Practical Applications of FOL, Resolution Theorem Provers

- Applied to synthesis and verification of both HW and SW
 - Used in fields of HW design, programming languages, and SW engineering (in addition to AI)

- For HW:
 - Axioms describe interactions between signals and circuit elements
 - Have been used to verify entire CPUs, including timing properties

- For SW:
 - Reasoning about programs is similar to reasoning about actions
 - Formal synthesis of algorithms was an early use of theorem provers
 - SW verification is commonly done with theorem proving
 - E.g., for spacecraft control, verification of RAS public key encryption, string matching, etc.
 - Fully automated techniques for general-purpose programming are not yet feasible
 - But, some algorithms have been generally deduced using theorem proving
(1) HW Example: Verifying Circuits (Sect. 8.4.2)

- Given a circuit, we could ask:
 - Does it work properly?
 - Given certain inputs, what is the output
 - Does the circuit contain feedback loops?
 - Etc.

Digital circuit, purporting to be a 1-bit full adder.
First 2 inputs are bits to be added; 3rd bit is carry bit.
First output is sum, 2nd output is carry bit for the next adder.
(1) HW Example: Verifying Circuits (con’t.)

• To design, first decide what the relevant knowledge is:
 – Circuits consist of wires and gates
 – Signals flow along wires to input terminals of gates
 – Each gate produces a signal on the output terminal that flows along another wire
 – There are 4 types of gates that transform their inputs differently: AND, OR, XOR, NOT
 – All gates have 1 output terminal

• To reason about functionality and connectivity:
 – We just need to talk about the connections between terminals
 – Don’t have to bother with paths of wires, or junctions where they come together

• If we wanted to verify timing, or faulty circuits, etc., then we would add that info to our knowledge base
Next, decide on vocabulary:

- Constants:
 - AND, OR, NOT, XOR, 1, 0, Nothing

- Predicates:
 - Gate(x)
 - Type(x)
 - Circuit(x)
 - In(1, x) // refers to first input terminal for gate x
 - Out(1, x) // refers to first output terminal for gate x
 - Arity(c, i, j) // circuit c has i input and j output terminals
 - Connected(t₁, t₂) // says terminals t₁ and t₂ are connected
 - Signal(t) // denotes signal value (0 or 1) for terminal t
(1) HW Example: Verifying Circuits (con’t.)

• Next, encode general domain knowledge (should be just a few general rules):
 – Gates, terminals, signals, gate types, and Nothing are all distinct:
 • \(\forall g, t \quad \text{Gate}(g) \land \text{Terminal}(t) \Rightarrow g \neq t \neq 1 \neq 0 \neq 2 \neq \text{OR} \neq \text{AND} \neq \text{XOR} \neq \text{NOT} \neq \text{Nothing} \)
 – If 2 terminals are connected, then they have the same signal:
 • \(\forall t_1, t_2 \quad \text{Terminal}(t_1) \land \text{Terminal}(t_2) \land \text{Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2) \)
 – The signal at every terminal is either 1 or 0:
 • \(\forall t \quad \text{Terminal}(t) \Rightarrow \text{Signal}(t) = 1 \lor \text{Signal}(t) = 0 \)
 – Connected is commutative:
 • \(\forall t_1, t_2 \quad \text{Connected}(t_1, t_2) \Leftrightarrow \text{Connected}(t_2, t_1) \)
 – There are 4 types of gates:
 • \(\forall g \quad \text{Gate}(g) \land k = \text{Type}(g) \Rightarrow k = \text{AND} \lor k = \text{OR} \lor k = \text{XOR} \lor k = \text{NOT} \)
(1) HW Example: Verifying Circuits (con’t.)

