
22

Exploring Single and Multilevel JIT Compilation Policy
for Modern Machines1

MICHAEL R. JANTZ and PRASAD A. KULKARNI, University of Kansas, Lawrence, Kansas

Dynamic or Just-in-Time (JIT) compilation is essential to achieve high-performance emulation for programs
written in managed languages, such as Java and C#. It has been observed that a conservative JIT compila-
tion policy is most effective to obtain good runtime performance without impeding application progress on
single-core machines. At the same time, it is often suggested that a more aggressive dynamic compilation
strategy may perform best on modern machines that provide abundant computing resources, especially with
virtual machines (VMs) that are also capable of spawning multiple concurrent compiler threads. However,
comprehensive research on the best JIT compilation policy for such modern processors and VMs is currently
lacking. The goal of this work is to explore the properties of single-tier and multitier JIT compilation policies
that can enable existing and future VMs to realize the best program performance on modern machines.

In this work, we design novel experiments and implement new VM configurations to effectively control
the compiler aggressiveness and optimization levels (if and when methods are compiled) in the industry-
standard Oracle HotSpot Java VM to achieve this goal. We find that the best JIT compilation policy is
determined by the nature of the application and the speed and effectiveness of the dynamic compilers. We
extend earlier results showing the suitability of conservative JIT compilation on single-core machines for
VMs with multiple concurrent compiler threads. We show that employing the free compilation resources
(compiler threads and hardware cores) to aggressively compile more program methods quickly reaches a
point of diminishing returns. At the same time, we also find that using the free resources to reduce compiler
queue backup (compile selected hot methods early) significantly benefits program performance, especially
for slower (highly optimizing) JIT compilers. For such compilers, we observe that accurately prioritizing
JIT method compiles is crucial to realize the most performance benefit with the smallest hardware budget.
Finally, we show that a tiered compilation policy, although complex to implement, greatly alleviates the
impact of more and early JIT compilation of programs on modern machines.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimizations, run-
time environments, compilers

General Terms: Languages, Performance

Additional Key Words and Phrases: Virtual machines, dynamic compilation, multicore, Java

ACM Reference Format:
Jantz, M. R. and Kulkarni, P. A. 2013. Exploring single and multilevel JIT compilation policy for modern
machines. ACM Trans. Architec. Code Optim. 10, 4, Article 22 (December 2013), 29 pages.
DOI: http://dx.doi.org/10.1145/2541228.2541229

1Extension of Conference Paper. This work extends our conference submission, titled JIT Compilation
Policy for Modern Machines, published in the ACM International Conference on Object-Oriented Program-
ming Systems Languages and Applications (OOPSLA) [Kulkarni 2011]. We extend this earlier work by
(a) reimplementing all experiments in the latest HotSpot JVM that provides a new state-of-the-art multitier

This work is supported by the National Science Foundation, under NSF CAREER award CNS-0953268.
Authors’ addresses: M. R. Jantz and P. A. Kulkarni, Department of Electrical Engineering and Computer
Science, University of Kansas, Lawrence, KS 66045.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific perimssion and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481 or permission@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART22 $15.00

DOI: http://dx.doi.org/10.1145/2541228.2541229

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

http://dx.doi.org/10.1145/2541228.2541229
http://dx.doi.org/10.1145/2541228.2541229

22:2 M. R. Jantz and P. A. Kulkarni

1. INTRODUCTION

To achieve application portability, programs written in managed programming lan-
guages, such as Java [Gosling et al. 2005] and C# [Microsoft 2001], are distributed as
machine-independent intermediate language binary codes for a virtual machine (VM)
architecture. Since the program binary format does not match the native architecture,
VMs have to employ either interpretation or dynamic compilation for executing the
program. Additionally, the overheads inherent during program interpretation make
dynamic or Just-in-Time (JIT) compilation essential to achieve high-performance em-
ulation of such programs in a VM [Smith and Nair 2005].

Since it occurs at runtime, JIT compilation contributes to the overall execution time
of the application and can potentially impede application progress and further degrade
its response time, if performed injudiciously. Therefore, JIT compilation policies need
to carefully tune if , when and how to compile different program regions to achieve the
best overall performance. Researchers invented the technique of selective compilation
to address the issues of if and when to compile program methods during dynamic
compilation [Hölzle and Ungar 1996; Paleczny et al. 2001; Krintz et al. 2000; Arnold
et al. 2005]. Additionally, several modern VMs provide multiple optimization levels
along with decision logic to control and decide how to compile each method. While a
single-tier compilation strategy always applies the same set of optimizations to each
method, a multitier policy may compile the same method multiple times at distinct op-
timization levels during the same program run. The control logic in the VM determines
each method’s hotness level (or how much of the execution time is spent in a method)
to decide its compilation level.

Motivation: Due to recent changes and emerging trends in hardware and VM archi-
tectures, there is an urgent need for a fresh evaluation of JIT compilation strategies on
modern machines. Research on JIT compilation policies has primarily been conducted
on single-processor machines and for VMs with a single compiler thread. As a result,
existing policies that attempt to improve program efficiency while minimizing applica-
tion pause times and interference are typically quite conservative. Recent years have
witnessed a major paradigm shift in microprocessor design from high-clock frequency
single-core machines to processors that now integrate multiple cores on a single chip.
These modern architectures allow the possibility of running the compiler thread(s) on
a separate core(s) to minimize interference with the application thread. VM developers
are also responding to this change in their hardware environment by allowing the VM
to simultaneously initiate multiple concurrent compiler threads. Such evolution in the
hardware and VM contexts may require radically different JIT compilation policies to
achieve the most effective overall program performance.

Objective: The objective of this research is to investigate and recommend JIT compi-
lation strategies to enable the VM to realize the best program performance on existing
single-/multicore processors and future many-core machines. We vary the compila-
tion threshold, the number of initiated compiler threads, and single and multitier
compilation strategies to control if , when, and how to detect and compile important
program methods. The compilation threshold is a heuristic value that indicates the hot-
ness of each method in the program. Thus, more aggressive policies employ a smaller
compilation threshold so that more methods become hot sooner. We induce progres-
sive increases in the aggressiveness of JIT compilation strategies and the number of

compiler and supports improved optimizations in the server compiler; (b) for the first time, investigating the
effects of aggressive compilation and multiple compiler threads on multi-tiered JIT compilation strategies;
(c) providing more comprehensive results, with differentiation on benchmark features; (d) reanalyzing our
observations and conclusions; and (e) exploring a different set of heuristic priority schemes.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:3

concurrent compiler threads and analyze their effect on program performance. While a
single-tier compilation strategy uses a single compiler (and fixed optimization set) for
each hot method, a multitier compiler policy typically compiles a hot method with pro-
gressively advanced (that apply more and better optimizations to potentially produce
higher-quality code), but slower, JIT compilers. Our experiments change the different
multitier hotness thresholds in lock-step to also partially control how (optimization
level) each method is compiled.2 Additionally, we design and construct a novel VM
configuration to conduct experiments for many-core machines that are not commonly
available yet.

Findings and Contributions: This is the first work to thoroughly explore and evaluate
these various compilation parameters and strategies (a) on multicore and many-core
machines and (b) together. We find that the most effective JIT compilation strategy
depends on several factors, including the availability of free computing resources and
program features (particularly the ratio of hot program methods) and the compiling
speed, quality of generated code, and method prioritization algorithm used by the
compiler(s) employed. In sum, the major contributions of this research are:

(1) We design original experiments and VM configurations to investigate the most
effective JIT compilation policies for modern processors and VMs with single- and
multilevel JIT compilation.

(2) We quantify the impact of altering “if,” “when,” and one aspect to “how” methods are
compiled on application performance. Our experiments evaluate JVM performance
with various settings for compiler aggressiveness and the number of compilation
threads, as well as different techniques for prioritizing method compiles, with both
single- and multilevel JIT compilers.

(3) We explain the impact of different JIT compilation strategies on available single-/
multicore and future many-core machines.

The rest of the article is organized as follows. In the next section, we present back-
ground information and related work on existing JIT compilation policies. We describe
our general experimental setup in Section 3. Our experiments exploring different JIT
compilation strategies for VMs with multiple compiler threads on single-core machines
are described in Section 4. In Section 5, we present results that explore the most ef-
fective JIT compilation policies for multicore machines. We describe the results of our
novel experimental configuration to study compilation policies for future many-core
machines in Section 6. We explain the impact of prioritizing method compiles and
the effect of multiple application threads in Sections 7 and 8. Finally, we present our
conclusions and describe avenues for future work in Sections 9 and 10, respectively.

2. BACKGROUND AND RELATED WORK

Several researchers have explored the effects of conducting compilation at runtime on
overall program performance and application pause times. The ParcPlace Smalltalk
VM [Deutsch and Schiffman 1984] followed by the Self-93 VM [Hölzle and Ungar
1996] pioneered many of the adaptive optimization techniques employed in current
VMs, including selective compilation with multiple compiler threads on single-core

2In contrast to the two components of “if” and “when” to compile, the issue of how to compile program regions
is much broader and is not unique to dynamic compilation, as can be attested by the presence of multiple
optimization levels in GCC, and the wide body of research in profile-driven compilation [Graham et al. 1982;
Chang et al. 1991; Arnold et al. 2002; Hazelwood and Grove 2003] and optimization phase ordering/selection
[Whitfield and Soffa 1997; Haneda et al. 2005; Cavazos and O’Boyle 2006; Sanchez et al. 2011; Jantz and
Kulkarni 2013] for static and dynamic compilers. Consequently, we only explore one aspect of “how” to
compile methods in this work.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:4 M. R. Jantz and P. A. Kulkarni

machines. Aggressive compilation on such machines has the potential of degrading
program performance by increasing the compilation time. The technique of selective
compilation was invented to address this issue with dynamic compilation [Hölzle and
Ungar 1996; Paleczny et al. 2001; Krintz et al. 2000; Arnold et al. 2005]. This technique
is based on the observation that most applications spend a large majority of their
execution time in a small portion of the code [Knuth 1971; Bruening and Duesterwald
2000; Arnold et al. 2005]. Selective compilation uses online profiling to detect this
subset of hot methods to compile at program startup, and thus limits the overhead of
JIT compilation while still deriving the most performance benefit. Most current VMs
employ selective compilation with a staged emulation model [Hansen 1974]. With this
model, each method is interpreted or compiled with a fast nonoptimizing compiler at
program start to improve application response time. Later, the VM determines and
selectively compiles and optimizes only the subset of hot methods to achieve better
program performance.

