n-2} \times W = W^{n-1}$

- Running time: $\Theta(V^4)$
 - each matrix product: $\Theta(|V|^3)$
 - number of matrix products: $|V| - 1$
Shortest Paths and Matrix Multiplication

Example:
Shortest Paths and Matrix Multiplication

\[L^1 = L^0 W \]
Shortest Paths and Matrix Multiplication

\[L^2 = L^1W \]
Shortest Paths and Matrix Multiplication

\[
L^3 = L^2 W
\]
Shortest Paths and Matrix Multiplication

\[L^4 = L^3 W \]
Idea: goal is not to compute all L^m matrices
▶ we are interested only in matrix L^{n-1}

Recall: no negative-weight cycles $\Rightarrow L^m = L^{n-1}$ for all $m \geq |V| - 1$

We can compute L^{n-1} with only $\lceil \log(n-1) \rceil$ matrix products as

\[
\begin{align*}
L^1 &= W \\
L^2 &= W^2 = W \times W \\
L^4 &= W^4 = W^2 \times W^2 \\
L^8 &= W^8 = W^4 \times W^4 \\
&\quad \vdots \\
L^{2^\lceil \log(n-1) \rceil} &= L^2^{\lceil \log(n-1) \rceil} = L^2^{\lceil \log(n-1) \rceil - 1} \times L^2^{\lceil \log(n-1) \rceil - 1}
\end{align*}
\]

This technique is called repeated squaring.
Improving Running Time Through Repeated Squaring

- **FASTER-APSP (W)**

 \[
 L^1 \leftarrow W \\
 m \leftarrow 1 \\
 \text{while } m < n-1 \text{ do} \\
 \quad L^{2m} \leftarrow \text{EXTEND}(L^m, L^m) \\
 \quad m \leftarrow 2m \\
 \text{return } L^m
 \]

- Final iteration computes \(L^{2m} \) for some \(n-1 \leq 2m \leq 2n-2 \Rightarrow L^{2m} = L^{n-1} \)

- **Running time**: \(\Theta(n^3 \lg n) = \Theta(V^3 \lg V) \)

 - each matrix product: \(\Theta(n^3) \)
 - # of matrix products: \(\lceil \lg(n-1) \rceil \)
 - simple code, no complex data structures, small hidden constants in \(\Theta \)-notation.
Exercise

Give an efficient algorithm to find the length (number of edges) of a minimum-length negative-weight cycle in a graph.
Floyd-Warshall Algorithm

Assumption: negative-weight edges, but no negative-weight cycles

(Step 1) The Structure of a Shortest Path (yet another optimal substructure argument):

- Definition: intermediate vertex of a path \(p = < v_1, v_2, v_3, \ldots, v_k > \)
 - any vertex of \(p \) other than \(v_1 \) or \(v_k \).

- \(p_{ij}^m \): a shortest path from \(v_i \) to \(v_j \) with all intermediate vertices from \(V_m = \{ v_1, v_2, \ldots, v_m \} \)

- Relationship between \(p_{ij}^m \) and \(p_{ij}^{m-1} \)
 - depends on whether \(v_m \) is an intermediate vertex of \(p_{ij}^m \)

 - Case 1: \(v_m \) is not an intermediate vertex of \(p_{ij}^m \)
 - all intermediate vertices of \(p_{ij}^m \) are in \(V_{m-1} \)
 - \(p_{ij}^m = p_{ij}^{m-1} \)
- Case 2: \(v_m \) is an intermediate vertex of \(p_{ij}^m \)

- decompose path as \(v_i \rightarrow v_m \rightarrow v_j \)

\[\Rightarrow p_1 : v_i \rightarrow v_m \quad \& \quad p_2 : v_m \rightarrow v_j \]

- by opt. structure property both \(p_1 \) & \(p_2 \) are shortest paths.

- \(v_m \) is not an intermediate vertex of \(p_1 \) & \(p_2 \)

\[\Rightarrow p_1 = p_{im}^{m-1} \quad \& \quad p_2 = p_{mj}^{m-1} \]
(Step 2) A Recursive Solution to APSP Problem:

- \(d_{ij}^m = \omega(p_{ij}) \): weight of a shortest path from \(v_i \) to \(v_j \) with all intermediate vertices from \(V_m = \{ v_1, v_2, \ldots, v_m \} \).

- Note: \(d_{ij}^n = \delta(i, j) \) since \(V_n = V \)
 - i.e., all vertices are considered for being intermediate vertices of \(p_{ij}^n \).
Floyd-Warshall Algorithm

• Compute d_{ij}^m in terms of d_{ij}^k with smaller $k < m$

• $m = 0$: $V_0 = \text{empty set}$
 \[\Rightarrow \text{path from } v_i \text{ to } v_j \text{ with no intermediate vertex.} \]
 i.e., v_i to v_j paths with at most one edge
 \[\Rightarrow d_{ij}^0 = \omega_{ij} \]

• $m \geq 1$: $d_{ij}^m = \min \{ d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1} \}$
Floyd-Warshall Algorithm

(Step 3) Computing Shortest Path Weights Bottom Up:

FLOYD-WARSHALL(W)

- \(D^0, D^1, \ldots, D^n \) are \(n \times n \) matrices

for \(m \leftarrow 1 \) to \(n \) do

for \(i \leftarrow 1 \) to \(n \) do

for \(j \leftarrow 1 \) to \(n \) do

\[\text{d}_{ij}^m \leftarrow \min \{ \text{d}_{ij}^{m-1}, \text{d}_{im}^{m-1} + \text{d}_{mj}^{m-1} \} \]

return \(D^n \)
Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)

► D is an $n \times n$ matrix

D ← W

for $m \leftarrow 1$ to n do
 for $i \leftarrow 1$ to n do
 for $j \leftarrow 1$ to n do
 if $d_{ij} > d_{im} + d_{mj}$ then
 $d_{ij} \leftarrow d_{im} + d_{mj}$

return D
Floyd-Warshall Algorithm

• Maintaining \(n \) \(D \) matrices can be avoided by dropping all superscripts.

 \(m \)-th iteration of outermost for-loop

 begins with \(D = D^{m-1} \)

 ends with \(D = D^m \)

 computation of \(d_{ij}^m \) depends on \(d_{im}^{m-1} \) and \(d_{mj}^{m-1} \).

 no problem if \(d_{im} \) & \(d_{mj} \) are already updated to \(d_{im}^m \) & \(d_{mj}^m \)

 since \(d_{im}^m = d_{im}^{m-1} \) & \(d_{mj}^m = d_{mj}^{m-1} \).

• Running time : ⋁(\(n^3 \)) = ⋁(\(V^3 \))

 simple code, no complex data structures, small hidden constants
Reading Assignments

• Reading assignment for next class:
 – Chapter 16.1-16.2

• Announcement: Exam 1 is on Tues, Feb. 18
 – Will cover everything up through dynamic programming