– An AND gate’s output is 0 iff any of its inputs is 0:
 • \(\forall g \ Gate(g) \land Type(g) = \text{AND} \Rightarrow Signal(\text{Out}(1,g)) = 0 \iff \exists n \ Signal(\text{In}(n,g)) = 0 \)

– An OR gate’s output is 1 iff any of its inputs is 1:
 • \(\forall g \ Gate(g) \land Type(g) = \text{OR} \Rightarrow Signal(\text{Out}(1,g)) = 1 \iff \exists n \ Signal(\text{In}(n,g)) = 1 \)

– An XOR gate’s output is 1 iff its inputs are different:
 • \(\forall g \ Gate(g) \land Type(g) = \text{XOR} \Rightarrow Signal(\text{Out}(1,g)) = 1 \iff Signal(\text{In}(1,g)) \neq Signal(\text{In}(2,g)) \)

– A NOT gate’s output is different from its input:
 • \(\forall g \ Gate(g) \land Type(g) = \text{NOT} \Rightarrow Signal(\text{Out}(1,g)) \neq Signal(\text{In}(1,g)) \)

– The gates (except for NOT) have 2 inputs and 1 output:
 • \(\forall g \ Gate(g) \land Type(g) = \text{NOT} \Rightarrow \text{Arity}(g,1,1) \)
 • \(\forall g \ Gate(g) \land k = Type(g) \land (k = \text{AND} \lor k = \text{OR} \lor k = \text{XOR}) \Rightarrow \text{Arity}(g,2,1) \)

– A circuit has terminals, up to its input and output arity, and nothing beyond its arity:
 • \(\forall c, i, j \ Circuit(c) \land \text{Arity}(c,i,j) \Rightarrow \)
 • \(\forall n \ (n \leq i \Rightarrow \text{Terminal}(\text{In}(c,n))) \land (n > i \Rightarrow \text{In}(c,n) = \text{Nothing}) \land \)
 • \(\forall n \ (n \leq j \Rightarrow \text{Terminal}(\text{Out}(c,n))) \land (n > j \Rightarrow \text{Out}(c,n) = \text{Nothing}) \)

– Gates are circuits:
 • \(\forall g \ Gate(g) \Rightarrow \text{Circuit}(g) \)
(1) HW Example: Verifying Circuits (con’t.)

- Now, encode specific problem instance:

Circuit(C_1) \land Arity(C_1, 3, 2)
Gate(X_1) \land Type(X_1) = XOR
Gate(X_2) \land Type(X_2) = XOR
Gate(A_1) \land Type(A_1) = AND
Gate(A_2) \land Type(A_2) = AND
Gate(O_1) \land Type(O_1) = OR

Connected(Out(1, X_1), In(1, X_2))
Connected(Out(1, X_1), In(2, A_2))
Connected(Out(1, A_2), In(1, O_1))
Connected(Out(1, A_1), In(2, O_1))
Connected(Out(1, X_2), Out(1, C_1))
Connected(Out(1, O_1), Out(2, C_1))

Connected(In(1, C_1), In(1, X_1))
Connected(In((1, C_1), In(1, A_1))
Connected(In((2, C_1), In(2, X_1))
Connected(In((2, C_1), In(2, A_1))
Connected(In((3, C_1), In(2, X_2))
Connected(In((1, C_1), In(1, A_2))
Finally, we can pose queries to inference procedure:

- What combinations of inputs would cause the first output of C_1 (the sum bit) to be 0 and the second output of C_2 (the carry bit) to be 1?

$$\exists i_1, i_2, i_3 \quad \text{Signal}(\text{In}(1, C_1)) = i_1 \land \text{Signal}(\text{In}(2, C_1)) = i_2 \land \text{Signal}(\text{In}(3, C_1)) = i_3$$

$$\land \text{Signal}(\text{Out}(1, C_1)) = 0 \land \text{Signal}(\text{Out}(2, C_1)) = 1$$

- The answers are substitutions to variables such that the resulting sentence is entailed by the knowledge base:
 - Answers are $\{i_1/1, i_2/1, i_3/0\}, \{i_1/1, i_2/0, i_3/1\}, \{i_1/0, i_2/1, i_3/1\}$

- What are the possible sets of values of all the terminals for the adder circuit?