Unfortunately, selecting the hot methods to compile requires future program execu-
tion information, which is hard to accurately predict [Namjoshi and Kulkarni 2010].
In the absence of any better strategy, most existing JIT compilers employ a simple
prediction model that estimates that frequently executed current hot methods will
also remain hot in the future [Grcevski et al. 2004; Kotzmann et al. 2008; Arnold
et al. 2000a]. Online profiling is used to detect these current hot methods. The most
popular online profiling approaches are based on instrumentation counters [Hansen
1974; Hölzle and Ungar 1996; Kotzmann et al. 2008], interrupt-timer-based sampling
[Arnold et al. 2000a], or a combination of the two methods [Grcevski et al. 2004]. The
method/loop is sent for compilation if the respective method counters exceed a fixed
threshold.

Finding the correct threshold value is crucial to achieve good program startup per-
formance in a virtual machine. Setting a higher than ideal compilation threshold may
cause the virtual machine to be too conservative in sending methods for compilation,
reducing program performance by denying hot methods a chance for optimization.
In contrast, a compiler with a very low compilation threshold may compile too many
methods, increasing compilation overhead. Therefore, most performance-aware JIT
compilers experiment with many different threshold values for each compiler stage to
determine the one that achieves the best performance over a large benchmark suite.

Resource constraints force JIT compilation policies to make several tradeoffs. Thus,
selective compilation limits the time spent by the compiler at the cost of potentially
lower application performance. Additionally, the use of online profiling causes delays in
making the compilation decisions at program startup. The first component of this delay
is caused by the VM waiting for the method counters to reach the compilation threshold
before queuing it for compilation. The second factor contributing to the compilation
delay occurs as each compilation request waits in the compiler queue to be serviced by
a free compiler thread. The restricting method compiles and the delay in optimizing
hot methods results in poor application startup performance as the program spends
more time executing in unoptimized code [Kulkarni et al. 2007; Krintz 2003; Gu and
Verbrugge 2008].

Various strategies have been developed to address these delays in JIT compilation at
program startup. Researchers have explored the potential of offline profiling and class-
file annotation [Krintz and Calder 2001; Krintz 2003], early and accurate prediction of
hot methods [Namjoshi and Kulkarni 2010], and online program phase detection [Gu
and Verbrugge 2008] to alleviate the first delay component caused by online profiling.
Likewise, researchers have also studied techniques to address the second component
of the compilation delay caused by the backup and wait time in the method compila-
tion queue. These techniques include increasing the priority [Sundaresan et al. 2006]
and CPU utilization [Kulkarni et al. 2007; Harris 1998] of the compiler thread and

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:5

providing a priority queue implementation to reduce the delay for the hotter program
methods [Arnold et al. 2000b].

However, most of the studies described above have only been targeted for single-
core machines. There exist few explorations of JIT compilation issues for multicore
machines. Krintz et al. investigated the impact of background compilation in a sepa-
rate thread to reduce the overhead of dynamic compilation [Krintz et al. 2000]. This
technique uses a single compiler thread and employs offline profiling to determine and
prioritize hot methods to compile. Kulkarni et al. briefly discuss performing parallel
JIT compilation with multiple compiler threads on multicore machines but do not pro-
vide any experimental results [Kulkarni et al. 2007]. Existing JVMs, such as Sun’s
HotSpot server VM [Paleczny et al. 2001] and the Azul VM (derived from HotSpot),
support multiple compiler threads but do not present any discussions on ideal compila-
tion strategies for multicore machines. Prior work by Böhm et al. explores the issue of
parallel JIT compilation with a priority queue- based dynamic work scheduling strat-
egy in the context of their dynamic binary translator [Böhm et al. 2011]. Esmaeilzadeh
et al. study the scalability of various Java workloads and their power/performance
tradeoffs across several different architectures [Esmaeilzadeh et al. 2011]. Our ear-
lier publications explore some aspects of the impact of varying the aggressiveness of
dynamic compilation on modern machines for JVMs with multiple compiler threads
[Kulkarni and Fuller 2011; Kulkarni 2011]. This article extends our earlier works by
(a) providing more comprehensive results, (b) reimplementing most of the experiments
in the latest OpenJDK JVM that provides a state-of-the-art multitier compiler and
supports improved optimizations, (c) differentiating the results and reanalyzing our
observations based on benchmark characteristics, (d) exploring different heuristic pri-
ority schemes, and (e) investigating the effects of aggressive compilation and multiple
compiler threads on the multitiered JIT compilation strategies. Several production-
grade Java VMs, including the Oracle HotSpot and IBM J9, now adopt a multitier
compilation strategy, making our results with the multitiered compiler highly inter-
esting and important.

3. EXPERIMENTAL FRAMEWORK

The research presented in this article is performed using Oracle’s OpenJDK/HotSpot
Java virtual machine (build 1.6.0_25-b06) [Paleczny et al. 2001]. The HotSpot VM uses
interpretation at program startup. It then employs a counter-based profiling mecha-
nism and uses the sum of a method’s invocation and loop back-edge counters to detect
and promote hot methods for compilation. We call the sum of these counters the execu-
tion count of the method. Methods/loops are determined to be hot if the corresponding
method execution count exceeds a fixed threshold. The HotSpot VM allows the creation
of an arbitrary number of compiler threads, as specified on the command line.

The HotSpot VM implements two distinct optimizing compilers to improve ap-
plication performance beyond interpretation. The client compiler provides relatively
fast compilation times with smaller program performance gains to reduce application
startup time (especially on single-core machines). The server compiler applies an ag-
gressive optimization strategy to maximize performance benefits for longer running
applications. We conducted experiments to compare the overhead and effectiveness of
HotSpot’s client and server compiler configurations. We found that the client compiler
is immensely fast and only requires about 2% of the time, on average, taken by the
server compiler to compile the same set of hot methods. At the same time, the simple
and fast client compiler is able to obtain most (95%) of the performance gain (relative to
interpreted code) realized by the server compiler.

In addition to the single-level client and server compilers, HotSpot provides a
tiered compiler configuration that utilizes and combines the benefits of the client and

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:6 M. R. Jantz and P. A. Kulkarni

Table I. Threshold Parameters in the Tiered Compiler

Client Server
Parameter Description Default Default

Invocation Threshold Compile method if invocation count exceeds this
threshold

200 5,000

Back-edge Threshold OSR compile method if back-edge count exceeds
this threshold

7,000 40,000

Compile Threshold Compile method if invocation + back-edge count
exceeds this threshold (and invocation count >

Minimum Invocation Threshold)

2,000 15,000

Minimum Invocation
Threshold

Minimum number of invocations required before
method can be considered for compilation

100 600

server compilers. In the most common path in the tiered compiler, each hot method is
first compiled with the client compiler (possibly with additional profiling code inserted),
and later, if the method remains hot, is recompiled with the server compiler. Each
compiler thread in the HotSpot tiered compiler is dedicated to either the client or
server compiler, and each compiler is allocated at least one thread. To account for
the longer compilation times needed by the server compiler, HotSpot automatically
assigns the compiler threads at a 2:1 ratio in favor of the server compiler. The property
of the client compiler to quickly produce high-quality optimized code greatly influences
the behavior of the tiered compiler under varying compilation loads, as our later
experiments in this article will reveal.

There is a single compiler queue designated to each (client and server) compiler in
the tiered configuration. These queues employ a simple execution-count-based priority
heuristic to ensure the most active methods are compiled earlier. This heuristic
computes the execution count of each method in the appropriate queue since the last
queue removal to find the most active method. As the load on the compiler threads
increases, HotSpot dynamically increases its compilation thresholds to prevent either
the client or server compiler queues from growing prohibitively long. In addition, the
HotSpot tiered compiler has logic to automatically remove stale methods that have
stayed in the queue for too long. For our present experiments, we disable the automatic
throttling of compilation thresholds and removal of stale methods to appropriately
model the behavior of a generic tiered compilation policy. The tiered compiler uses
different thresholds that move in lockstep to tune the aggressiveness of its component
client and server compilers. Table I describes these compilation thresholds and their
default values for each compiler in the tiered configuration.

The experiments in this article were conducted using all the benchmarks from three
different benchmark suites, SPECjvm98 [SPEC98 1998], SPECjvm2008 [SPEC2008
2008], and DaCapo-9.12-bach [Blackburn et al. 2006]. We employ two inputs (10 and
100) for benchmarks in the SPECjvm98 suite, two inputs (small and default) for the
DaCapo benchmarks, and a single input (startup) for benchmarks in the SPECjvm2008
suite, resulting in 57 benchmark/input pairs. Two benchmarks from the DaCapo bench-
mark suite, tradebeans and tradesoap, did not always run correctly with the default
version of the HotSpot VM, so these benchmarks were excluded from our set. In order to
limit possible sources of variation in our experiments, we set the number of application
threads to one whenever possible. Unfortunately, several of our benchmarks employ
multiple application threads due to internal multithreading that cannot be controlled
by the harness application. Table II lists the name, number of invoked methods (under
the column labeled #M), and number of application threads (under the column labeled
#AT) for each benchmark in our suite.