$$\exists i_1, i_2, i_3, o_1, o_2 \quad \text{Signal}(\text{In}(1, C_1)) = i_1 \land \text{Signal}(\text{In}(2, C_1)) = i_2 \land \text{Signal}(\text{In}(3, C_1)) = i_3$$

$$\land \text{Signal}(\text{Out}(1, C_1)) = o_1 \land \text{Signal}(\text{Out}(2, C_1)) = o_2$$

- The answers give a complete I/O table for the device, which can be used to confirm that it properly adds its inputs.
Practical Applications of FOL, Resolution Theorem Provers

• **Applied to synthesis and verification of both HW and SW**
 – Used in fields of HW design, programming languages, and SW engineering (in addition to AI)

• **For HW:**
 – Axioms describe interactions between signals and circuit elements
 – Have been used to verify entire CPUs, including timing properties

• **For SW:**
 – Reasoning about programs is similar to reasoning about actions
 – Formal synthesis of algorithms was an early use of theorem provers
 – SW verification is commonly done with theorem proving
 • E.g., for spacecraft control, verification of RAS public key encryption, string matching, etc.
 – Fully automated techniques for general-purpose programming are not yet feasible
 • But, some algorithms have been generally deduced using theorem proving
(2) SW Example: Verifying Spacecraft Control

 - Used formal methods to verify deep space autonomy flight software
 - Approach found several concurrency errors
 - Developers believe these errors would *not* have been found through “usual” testing

- **Remote Agent (RA) autonomous spacecraft controller, successfully demonstrated in flight on Deep Space 1 (1999)**
 - RA is complex, concurrent SW system employing several automated reasoning engines using AI
 - Formal verification is critical to SW acceptance by science mission managers

Deep Space 1 – conducted fly-by of asteroid 9969 Braille

Asteroid 9969 Braille, as imaged by Deep Space 1
• During development (1997), a *subset* of the RA executive was modeled and verified, discovering several concurrency errors

• But, during flight, another concurrency error occurred:
 – Activation of error depended on a priori unlikely scheduling conditions between concurrent tasks
 – Error had not appeared in over 300 hours of system-level testing on JPL’s flight system testbed
 – Flight conditions under which error occurred were not anticipated during testing
 – Problem was solved by engineers
 – However, lesson learned was that full code verification is needed, along with easy-to-use tools to do so

(2) SW Example: Verifying Spacecraft Control (con’t.)
Remote Agent (RA) controller:
- Planner and Scheduler: Given a mission goal, it produces sequences of tasks for achieving the goal using available system resources.
- Smart Executive: Receives plan from planner/scheduler, and then commands spacecraft to take necessary actions to achieve and maintain specified spacecraft states.
- Mode Identification and Recovery: Monitors state of spacecraft, detects and diagnoses failures, and suggests recovery actions to Executive.

Verification work: focused on Smart Executive
- Includes multi-threaded operating systems
- Prolog-like AI languages based on sub-goals
- Written in multi-threaded LISP
• **RA Executive:**
 – Supports execution of tasks, which often require specific properties to hold during its execution
 – When task is started, it tries to achieve **properties** on which it depends; then it begins
 – Several tasks may try to achieve conflicting properties
 • E.g., one task might turn on a camera; another task might turn it off
 – To prevent conflicts, a task has to lock (in a **lock table**) any property it wants to achieve
 • Once a property is locked, it can be achieved by the task locking the property
 – **Problem:** property by be unexpectedly broken during execution
 • Thus, during execution, a **database** is maintained of all properties that are actually true at any time
 • **Inconsistency** can be detected by comparing database with lock table
 • Tasks depending on broken property must be interrupted
 – A daemon monitors this consistency
 • This daemon contained the concurrency errors
(2) SW Example: Verifying Spacecraft Control (con’t.)