All our experiments were performed on a cluster of dual quad-core, 64-bit, x86
machines running Red Hat Enterprise Linux 5 as the operating system. The cluster

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:7

Table II. Benchmarks Used in Our Experiments

SPECjvm98 SPECjvm2008 DaCapo-9.12-bach
Name #M #AT Name #M #AT Name #M #AT

_201_compress_100 517 1 compiler.compiler 3195 1 avrora_default 1849 6
_201_compress_10 514 1 compiler.sunflow 3082 1 avrora_small 1844 3
_202_jess_100 778 1 compress 960 1 batik_default 4366 1
_202_jess_10 759 1 crypto.aes 1186 1 batik_small 3747 1
_205_raytrace_100 657 1 crypto.rsa 960 1 eclipse_default 11145 5
_205_raytrace_10 639 1 crypto.signverify 1042 1 eclipse_small 5461 3
_209_db_100 512 1 derby 6579 1 fop_default 4245 1
_209_db_10 515 1 mpegaudio 959 1 fop_small 4601 2
_213_javac_100 1239 1 scimark.fft.small 859 1 h2_default 2154 3
_213_javac_10 1211 1 scimark.lu.small 735 1 h2_small 2142 3
_222_mpegaudio_100 659 1 scimark.monte_carlo 707 1 jython_default 3547 1
_222_mpegaudio_10 674 1 scimark.sor.small 715 1 jython_small 2070 2
_227_mtrt_100 658 2 scimark.sparse.small 717 1 luindex_default 1689 2
_227_mtrt_10 666 2 serial 1121 1 luindex_small 1425 1
_228_jack_100 736 1 sunflow 2015 5 lusearch_default 1192 1
_228_jack_10 734 1 xml.transform 2592 1 lusearch_small 1303 2

xml.validation 1794 1 pmd_default 3881 8
pmd_small 3058 3
sunflow_default 1874 2
sunflow_small 1826 2
tomcat_default 9286 6
tomcat_small 9189 6
xalan_default 2296 1
xalan_small 2277 1

includes three models of server machine: Dell M600 (two 2.83GHz Intel Xeon E5440
processors, 16 GB DDR2 SDRAM), Dell M605 (two 2.4GHz AMD Opteron 2378
processors, 16GB DDR2 SDRAM), and PowerEdge SC1435 (two 2.5GHz AMD Opteron
2380 processors, 8GB DDR2 SDRAM). We run all of our experiments on one of these
three models, but experiments comparing runs of the same benchmark always use the
same model. There are no hyperthreading or frequency scaling techniques of any kind
enabled during our experiments.

We disable seven of the eight available cores to run our single-core experiments. Our
multicore experiments utilize all available cores. More specific variations made to the
hardware configuration are explained in the respective sections. Each benchmark is
run in isolation to prevent interference from other user programs. In order to account
for inherent timing variations during the benchmark runs, all the performance results
in this article report the average over 10 runs for each benchmark-configuration pair.
All the experiments in this article measure startup performance. Thus, any compilation
that occurs is performed concurrently with the running application.

Finally, we present a study to compare the program performance on single-core and
multicore machines. Figure 1 shows the multicore performance of each benchmark
relative to single-core performance for both the default server and tiered compiler
configurations. To estimate the degree of variability in our runtime results, we compute
95% confidence intervals for the difference between the means [Georges et al. 2007] and
plot these intervals as error bars. Not surprisingly, we observe that most benchmarks
run much faster with the multicore configuration. Much of this difference is simply due
to increased parallelism, but other microarchitectural effects (such as cache affinity and
intercore communication) may also impact performance depending on the workload.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:8 M. R. Jantz and P. A. Kulkarni

Fig. 1. Ratio of multicore performance to single-core performance for each compiler configuration.

Another significant factor, which we encounter in our experiments throughout this
work, is that additional cores enable earlier compilation of hot methods. This effect
accounts for the result that the tiered VM, with its much more aggressive compilation
threshold, exhibits a more pronounced performance improvement, on average, than
the server VM. The remainder of this article explores and explains the impact of
different JIT compilation strategies on modern and future architectures using the
HotSpot server and tiered compiler configurations.

4. JIT COMPILATION ON SINGLE-CORE MACHINES

In this section, we report the results of our experiments conducted on single-core pro-
cessors to understand the impact of aggressive JIT compilation and more compiler
threads in a VM on program performance. Our experimental setup controls the ag-
gressiveness of distinct JIT compilation policies by varying the selective compilation
threshold. Changing the compilation threshold can affect program performance in two
ways: (a) by compiling a lesser or greater percentage of the program code (if a method
is compiled) and (b) by sending methods to compile early or late (when is each method
compiled). We first employ the HotSpot server VM with a single compiler thread to find
the selective compilation threshold that achieves the best average performance with
our set of benchmark programs.3 Next, we evaluate the impact of multiple compiler
threads on program performance for machines with a single processor with both the
server and tiered compilers in the HotSpot JVM.

4.1. Compilation Threshold with Single Compiler Thread

By virtue of sharing the same computation resources, the application and compiler
threads share a complex relationship in a VM running on a single-core machine. A
highly selective compile threshold may achieve poor overall program performance by
spending too much time executing in nonoptimized code resulting in poor overall pro-
gram runtime. By contrast, a lower than ideal compile threshold may also produce
poor performance by spending too long in the compiler thread. Therefore, the compiler
thresholds need to be carefully tuned to achieve the most efficient average program
execution on single-core machines over several benchmarks.

We perform an experiment to determine the ideal compilation threshold for the
HotSpot server VM with a single compiler thread on our set of benchmarks. These
results are presented in Figure 2(a). The figure compares the average overall program

3The tiered compiler spawns a minimum of two compiler threads and is therefore not used in this single
compiler thread configuration.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:9

Fig. 2. Effect of different compilation thresholds on average benchmark performance on single-core
processors.

performance at different compile thresholds to the average program performance at the
threshold of 10,000, which is the default compilation threshold for the HotSpot server
compiler. We find that a few of the less aggressive thresholds are slightly faster, on
average, than the default for our set of benchmark programs (although the difference
is within the margin of error). The default HotSpot server VM employs two compiler
threads and may have been tuned with applications that run longer than our bench-
marks, which may explain this result. The average benchmark performance worsens
at both high and low compile thresholds.

To better interpret these results, we collect individual thread times during each
experiment to estimate the amount of time spent doing compilation compared to the
amount of time spent executing the application. Figure 2(b) shows the ratio of compi-
lation to application thread times at each threshold averaged over all the benchmarks.
Thus, compilation thresholds that achieve good performance spend a significant portion
of their overall runtime doing compilation. We can also see that reducing the compila-
tion threshold increases the relative amount of time spent doing compilation. However,
it is not clear how much of this trend is due to longer compilation thread times (from
compiling more methods) or reduced application thread times (from executing more
native code).

Therefore, we also consider the effect of compilation aggressiveness on each com-
ponent separately. Figure 2(c) shows the breakdown of the overall program execu-
tion in terms of the application and compiler thread times at different thresholds to
their respective times at the compile threshold of 10,000, averaged over all bench-
mark programs. We observe that high thresholds (>10,000) compile less and degrade
performance by not providing an opportunity to the VM to compile several important
program methods. In contrast, the compiler thread times increase with lower compi-
lation thresholds (<10,000) as more methods are sent for compilation. We expected
this increased compilation to improve application thread performance. However, the
behavior of the application thread times at low compile thresholds is less intuitive.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:10 M. R. Jantz and P. A. Kulkarni

Fig. 3. Effect of multiple compiler threads on single-core program performance in the HotSpot VM with
server compiler. The discrete measured thread points are plotted equidistantly on the x-axis.

On further analysis we found that JIT compilation policies with lower thresh-
olds send more methods to compile and contribute to compiler queue backup. We
hypothesize that the flood of less important program methods delays the compilation
of the most critical methods, resulting in the nonintuitive degradation in application
performance at lower thresholds. To verify this hypothesis, we conduct a separate set
of experiments that measure the average compilation queue delay (time spent waiting
in the compile queue) of hot methods in our benchmarks. These experiments compute
the mean average compilation queue delay only for methods that are hot at the default
threshold of 10,000 for each benchmark/compile threshold combination.

Figure 2(d) plots the average compilation queue delay at each compile threshold rela-
tive to the average compilation queue delay at the default threshold of 10,000 averaged
over the benchmarks.4 As we can see, the average compilation queue delay for hot
methods increases dramatically as the compilation threshold is reduced. Thus, we con-
clude that increasing compiler aggressiveness is not likely to improve VM performance
running with a single compiler thread on single-core machines.

4.2. Effect of Multiple Compiler Threads on Single-Core Machines

In this section, we analyze the effect of multiple compiler threads on program perfor-
mance on a single-core machine with the server and tiered compiler configurations of
the HotSpot VM.

4.2.1. Single-Core Compilation Policy with the HotSpot Server Compiler. For each compilation
threshold, a separate plot in Figure 3(a) compares the average overall program

4We cannot compute a meaningful ratio for benchmarks with zero or very close to zero average compilation
queue delay at the baseline threshold. Thus, these results do not include 14 (of 57) benchmarks with an
average compilation queue delay less than 1msec (the precision of our timer) at the default threshold.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:11

performance with multiple compiler threads to the average performance with a single
compiler thread at that same threshold. Intuitively, a greater number of compiler
threads should be able to reduce the method compilation queue delay. Indeed, we notice
program performance improvements for one or two extra compiler threads, but the
benefits do not hold with increasing number of such threads (>3). We further analyzed
the performance degradation with more compiler threads and noticed an increase in
the overall compiler thread times in these cases. This increase suggests that several
methods that were queued for compilation but never got compiled before program
termination with a single compiler thread are now compiled as we provide more
VM compiler resources. While the increased compiler activity increases compilation
overhead, many of these methods contribute little to improving program performance.
Consequently, the potential improvement in application performance achieved by more
compilations seems unable to recover the additional compiler overhead, resulting in a
net loss in overall program performance.

Figure 3(b) compares the average overall program performance in each case to the
average performance of a baseline configuration with a single compiler thread at a
threshold of 10,000. These results reveal the best compiler policy on single-core ma-
chines with multiple compiler threads. Thus, we can see that, on average, the more
aggressive thresholds perform quite poorly, while moderately conservative thresholds
fare the best (with any number of compiler threads). Our analysis finds higher compiler
aggressiveness to send more program methods for compilation, which includes meth-
ods that may not make substantial contributions to performance improvement (cold
methods). Additionally, the default server compiler in HotSpot uses a simple FIFO
(first-in first-out) compilation queue and compiles methods in the same order in which
they are sent. Consequently, the cold methods delay the compilation of the really im-
portant hot methods relative to the application thread, producing the resultant loss in
performance.

To further evaluate the configurations with varying compilation resources and ag-
gressiveness (in these and later experiments), we design an optimal scenario that
measures the performance of each benchmark with all of its methods precompiled.
Thus, the “optimal” configuration reveals the best-case benefit of JIT compilation.
The dashed line in Figure 3(b) shows the optimal runtime on the single-core machine
configuration relative to the same baseline startup performance (single benchmark
iteration with one compiler thread and a threshold of 10,000), averaged over all the
benchmarks. Thus, the “optimal” steady-state configuration achieves much better per-
formance compared to the “startup” runs that compile methods concurrently with the
running application on single-core machines. On average, the optimal performance is
about 64% faster than the baseline configuration and about 54% faster than the fastest
compilation thread/compile threshold configuration (with two compilation threads and
a compile threshold of 25,000).

Figure 3(c) shows the same plots as in Figure 3(b) but only for the 11 (20%) bench-
marks with the lowest compilation-to-application time ratio. Thus, for applications
that spend relatively little time compiling, only the very aggressive compilation
thresholds cause some compilation queue delay and may produce small performance
improvements in some cases. For such benchmarks, all the hot methods are always
compiled before program termination. Consequently, the small performance improve-
ments with the more aggressive thresholds are due to compiling hot methods earlier
(reduced queue delay). Furthermore, there is only a small performance difference
between the startup and optimal runs. By contrast, Figure 3(d) only includes the 11
(20%) benchmarks with a relatively high compilation-to-application time ratio. For
programs with such high compilation activity, the effect of compilation queue delay
is more pronounced. We find that the less aggressive compiler policies produce better

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:12 M. R. Jantz and P. A. Kulkarni

Fig. 4. Effect of multiple compiler threads on single-core program performance in the HotSpot VM with
tiered compiler. The discrete measured thread points are plotted equidistantly on the x-axis.

efficiency gains for these programs, but there is still much room for improvement as
evidenced by optimal performance results.

These observations suggest that a VM that can adapt its compilation threshold based
on the compiler load may achieve the best performance for all programs on single-core
machines. Additionally, implementing a priority queue to order compilations may also
enable the more aggressive compilation thresholds to achieve better performance. We
explore the effect of prioritized method compiles on program performance in further
detail in Section 7. Finally, a small increase in the number of compiler threads can also
improve performance by reducing the compilation queue delay.

4.2.2. Single-Core Compilation Policy with the HotSpot Tiered Compiler. In this section, we
explore the effect on program performance of changing the compiler aggressiveness
and the number of compiler threads with a tiered compiler configuration on single-core
machines. For our experiments with the tiered compiler, we vary the client and server
compiler thresholds in lock-step to adjust the aggressiveness of the tiered compiler and
use the corresponding first-level (client) compiler threshold in the graph legends.

Each line-plot in Figure 4(a) compares the average overall program performance in
the tiered compiler with multiple compiler threads to the average performance with
only one client and one server compiler thread at that same threshold. In contrast to
the server compiler configuration, increasing the number of compiler threads does not
yield any performance benefit and, for larger increases, significantly degrades perfor-
mance at every threshold. This effect is likely due to the combination of two factors:
(a) a very fast first-level compiler that prevents significant backup in its compiler queue
even with a single compiler thread while achieving most of the performance benefits
of later recompilations, and (b) the priority heuristic used by the tiered compiler that
may be able to find and compile the most important methods first. Thus, any additional
compilations performed by more compiler threads only increase the compilation over-
head without commensurately contributing to program performance. In Section 7.2,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:13

we compare the default tiered compiler to one that employs FIFO (first-in first-out)
compilation queues to evaluate the effect of prioritized compilation queues on program
performance.

Figure 4(b) compares the average program performances in each case to the average
performance of the baseline tiered configuration with one client and one server com-
piler thread and the default threshold parameters (with a client compiler threshold
of 2,000). The default tiered compiler employs significantly more aggressive compila-
tion thresholds compared to the default stand-alone server compiler and, on average,
queues up more than three times as many methods for compilation. Consequently,
relatively conservative compile thresholds achieve the best performance on single-core
machines. The dashed line in Figure 4(b) plots the runtime of the optimal configuration
(measured as described in the previous section) relative to the runtime of the baseline
tiered configuration. Thus, with the tiered VM on single-core machines, the optimal
runtime is still much faster than any other start-up configuration. However, due to the
fast client compiler and effective priority heuristic, the performance of the tiered VM
is significantly closer (10% in the best case) to the optimal runtime than the server VM
configurations presented in the previous section.

We again observe that applications with extreme (very low or very high) compilation
activity show different performance trends than the average over the complete set of
benchmarks. Figure 4(c) plots the average performance of the HotSpot tiered compiler
VM at different threshold and compiler thread configurations for the 20% benchmarks
with the lowest compilation-to-application time ratio. As expected, compile threshold
aggressiveness and the amount of compilation resources have much less of a perfor-
mance impact on these applications. Additionally, the performance achieved is much
closer to the optimal runtime for this set of benchmarks. However, in contrast to the
server compiler results in Figure 3(c), some less aggressive thresholds are marginally
more effective in the tiered compiler, which again indicates that the compilation queue
delay is much less of a factor in the presence of a fast compiler and a good heuristic for
prioritizing method compiles. Alternatively, in Figure 4(d), we study benchmarks with
relatively high compilation activity and find that less aggressive compile thresholds
yield very significant performance gains, due to a very aggressive default threshold
used by the tiered compiler.

In summary, for single-core machines it is crucial to select the compiler threshold
such that only the most dominant program methods are sent to compilation. With such
an ideal compiler threshold, only two compiler threads (one client and one server) are
able to service all compilation requests prior to program termination. An ideal thresh-
old combined with a very fast client compiler and a good priority heuristic negates
any benefit of additional compiler threads reducing the queue delay. A less aggressive
threshold lowers program performance by not allowing the tiered VM to compile all hot
methods. In contrast, with more aggressive thresholds, a minimum number of compiler
threads are not able to service all queued methods, producing performance degrada-
tions due to the overhead of increased compiler activity with more compiler threads.

5. JIT COMPILATION ON MULTICORE MACHINES

Dynamic JIT compilation on single-processor machines has to be conservative to man-
age the compilation overhead at runtime. Modern multicore machines provide the op-
portunity to spawn multiple compiler threads and run them concurrently on separate
(free) processor cores while not interrupting the application thread(s). As such, it is a
common perception that a more aggressive compilation policy is likely to achieve better
application thread and overall program performance on multicore machines for VMs
with multiple compiler threads. Aggressiveness, in this context, can imply compiling
early or compiling more methods by lowering the compile threshold. In this section, we

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:14 M. R. Jantz and P. A. Kulkarni

Fig. 5. Effect of multiple compiler threads on multicore application performance with the HotSpot Server
VM.

report the impact of varying JIT compilation aggressiveness and the number of com-
piler threads on the performance of the server and tiered VM on multicore machines.

5.1. Multicore Compilation Policy with the HotSpot Server Compiler

Figure 5 illustrates the results of our experiments with the HotSpot server compiler
on multicore machines. For each indicated compile threshold, a corresponding line-plot
in Figure 5(a) shows the ratio of the program performance with different number of
compiler threads to the program performance with a single compiler thread at that
same threshold, averaged over our 57 benchmark-input pairs. Thus, we can see that
increasing the number of compiler threads up to seven threads improves application
performance at all compile thresholds. However, larger increases in the number of com-
piler threads (>7) derive no performance benefits and actually degrade performance
with the more aggressive compilation thresholds.

As mentioned earlier, additional compiler threads can improve performance by reduc-
ing compilation queue delay, allowing the important program methods to be compiled
earlier. Early compilation allows a greater fraction of the program execution to occur in
optimized native code (rather than being interpreted), which produces significant gains
in program performance. The additional compiler threads impose minimal impediment
to the application threads as long as that computation can be off-loaded onto free (sep-
arate) cores. Our existing hardware setup only provides eight distinct processing cores.
Consequently, larger increases in the number of compiler threads cause application
and compilation threads to compete for machine resources. Moreover, configurations
with aggressive compilation thresholds frequently compile methods that derive little
performance benefit. This additional (but incommensurate) compilation overhead can
only be sustained as long as compilation is free and results in significant performance
losses in the absence of free computational resources.