• Daemon code:
  ```lisp
  (defun daemon ()
    (loop
      (if (check-locks)
        (do-automatic-recovery))
      (unless
        (changed?
          (+ (event-count *database-event*)
            (event-count *lock-event*)))
        (wait-for-events
          (list *database-event*
                *lock-event*)�)
  ```

• Code checked for two properties:
 – Release property: A task releases all of its locks before it terminates
 – Abort property: If an inconsistency occurs between the database and an entry in the lock table, then all tasks that rely on the lock will be terminated, either by themselves or by the daemon
• Verification of the two properties led to direct discovery of 5 programming errors:
 – One breaking the release property
 – Three breaking the abort property
 – One being a non-serious efficiency problem where code was executed twice instead of once

• Example of error:
 – Daemon is prompted to perform check of lock table
 – Finds everything consistent and checks the event counters to see if there have been any new events
 – This isn’t the case, and the daemon decides to wait for events
 – At this point, an inconsistency is introduced, and a signal is sent by the environment, causing event counter for the database event to be increased
 – Change in counter is not detected by daemon, since it has already decided to wait
 • A solution would be to enclose test and wait in same critical section
 • But, how to detect these sorts of errors when not coded properly to begin with?
(2) SW Example: Verifying Spacecraft Control (con’t.)

- Tools used for model checking:
 - PROMELA verification modeling language
 - Used to model the software
 - SPIN model checker
 - General tool for verifying correctness of distributed SW
 - Verifies properties stated using Linear Temporal Logic
(3) Algorithm Example: Verifying RSA Encryption

- **Boyer and Moore, 1984, used Proof Checking to verify the RSA encryption algorithm**

- **Statement of problem:**
 - CRYPT(M, e, n) is encryption of message M with key (e,n).
 - CRYPT has 3 important properties:
 1) It is easy to compute CRYPT(M, e, n) = M^e \mod n
 2) CRYPT is invertible
 i.e., if M is encrypted with key (e, n) and then decrypted with key (d, n),
 the result is M; precisely: CRYPT(CRYPT(M, e, n),d,n) = M
 3) Publicly revealing CRYPT and (e, n) does not reveal an easy way to compute
 (d, n).
 - Rivest, Shamir, and Adleman (1978) proved first 2 properties, but not 3rd.
 (Instead, they stated informally that, since there is no known algorithm for
 efficiently factoring large composites, the security property of CRYPT is obtained
 by constructing n as the product of two very large primes)

- **Work of Boyer and Moyer was to show a mechanical proof of properties 1 and 2**
(3) Algorithm Example: Verifying RSA Encryption (con’t.)

- **Theorem-prover used:**
 - Quantifier-free first order logic:
 - With equality, recursively defined functions, mathematical induction, and inductively constructed objects such as natural numbers and finite sequences

- **Main proof techniques:**
 - Simplification – use rewrite rules to simplify expressions
 - Example: \(\text{prime}(p) \rightarrow [p \mid a*b \leftrightarrow (p\mid a \lor p\mid b)] \)
 - Elimination of undesirable function symbols
 - Example: For natural number \(i \) and positive integer \(j \), there exist natural numbers \(r < j \) and \(q \) such that \(i = r + qj \). Thus, can replace \((i \mod j) \) with \(r \) and \(i/j \) with \(q \)
 - Strengthening the conjecture to be proved
 - Induction
(3) Algorithm Example: Verifying RSA Encryption (con’t.)

- Property 1: Rivest, Shamir, and Adelman proved that $M^e \mod n$ is easy to compute by exhibiting an algorithm for computing it in order $\log(e)$ steps.
- Boyer and Moore used rules of math (in logic form) to verify the algorithm

We define the encryption algorithm as the recursive function CRYPT:

DEFINITION.
CRYPT(M, e, n) =

if e is not a natural number or is 0, then 1;

else if e is even, then
(CRYPT(M, $e/2$, n))^2 mod n;
else
(M*(CRYPT(M, $e/2$, n))^2 mod n)) mod n.

LEMMA. $(x * (y \mod n)) \mod n = (x * y) \mod n.$

COROLLARY. $(a * (b * (y \mod n))) \mod n = (a * (b * y)) \mod n.$
(Hint: let x be $a * b$ in the preceding lemma.)

THEOREM. CRYPT(M, e, n) is equal to $M^e \mod n$ provided n is not 1.
(3) Algorithm Example: Verifying RSA Encryption (con’t.)

Sample input to theorem prover:

Definition.