Figure 5(b) compares all the program performances (with different thresholds and
different number of compiler threads) to a single baseline program performance. The

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:15

selected baseline is the program performance with a single compiler thread at the de-
fault HotSpot server compiler threshold of 10,000. We can see that while the optimal
performance (again indicated by the dashed line) is much faster than the performance
of the baseline configuration, increasing compilation activity on otherwise free com-
pute cores enables the server VM to make up much of this difference. In the best case
(configuration with threshold 5,000 and seven compiler threads), the combination of
increased compiler aggressiveness with more compiler threads improves performance
by 34.6%, on average, over the baseline. However, most of that improvement (roughly
33%) is obtained by simply reducing the compilation queue delay that is realized by
increasing the number of compiler threads at the default HotSpot (10,000) threshold.
Thus, the higher compiler aggressiveness achieved by lowering the selective compi-
lation threshold seems to offer relatively small benefits over the more conservative
compiler policies.

Another interesting observation that can be made from the plots in Figure 5(b) is
that aggressive compilation policies require more compiler threads (implying greater
computational resources) to achieve good program performance. Indeed, our most ag-
gressive threshold of 50 performs extremely poorly compared to the default threshold
with only one compiler thread (over 60% worse) and requires seven compiler threads
to surpass the baseline performance.

As the compiler thresholds get more aggressive, we witness (from Figure 5(a)) suc-
cessively larger performance losses with increasing the number of compiler threads
beyond seven. These losses are due to increasing application interference caused by
compiler activity at aggressive thresholds and are a result of the computational limita-
tions in the available hardware. In Section 6, we construct a simulation configuration
to study the behavior of aggressive compilation policies with large number of compiler
threads on (many-core) machines with virtually unlimited computation resources.

Similar to our single-core configurations, we find that these results change dramat-
ically depending on the compilation characteristics of individual benchmark applica-
tions. Figures 5(c) and 5(d) plot the average performance at each multicore compilation
threshold and compiler thread configuration for 20% of the benchmarks with the low-
est and highest compilation-to-application time ratios in our baseline configuration,
respectively. Varying compilation thresholds and resources has much less of a perfor-
mance effect on benchmarks that spend relatively little time doing compilation. The
best configuration for these benchmarks (with a compilation threshold of 5,000 and two
compiler threads) yields less than a 2% improvement over the baseline configuration.
Also, for these benchmarks, the baseline configuration achieves performance that is
much closer to optimal (again, indicated by the dashed line) compared to the overall
average in Figure 5(b). Alternatively, for benchmarks that spend relatively more time
doing compilation, as shown in Figure 5(d), there is even more room for improvement
compared to the average over all benchmarks. As expected, exploiting the free pro-
cessor resources to spawn additional compiler threads results in a more substantial
performance benefit (an average efficiency gain of over 60%) for these 11 benchmarks.

5.2. Multicore Compilation Policy with the HotSpot Tiered Compiler

In this section, we evaluate the effect of varying compiler aggressiveness on the over-
all program performance delivered by the VM with its tiered compilation policy. The
compilation thresholds for the two compilers in our tiered experimental configura-
tions are varied in lock-step so that they always maintain the same ratio. For each
compilation threshold setting with the tiered compiler, a separate plot in Figure 6(a)
compares the average overall program performance with multiple compiler threads
to the average performance with two (one client and one server) compiler threads at
that same compilation threshold. In stark contrast to our results in Section 5.1 with

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:16 M. R. Jantz and P. A. Kulkarni

Fig. 6. Effect of multiple compiler threads on multicore application performance with the HotSpot tiered
VM.

the server compiler, increasing the number of compiler threads for the tiered compiler
only marginally improves performance at any compile threshold. This result is due
to the speed and effectiveness of the HotSpot client compiler. As mentioned earlier
in Section 3, the HotSpot client compiler imposes a very small compilation delay and
yet generates code of only a slightly lower quality as compared to the much slower
server compiler. Consequently, although the hot methods promoted to level 2 (server
compiler) compilation may face delays in the compiler queue, its performance impact is
much reduced since the program can still execute in level 1 (client compiler) optimized
code. The small improvement in program performance with more compiler threads (up
to seven) is again the result of reduction in the server compiler queue delay. However,
overall we found that the compiler queue delay is much less of a factor with the tiered
compilation policy.

Our results also show large and progressively more severe performance losses with
increasing compilation threshold aggressiveness as we increase the number of compiler
threads past the number of (free) available processing cores. In order to explain these
performance losses, we extend our framework to report additional measurements of
compilation activity. Figures 7(a) and 7(b) respectively show compilation thread times
and the number of methods compiled with the server and tiered VMs with their re-
spective default compile thresholds and with increasing numbers of compiler threads,
averaged over all the benchmarks. We find that, due to its extremely fast client com-
piler, the tiered VM employs a much more aggressive compile threshold, which enables
it to compile more methods more quickly, and often finish the benchmark run faster,
than the server VM. However, with its multilevel compilation strategy, this often re-
sults in a situation with many methods remaining in the level 2 (server) compilation
queues at the end of the program run. Increasing the number of compilation threads
enables more of these methods to be (re-)compiled during the application run. This
additional compilation (with lower program speed benefit returns) obstruct application
progress as the number of threads is raised beyond the limits of available hardware.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:17

Fig. 7. Effect of multiple compiler threads on multicore compilation activity with the server and tiered VM.

Therefore, we conclude that the number of compiler threads in the tiered VM should
be set within the limits of available hardware in order to prevent sharp performance
losses.

Figure 6(b) presents the ratio of average program performance delivered by the VM
with varying tiered compilation thresholds and compiler threads when compared to a
single baseline performance (client compiler threshold of 2,000) with two (one client and
one server) compiler threads. Thus, employing a small number of compilation threads
(<10) typically achieves the best performance. This performance is much closer to
optimal than the baseline performance with the server VM, although the server VM
shows greater improvements as the number of compiler threads is increased.

Other trends in the graph in Figure 6(b) are similar to those presented in
Figure 6(a) with the additional recommendation against employing overly conservative
compiler policies on multi-core machines. Although conservative policies do a good job
of reducing compilation overhead for single-core machines (Figure 4(b)), they can lower
performance for multicore machines due to a combination of two factors: (a) not compil-
ing all the important program methods and (b) causing a large delay in compiling the
important methods. However, we also find that a wide range of compiler policies (from
the client compiler thresholds of 4,000 to 20) achieve almost identical performance
as long as compilation is free. This observation indicates that (a) not compiling the
important methods (rather than the compiler queue delay) seems to be the dominant
factor that can limit performance with the tiered compiler, and (b) compiling the less
important program methods does not substantially benefit performance.

The plots in Figures 6(c) and 6(d) only employ the results of benchmarks that show
very low or very high compilation activity, respectively, and are constructed similar
to the graph in Figure 6(b) in all other aspects. These graphs reiterate the earlier
observation that program characteristics greatly influence its performance at dif-
ferent compiler aggressiveness. For benchmarks with only a few very hot methods
(Figure 6(c)), varying compiler thresholds has little to no effect on overall performance.
And Figure 6(d) shows that the average trends noticed across all of our benchmarks in
Figure 6(b) are exaggerated when considered only over the programs displaying high
compilation activity. This graph again indicates that the delay in compiling the hot
methods does not seem to be a major factor affecting program runtime when using
tiered compilation with a fast and good level 1 compiler.

6. JIT COMPILATION ON MANY-CORE MACHINES

Our observations regarding aggressive JIT compilation policies on modern multicore
machines in the last section were limited by our existing eight-core processor-based
hardware. In future years, architects and chip developers are expecting and planning a
continuously increasing number of cores in modern microprocessors. It is possible that

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:18 M. R. Jantz and P. A. Kulkarni

Fig. 8. Simulation of multicore VM execution on single-core processor.

our conclusions regarding JIT compilation policies may change with the availability
of more abundant hardware resources. However, processors with a large number of
cores (or many cores) are not easily available just yet. Therefore, in this section, we
construct a unique experimental configuration to conduct experiments that investigate
JIT compilation strategies for such future many-core machines.

Our experimental setup estimates many-core VM behavior using a single processor/
core. To construct this setup, we first update our HotSpot VM to report the category of
each operating system thread that it creates (such as application, compiler, garbage-
collector, etc.) and to also report the creation or deletion of any VM/program thread at
runtime. Next, we modify the harness of all our benchmark suites to not only report the
overall program execution time but also provide a break-down of the time consumed
by each individual VM thread. We use the /proc file-system interface provided by the
Linux operating system to obtain individual thread times and employ the JNI interface
to access this platform-specific OS feature from within a Java program. Finally, we also
use the thread-processor-affinity interface methods provided by the Linux OS to enable
our VM to choose the set of processor cores that are eligible to run each VM thread.
Thus, on each new thread creation, the VM is now able to assign the processor affinity
of the new VM thread (based on its category) to the set of processors specified by the
user on the command-line. We use this facility to constrain all application and compiler
threads in a VM to run on a single-processor core.

Our experimental setup to evaluate the behavior of many-core (unlimited cores)
application execution on a single-core machine is illustrated in Figure 8. Figure 8(a)
shows a snapshot of one possible VM execution order with multiple compiler threads,
with each thread running on a distinct core of a many-core machine. Our experimental
setup employs the OS thread affinity interface to force all application and compiler
threads to run on a single core and relies on the OS round-robin thread scheduling to
achieve a corresponding thread execution order that is shown in Figure 8(b). It is impor-
tant to note that JIT compilations in our simulation of many-core VM execution (on a
single-core machine) occur at about the same time relative to the application thread as
on a physical many-core machine. Now, on a many-core machine, where each compiler
thread runs on its own distinct core concurrently with the application thread, the total
program runtime is equal to the application thread runtime alone, as understood from
Figure 8(a). Therefore, our ability to precisely measure individual application thread
times in our single-core simulation enables us to realistically emulate an environment

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:19

Fig. 9. Effect of multiple compiler threads on many-core application performance with the HotSpot server
VM.

Fig. 10. Comparison of multi- and many-core performance results for the server and tiered VM.

where each thread has access to its own core. Note that, while this configuration is not
by itself new, its application to measure “many-core” performance is novel. This frame-
work, for the first time, allows us to study the behavior of different JIT compilation
strategies with any number of compiler threads running on separate cores on future
many-core hardware.

6.1. Many-Core Compilation Policy with the HotSpot Server Compiler

We now employ our many-core experimental setup to conduct similar experiments to
those done in Section 5.1. Figure 9 shows the results of these experiments and plots the
average application thread times with varying number of compiler threads and com-
piler aggressiveness for all of our benchmark applications. These plots correspond with
the graphs illustrated in Figure 5. In order to assess the accuracy of our simulation,
we plot Figure 10(a), which shows a side-by-side comparison of a subset of the results
for the multi- and many-core configurations with one to seven compiler threads. From
these plots, we can see that the trends in these results are mostly consistent with our

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:20 M. R. Jantz and P. A. Kulkarni

observations from the last section for a small (≤7) number of compiler threads. This
similarity validates the ability of our simple simulation model to estimate the effect of
JIT compilation policies on many-core machines, in spite of the potential differences be-
tween intercore communication, cache models, and other low-level microarchitectural
effects.

Figure 9(a) shows that, unlike the multicore plots in Figure 5(a), given unlimited com-
puting resources, application thread performance for aggressive compiler thresholds
continues gaining improvements beyond a small number of compiler threads. Thus,
the performance degradation for the more aggressive thresholds beyond about 7 to
10 compiler threads in the last section is, in fact, caused by the limitations of the
underlying eight-core hardware. This result shows the utility of our novel setup to
investigate VM properties for future many-core machines. From the results plotted
in Figure 9(b), we observe that the more aggressive compilation policies eventually
(with >10 compiler threads) yield performance gains over the baseline server compiler
threshold of 10,000 with one compiler thread. Additionally, we note that the differ-
ence between the baseline configuration and the optimal performance (indicated by
the dashed line in Figure 9(b)) with our many-core simulation is similar to our results
with multicore machines.

We also find that isolating and plotting the performance of benchmarks with rel-
atively small or relatively large amounts of compilation activity in our many-core
configuration shows different trends than our complete set of benchmarks. As shown
in Figure 9(c), increasing the number of compiler threads for benchmarks that spend
relatively little time compiling does not have a significant impact on performance at any
threshold. At the same time, early compilation of the (small number of) hot methods
reduces the benchmark runtimes at aggressive compilation thresholds. Alternatively,
as seen from Figure 9(d), benchmarks with more compilation activity tend to show even
starker performance improvements with increasing number of compiler threads. This
result makes intuitive sense, as applications that require more compilation yield better
performance when we allocate additional compilation resources. Comparing the opti-
mal performance over each set of benchmarks, we find that our many-core experiments
show trends that are similar to our previous results—benchmarks with relatively lit-
tle compilation activity achieve performance that is much closer to optimal, while
benchmarks with relatively high compilation activity have more room for performance
improvement.

6.2. Many-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we analyze the results of experiments that employ our many-core frame-
work to estimate the average runtime behavior of programs for the tiered compiler
strategy with the availability of unlimited free compilation resources. The results in
this section enable us to extend our observations from Section 5.2 to many-core ma-
chines. The results in Figures 11(a) and 11(b) again reveal that, in a wide range of
compilation thresholds, changing compiler aggressiveness has a smaller effect on per-
formance as compared to the single-level server compiler. As we expect, a side-by-side
comparison of the multi- and many-core results in Figure 10(b) shows that the trends
in these results are mostly consistent with the results in Section 5.2 for a small number
of compiler threads. The most distinctive observation that can be made from our many-
core experiments is that, given sufficient computing resources, there is no significant
performance loss with larger numbers of compiler threads since all compilation activ-
ity is considered free. Unfortunately, as noticed with the multi-core results, increasing
the number of compiler threads is likely to only produce a modest impact on program
runtime with the tiered compiler. This observation again indicates that techniques to

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:21

Fig. 11. Effect of multiple compiler threads on many-core application performance with the HotSpot tiered
VM.

reduce the delay in compiling hot methods are not as effective to improve runtime
performance with the tiered compiler.

Figures 11(c) and 11(d) plot the same program runtime ratio as Figure 11(b), but
only for benchmarks that have a very low or very high compilation activity. As observed
in all similar plots earlier, benchmarks with low compilation activity have only a small
number of very active methods, and all compiler aggressiveness levels produce sim-
ilar performances. Benchmarks with a high compilation load mostly exaggerate the
trends noticed over all benchmarks (Figure 11(b)). Very conservative compiler thresh-
olds cause large performance losses for such benchmarks. Additionally, with free com-
piler resources, higher compiler aggressiveness can produce marginally better results
than the default threshold for such benchmarks by compiling and optimizing a larger
portion of the program.

7. EFFECT OF PRIORITY-BASED COMPILER QUEUES

Aggressive compilation policies can send a lot of methods to compile, which may back
up the compile queue. Poor method ordering in the compiler queue may result in further
delaying the compilation of the most important methods, as the VM spends its time
compiling the less critical program methods. Delaying the generation of optimized code
for the hottest methods will likely degrade application performance. An algorithm to
effectively prioritize methods compiles may be able to nullify the harmful effects of
backup in the compiler queue. In this section, we study the effect of different compiler
queue prioritization schemes on the server and tiered compiler configurations.

We present results of experiments with three different priority queue implemen-
tations. The first-in first-out (FIFO) queue implementation is the default strategy
employed by the HotSpot server compiler that compiles all methods in the order they
are sent for compilation by the application threads. By default, the HotSpot tiered
compiler uses a heuristic priority queue technique for ordering method compiles. When
selecting a method for compilation with this heuristic, the tiered compiler computes

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:22 M. R. Jantz and P. A. Kulkarni

Fig. 12. Performance of the tiered and ideal compiler priority algorithms over FIFO for HotSpot server
compiler on single-core machines.

an event rate for every eligible method and selects the method with the maximum
event rate. The event rate is simply the sum of invocation and back-edge counts per
millisecond since the last dequeue operation. We modified the HotSpot VM to make
the FIFO and tiered queue implementations available to the multistage tiered and
single-stage server compilers, respectively.

Both the FIFO and tiered techniques for ordering method compiles use a completely
online strategy that only uses past program behavior to detect hot methods to compile to
speed up the remaining program run. Additionally, the more aggressive JIT compilation
policies make their hotness decisions earlier, giving any online strategy an even reduced
opportunity to accurately assess method priorities. Therefore, to set a suitable goal for
the online compiler priority queue implementations, we attempt to construct an ideal
strategy for ordering method compilations. An ideal compilation strategy should be
able to precisely determine the actual hotness level of all methods sent to compile,
and always compile them in that order. Unfortunately, such an ideal strategy requires
knowledge of future program behavior.

In lieu of future program information, we devise a compilation strategy that priori-
tizes method compiles based on their total execution counts over an earlier profile run.
With this strategy, the compiler thread always selects and compiles the method with the
highest profiled execution counts from the available candidates in the compiler queue.
Thus, our ideal priority queue strategy requires a profile run of every benchmark to
determine its method hotness counts. We collect these total method hotness counts dur-
ing this previous program run and make them available to the ideal priority algorithm
in the measured run. We do note that even our ideal profile-driven strategy may not
achieve the actual best results because the candidate method with the highest hotness
level may still not be the best method to compile at that point during program execution.

7.1. Priority-Based Compiler Queues in the HotSpot Server Compiler

Our results in the earlier sections suggest that the relatively poor performance achieved
by aggressive JIT compilation policies in the server compiler may be an artifact of the
FIFO compiler queue that cannot adequately prioritize the compilations by actual hot-
ness levels of application methods. Therefore, in this section, we explore and measure
the potential of different priority queue implementations to improve the performance
obtained by different JIT compilation strategies.

7.1.1. Single-Core Machine Configuration. Figures 12(a) and 12(b) show the performance
benefit of the tiered and ideal compiler priority queue implementations, respectively.
Each line in these graphs is plotted relative to the default FIFO priority queue imple-
mentation with a single compiler thread at the default threshold of 10,000 on single-
core machines. These graphs reveal that the online tiered prioritization technique is

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:23

Fig. 13. Performance of the tiered and ideal compiler priority algorithms over FIFO for HotSpot server
compiler on many-core machines.

not able to improve performance over the simple FIFO technique and actually results
in a performance loss for a few benchmarks. In contrast, the VM performance with
the ideal prioritization scheme shows that accurate assignment of method priorities
is important and allows the smaller compile thresholds to also achieve relatively good
average program performance for a small number of compiler threads.

We had also discovered (and reported in Section 4.2) that initiating a greater num-
ber of compiler threads on single-core machines results in compiling methods that
are otherwise left uncompiled (in the compiler queue) upon program termination with
fewer compiler threads. The resulting increase in the compilation overhead is not suf-
ficiently compensated by the improved application efficiency, resulting in a net overall
performance loss. We find that this effect persists regardless of the method priority
algorithm employed. We do see that accurately ordering the method compiles enables
the VM with our ideal priority queue implementation to obtain better performance
than the best achieved with the FIFO queue.