(CRYPT M E N)

=

(IF (ZEROP E)
 1
 (IF (EVEN E)
 (REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
 N)
 (REMAINDER
 (TIMES M
 (REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
 N))
 N)))

Theorem. TIMES.MOD.1 (rewrite):

(EQUAL (REMAINDER (TIMES X (REMAINDER Y N)) N)
 (REMAINDER (TIMES X Y) N))

Theorem. TIMES.MOD.2 (rewrite):

(EQUAL (REMAINDER (TIMES A (TIMES B (REMAINDER Y N)))
 N)
 (REMAINDER (TIMES A B Y) N))

Hint: Use TIMES.MOD.1 with X replaced by (TIMES A B).

Theorem. CRYPT.CORRECT (rewrite):

(IMPLIES (NOT (EQUAL N 1))
 (EQUAL (CRYPT M E N) (REMAINDER (EXP M E) N))))
(3) Algorithm Example: Verifying RSA Encryption (con’t.)

- Property 2: Boyer and Moore used rules of math (in logic form) to verify the invertibility of CRYPT

Lemma 2. For all primes p, \((M^*M^{k*(p-1)}) \mod p = M \mod p\).

Corollary. If p and q are prime, then

\[(M^*M^{k*(p-1)*(q-1)}) \mod p = M \mod p\]

and

\[(M^*M^{k*(p-1)*(q-1)}) \mod q = M \mod q\].

(Hint: take two instantiations of (2).)

Lemma 3. If p and q are distinct primes, M is a natural number less than p^*q, and $x \mod (p-1)*(q-1)$ is 1, then $M^* \mod p^*q = M$.

RSA Theorem. If p and q are distinct primes, n is p^*q, M is a natural number less than n and $e*d \mod (p-1)*(q-1)$ is 1, CRYPT(CRYPT(M, e, n), d, n) = M.
(3) Algorithm Example: Verifying RSA Encryption (con’t.)

- Main point of Boyer and Moore:
 - Can use automated techniques to verify proofs and software
More on Automated Theorem Proving

• CADE Conference (Conference on Automated Deduction) holds an annual World Championship for Automated Theorem Proving (http://www.cs.miami.edu/~tptp/CASC/24/)

• Derives problems from the TPTP library (Thousands of Problems for Theorem Provers, http://www.cs.miami.edu/~tptp/)
 – Domains include:
 » Logic
 » Mathematics (e.g., set theory, graph theory, number theory, geometry, etc.)
 » Computer science (e.g., computing theory, NLP, planning, commonsense reasoning, software verification, etc.)
 » Science and engineering (e.g., HW verification, medicine)
 » Social sciences (e.g., social choice theory, management, geography, etc.)
International Joint Conference on Automated Reasoning (held bi-annually)

Topics include:

- **Logics**: propositional, first-order, classical, equational, higher-order, non-classical, constructive, modal, temporal, many-valued, substructural, description, metalogics, type theory, set theory

- **Methods**: tableaux, sequent calculi, resolution, model-elimination, connection method, inverse method, paramodulation, term rewriting, induction, unification, constraint solving, decision procedures, model generation, model checking, semantic guidance, interactive theorem proving, logical frameworks, AI-related methods for deductive systems, proof presentation, efficient data structures and indexing, integration of computer algebra systems and automated theorem provers, and combination of logics or decision procedures.

- **Applications**: of interest include: verification, formal methods, program analysis and synthesis, computer mathematics, declarative programming, deductive databases, knowledge representation, natural language processing, linguistics, robotics, and planning.
Journal of Automated Reasoning

• The spectrum of coverage ranges from the presentation of a new inference rule with proof of its logical properties to a detailed account of a computer program designed to solve industrial problems.

• Topics include:
 – automated theorem proving
 – logic programming
 – expert systems
 – program synthesis and validation
 – artificial intelligence
 – computational logic
 – robotics
 – various industrial applications.

• The contents focus on several aspects of automated reasoning, a field whose objective is the design and implementation of a computer program that serves as an assistant in solving problems and in answering questions that require reasoning.