7.1.2. Many-Core Machine Configuration. Figures 13(a) and 13(b) compare the perfor-
mance results of using our tiered and ideal compiler priority queue, respectively, with
a baseline VM that uses the simple FIFO-based compiler queue implementation with
the compile threshold of 10,000 for many-core machines. The results with the ideal
priority queue implementation show that appropriately sorting method compiles sig-
nificantly benefits program performance at all threshold levels. At the same time, the
performance benefits are more prominent for aggressive compile thresholds. This be-
havior is logical since more aggressive thresholds are more likely to flood the queue
with low-priority compiles that delay the compilation of the hotter methods with the
FIFO queue.

We also find that the best average benchmark performance with our ideal priority
queue for every threshold plot is achieved with a smaller number of compiler threads,
especially for the more aggressive compiler thresholds. This result shows that our
ideal priority queue does realize its goal of compiling the hotter methods before the
cold methods. The later lower-priority method compilations seem to not make a major
impact on program performance.

Finally, we can also conclude that using a good priority compiler queue allows more
aggressive compilation policies (that compile a greater fraction of the program early)
to improve performance over a less aggressive strategy on multi-/many-core machines.
Moreover, a small number of compiler threads is generally sufficient to achieve the best
average application thread performance. Overall, the best aggressive compilation pol-
icy improves performance by about 30% over the baseline configuration, and by about
9% over the best performance achieved by the server VM’s default compilation thresh-
old of 10,000 with any number of compiler threads. Unfortunately, the online tiered

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:24 M. R. Jantz and P. A. Kulkarni

prioritization heuristic is again not able to match the performance of the ideal priority
queue. Thus, more research may be needed to devise better online priority algorithms
to achieve the most effective overall program performance on modern machines.

7.2. Priority-Based Compiler Queues in the HotSpot Tiered Compiler

As explained earlier, the HotSpot tiered configuration uses a simple and fast priority
heuristic to order methods in the queue. In this section, we describe the impact of FIFO,
tiered (default), and ideal prioritization algorithms for all the compiler queues in the
tiered configuration.

We find that prioritizing method compiles has no significant effect on program per-
formance at any compiler aggressiveness for the tiered compiler on all machine config-
urations. These results suggest that the program performance behavior with the tiered
compilers is dominated by the very fast HotSpot client compiler that generates good
code quality without causing a significant compiler queue backup. The very hot meth-
ods that are promoted to be further optimized by the server compiler do take time and
cause queue backup. The larger server compiler overhead increases program runtime
on single-core machines, but not on the many-core machines where compilation is free.

8. EFFECT OF MULTIPLE APPLICATION THREADS

All our earlier experiments were primarily conducted with single-threaded bench-
marks. However, real-world applications widely vary in the number and workload of
concurrent application threads. In this section, we explore the effect of compiler ag-
gressiveness and resources on the performance of benchmarks with different numbers
of application threads.

Experiments in this section were conducted using 16 SPECjvm2008 benchmarks
(all except derby).5 Our other benchmark suites do not allow an easy mechanism to
uniformly and precisely control the number of spawned application threads. While
SPECjvm98 only permits runs with a fixed number of application threads, many of
the DaCapo programs spawn a variable number of internal threads that cannot be
controlled by the harness (see Table II). For each VM configuration, we selected three
compilation thresholds (least aggressive, most aggressive, and default) and ran the
benchmarks with a different number of compiler and application threads to understand
their interactions. Results with the server and tiered VMs show similar application–
compiler thread interaction trends, and therefore, we only report results with the tiered
VM in this section.

Figures 14(a) and 14(b) show the results of these experiments with the tiered VM on
our single-core configuration for the least (CT = 20,000) and most aggressive (CT = 20)
compile thresholds, respectively. Each line in the figures (plotted for a specific number
of application threads as indicated in the legend) shows the ratio of program speed
with a different number of compiler threads to the performance with a single compiler
thread and that same number of application threads. A separate baseline for each appli-
cation thread configuration is necessitated because SPECjvm2008 employs a different
workload size for each such setting. As explained previously in Section 4.2.2 (Figure
4), Figure 14 again shows that a fast and high-quality level 1 compiler that doesn’t
cause much queue delay is responsible for the loss in program performance with one
(or few) application threads as the number of compiler threads is increased. However,
we now observe that the magnitude of this loss diminishes as the number of appli-
cation threads is increased. We believe this effect is caused by the change in relative

5SPECjvm2008 automatically scales the benchmark workload in proportion to the number of application
threads. This causes the derby benchmark with a greater number of application threads to often fail with
an out-of-memory error.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:25

Fig. 14. Effect of different numbers of application threads on single-core performance with the HotSpot
Tiered VM.

Fig. 15. Effect of different numbers of application threads on multi-core performance with the HotSpot
Tiered VM.

application thread interference that is due to the compiler threads servicing less impor-
tant program methods with limited hardware resources. In other words, the likelihood
of the OS scheduler selecting an application thread is smaller when there are fewer
application threads in the run queue. Thus, adding application threads diminishes the
relative loss in performance by increasing the likelihood that an application thread
runs.

Another interesting trend we noticed in both the server and tiered VMs can be seen
from the multicore experiments displayed in Figure 15. We find that (especially at
less aggressive compile thresholds) configurations with larger numbers of application
threads tend to show slightly larger improvements as the number of compiler threads
is increased. In programs with multiple application threads, the output of a compilation
may be used simultaneously in threads executing in parallel. Thus, early compilations
may benefit more of the application’s computation in comparison to single-threaded
applications.

We found that our many-core experiments also demonstrate very similar trends.
However, in the absence of interference to the application threads with unlimited
computation resources, we do not find any significant performance losses with larger
numbers of compiler threads. These results also support the observation that config-
urations with more application threads tend to show more pronounced performance
improvements from early compilation.

9. CONCLUSIONS

Many virtual machines now allow the concurrent execution of multiple compiler
threads to exploit the abundant computing resources available in modern processors
to improve overall program performance. It is expected that more aggressive JIT

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:26 M. R. Jantz and P. A. Kulkarni

compilation strategies may be able to lower program runtime by compiling and
optimizing more program methods early. The goal of this work is to explore the
potential performance benefit of more aggressive JIT compilation policies for modern
multi-/many-core machines and VMs that support multiple simultaneous compiler
threads. We explore the properties of two VM compiler configurations: a single-level
highly optimizing (but slow) server compiler and a multilevel tiered compiler. The
HotSpot tiered compiler uses a very fast (but lightly optimizing) client compiler at the
first stage and a powerful SSA-based (server) compiler for recompiling the very hot
methods. Due to its recompilations, the tiered compiler induces a higher compilation
load compared to the single-level server compiler. Our experiments vary the hotness
thresholds to control compiler aggressiveness and employ different numbers of
concurrent compiler threads to exploit free computation resources. We also develop a
novel experimental framework to evaluate our goal for future many-core processors.

Results from our experiments allow us to make several interesting observations:

(1) Properties of the tiered compiler are largely influenced by the fast client compiler
that is able to obtain most of the performance benefits of the slower server compiler
at a small fraction of the compilation cost.

(2) Program features, in particular the ratio of hot program methods, impact their
performance behavior at different compiler aggressiveness levels. We found that
programs with a low compilation-to-application time ratio are not significantly af-
fected by varying compiler aggressiveness levels or by spawning additional compiler
threads.

(3) On single-core machines, compilation can impede application progress. The best
compilation policy for such machines seems to be an aggressiveness level that only
sends as many methods to compile as can be completely serviced by the VM in one
to two compiler threads for most benchmarks.

(4) For machines with multiple cores, methods compiled by a moderately aggressive
compile threshold are typically sufficient to obtain the best possible performance.
Compiling any more methods quickly results in diminishing returns and very minor
performance gains.

(5) Reducing the compiler queue delay and compiling early is more important to pro-
gram performance than compiling all program methods. Spawning more compiler
threads (at a given compilation aggressiveness) is an effective technique to reduce
the compiler queue delay.

(6) On single-core and multicore machines, an excessive amount of compiler activity
and threads may impede program progress by denying the application threads time
to run on the CPU. This effect is reduced as the ratio of application to compiler
threads increase. We also saw evidence that benchmarks with more application
threads tend to show slightly sharper improvements from early compilation.

(7) The tiered VM, with its extremely fast client compiler, is able to compile methods
more quickly with fewer compilation resources and typically outperforms the server
VM on single-core machines or when the number of compiler threads is kept at a
minimum. Alternatively, when there are additional computing resources available,
increasing the number of compiler threads can sharply improve performance with
the server VM.

(8) Effective prioritization of method compiles is important to find and compile the
most important methods early, especially for the slow, powerful, highly optimizing
compilers. However, additional research is necessary to find good online prioritiza-
tion algorithms.

(9) Initiating more compiler threads than available computing resources typically
hurts performance.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

JIT Compilation Policy for Modern Machines 22:27

Based on these observations, we make the following recommendations regarding a
good compilation policy for modern machines: (a) JIT compilers should use an adap-
tive compiler aggressiveness based on availability of free computing resources. At the
very least, VMs should employ two (sets of) compiler thresholds, a conservative (large)
threshold when running on single-core processors and a moderately aggressive (small)
threshold on multi-/many-core machines. (b) Spawn as many compiler threads as avail-
able free compute cores (and as constrained by the specific power budget). (c) Employ
an effective priority queue implementation to reduce the compilation queue delay for
the slower compilers. (d) The more complex tiered compilation strategies used in some
of the existing state-of-the-art JVMs can achieve the most effective startup program
performance with minimal compiler threads and little need for effective prioritization
of method compiles. We believe that our comprehensive research will guide future VM
developers in making informed decisions regarding how to design and implement the
most effective JIT compilation policies to achieve the best application performance.

10. FUTURE WORK

This work presents several interesting avenues for future research. First, this work
shows that the availability of abundant computation resources in future machines will
allow the possibility of program performance improvement by early compilation of a
greater fraction of the program. With the development of profile-driven optimization
phases, future work will have to consider the effect of early compilation on the amount
of collected profile information and resulting impact on generated code. Additionally,
researchers may also need to explore the interaction of increased compiler activity with
garbage collection. More native code produced by aggressive JIT compilation can raise
memory pressure and garbage collection overheads, which may then affect program
nondeterminism due to the increased pause times associated with garbage collections.
Second, in this article we explored some priority queue implementations that may be
more suitable for aggressive compilation policies, especially with a slow, highly optimiz-
ing compiler. We plan to continue our search for better method prioritization schemes in
the future. Third, this work shows that the optimal settings for compilation threshold
and the number of compiling threads depend on factors, such as application charac-
teristics, that cannot be determined statically. Thus, we plan to conduct experiments
to study the performance potential of adaptively scaling these parameters at runtime.
Fourth, this work primarily focuses on exploring if and when to compile program meth-
ods to maximize overall program performance for modern machines. We do consider
some aspects of how to compile with the tiered HotSpot configuration. However, how to
compile program regions is a much broader research topic that includes issues such as
better selection and ordering of optimizations at different compilation levels. We have
begun to conduct research to address some of these issues in the HotSpot VM [Jantz
and Kulkarni 2013]. We plan to exploit the observations from this work to focus on
optimizations (and methods) with the greatest impact on program performance and
build new and more effective online models. Finally, we are currently also conducting
similar experiments in other virtual machines (JikesRVM) to see if our conclusions
from this work hold across different VMs. Later, we plan to also validate our results
for different processor architectures.

REFERENCES

ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. 2000a. Adaptive optimization in the Jalapeno
JVM. In Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 47–65.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

22:28 M. R. Jantz and P. A. Kulkarni

ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. 2000b. Adaptive optimization in the Jalapeo
JVM: The controller’s analytical model. In Proceedings of the 3rd ACM Workshop on Feedback Directed
and Dynamic Optimization (FDDO’00).

ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. 2005. A survey of adaptive optimization in
virtual machines. Proc. IEEE 92, 2, 449–466.

ARNOLD, M., HIND, M., AND RYDER, B. G. 2002. Online feedback-directed optimization of Java. SIGPLAN Not.
37, 11, 111–129.

BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG, A. M., MCKINLEY, K. S., BENTZUR, R., DIWAN, A.,
FEINBERG, D., FRAMPTON, D., GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP, M., LEE, H., MOSS, J. E. B., MOSS,
B., PHANSALKAR, A., STEFANOVIĆ, D., VANDRUNEN, T., VON DINCKLAGE, D., AND WIEDERMANN, B. 2006. The
DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’06). 169–190.

BÖHM, I., VON KOCH, T. J. K. E., KYLE, S. C., FRANKE, B., AND TOPHAM, N. 2011. Generalized just-in-time trace
compilation using a parallel task farm in a dynamic binary translator. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’11). 74–85.

BRUENING, D. AND DUESTERWALD, E. 2000. Exploring optimal compilation unit shapes for an embedded just-in-
time compiler. In Proceedings of the 3rd ACM Workshop on Feedback-Directed and Dynamic Optimiza-
tion. 13–20.

CAVAZOS, J. AND O’BOYLE, M. F. P. 2006. Method-specific dynamic compilation using logistic regression. In
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’06). ACM, New York, 229–240.

CHANG, P. P., MAHLKE, S. A., AND HWU, W. M W. 1991. Using profile information to assist classic code optimiza-
tions. Software Prac. Experience 21, 1301–1321.

DEUTSCH, L. P. AND SCHIFFMAN, A. M. 1984. Efficient implementation of the smalltalk-80 system. In Proceedings
of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’84).
ACM, New York, 297–302.

ESMAEILZADEH, H., CAO, T., XI, Y., BLACKBURN, S. M., AND MCKINLEY, K. S. 2011. Looking back on the language
and hardware revolutions: Measured power, performance, and scaling. In Proceedings of the 16th In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). ACM, New York, 319–332.

GEORGES, A., BUYTAERT, D., AND EECKHOUT, L. 2007. Statistically rigorous java performance evalua-
tion. In Proceedings of the Conference on Object-Oriented Programming Systems and Applications
(OOPSLA’07). 57–76.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2005. The Java(TM) Language Specification 3rd Ed. http://
dl.acm.org/citation.cfm?id=1036643.

GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K. 1982. Gprof: A call graph execution profiler. SIGPLAN
Not. 17, 6, 120–126.

GRCEVSKI, N., KIELSTRA, A., STOODLEY, K., STOODLEY, M., AND SUNDARESAN, V. 2004. Java just-in-time compiler and
virtual machine improvements for server and middleware applications. In Proceedings of the Conference
on Virtual Machine Research and Technology Symposium. 12.

GU, D. AND VERBRUGGE, C. 2008. Phase-based adaptive recompilation in a JVM. In Proceedings of the 6th
IEEE/ACM Symposium on Code Generation and Optimization (CGO’08). 24–34.

HANEDA, M., KNIJNENBURG, P. M. W., AND WIJSHOFF, H. A. G. 2005. Generating new general compiler optimiza-
tion settings. In Proceedings of the 19th Annual International Conference on Supercomputing (ICS’05).
161–168.

HANSEN, G. J. 1974. Adaptive Systems for the Dynamic Run-time Optimization of Programs. Ph.D. Disserta-
tion. Carnegie-Mellon Univ., Pittsburgh, PA.

HARRIS, T. 1998. Controlling run-time compilation. In Proceedings of the IEEE Workshop on Programming
Languages for Real-Time Industrial Applications. 75–84.

HAZELWOOD, K. AND GROVE, D. 2003. Adaptive online context-sensitive inlining. In Proceedings of the In-
ternational Symposium on Code Generation and Optimization (CGO’03). IEEE Computer Society,
Washington, DC, 253–264.

HÖLZLE, U. AND UNGAR, D. 1996. Reconciling responsiveness with performance in pure object-oriented lan-
guages. ACM Trans. Program. Lang. Syst. 18, 4, 355–400.

JANTZ, M. R. AND KULKARNI, P. A. 2013. Performance potential of optimization phase selection during dynamic
JIT compilation. In Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEEE’13).

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

http://dl.acm.org/citation.cfm?id=1036643
http://dl.acm.org/citation.cfm?id=1036643

JIT Compilation Policy for Modern Machines 22:29

KNUTH, D. E. 1971. An empirical study of FORTRAN programs. Software: Pract. Experience 1, 2, 105–133.
KOTZMANN, T., WIMMER, C., MÖSSENBÖCK, H., RODRIGUEZ, T., RUSSELL, K., AND COX, D. 2008. Design of the Java

HotSpotTM client compiler for Java 6. ACM Trans. Archit. Code Optim. 5, 1, 1–32.
KRINTZ, C. 2003. Coupling on-line and off-line profile information to improve program performance. In Pro-

ceedings of the International Symposium on Code Generation and Optimization (CGO’03). Washington,
DC, 69–78.

KRINTZ, C. AND CALDER, B. 2001. Using annotations to reduce dynamic optimization time. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Imple-
mentation. 156–167.

KRINTZ, C., GROVE, D., SARKAR, V., AND CALDER, B. 2000. Reducing the overhead of dynamic compilation.
Software: Pract. Experience 31, 8, 717–738.

KULKARNI, P., ARNOLD, M., AND HIND, M. 2007. Dynamic compilation: The benefits of early investing. In VEE
’07: Proceedings of the 3rd International Conference on Virtual Execution Environments. 94–104.

KULKARNI, P. A. 2011. JIT compilation policy for modern machines. In Proceedings of the 2011 ACM Interna-
tional Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA’11).
773–788.

KULKARNI, P. A. AND FULLER, J. 2011. JIT compilation policy on single-core and multi-core machines.
In Proceedings of the 15th Workshop on Interaction between Compilers and Computer Architectures
(INTERACT ’11). 54–62.

MICROSOFT. 2001. Microsoft C# Language Specifications 1st Ed. Microsoft Press.
NAMJOSHI, M. A. AND KULKARNI, P. A. 2010. Novel online profiling for virtual machines. In Proceedings of the

6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’10).
133–144.

PALECZNY, M., VICK, C., AND CLICK, C. 2001. The Java hotspot TM server compiler. In Proceedings of the
2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium (JVM’01). USENIX
Association, Berkeley, CA, 1–12.

SANCHEZ, R. N., AMARAL, J. N., SZAFRON, D., PIRVU, M., AND STOODLEY, M. 2011. Using machines to learn method-
specific compilation strategies. In Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO’11). 257–266.

SMITH, J. AND NAIR, R. 2005. Virtual Machines: Versatile Platforms for Systems and Processes (The Morgan
Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

SPEC2008. 2008. SPECjvm2008 Benchmarks. http://www.spec.org/jvm2008/.
SPEC98. 1998. SPECjvm98 Benchmarks. http://www.spec.org/jvm98/.
SUNDARESAN, V., MAIER, D., RAMARAO, P., AND STOODLEY, M. 2006. Experiences with multi-threading and dynamic

class Loading in a Java Just-In-Time compiler. In Proceedings of the International Symposium on Code
Generation and Optimization(CGO’06). 87–97.

WHITFIELD, D. L. AND SOFFA, M. L. 1997. An approach for exploring code improving transformations. ACM
Trans. Program. Lang. Syst. 19, 6, 1053–1084.

Received May 2012; revised February 2013; accepted August 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 22, Publication date: December 2013.

http://www.spec.org/jvm2008/
http://www.spec.org/jvm98/

