Whole genome alignment



Applications of genome
alignment

Comparing different genome assemblies

Locating genome duplications and
conserved segments

Gene finding through comparative
genomics

Analyzing pathogenic bacteria against
their harmless close relatives



Homology map
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We multiply align these blocks together




Overview/Goals

* |nput:
— Set of whole genomes, which may differ by
substitutions, indels and rearrangements

— Uses open reading frames or other gene
predictions

* QOutput:

— One alignment per region of genomes that
has not been “shuffled”

 Two genomes = global
« > 2 genomes = multiple
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Two different most parsimonious scenarios that transform the order of the 11 synteny blocks

on the mouse X chromosome into the order on the human X chromosome

Mouse
i 76 -10 9 -8 2 -11 -3 54
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1 2 3 4567 8 9 10 11
Human

Pevzner P., Tesler G. PNAS 2003;100:7672-7677

Mouse
1 -76 -10 9 -8 2 -11 * -3 54

1 2 3 456 *7 8 9 10 11
Human
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Whole-genome alignment

» Advanced data structures can also be
used to efficiently speed up genomic
alignments of closely-related organisms.

 We will introduce suffix trees and the

MUMmer algorithm before going into detail
next week.
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Suffix trees

» Specialized form of keyword trees/tries
» Key idea:
— preprocess text T, not pattern P

* O(m) preprocess time

* O(n+k) search time
— k is number of occurrences of Pin T



Keyword Tree

* P ={poet, pope, popo, too}




Suffix Tree

« Take any m character string S like xabxac

« Set of keywords is the set of suffixes of S
— {xabxac, abxac, bxac, xac, ac, c}

» Changes relative to keyword trees:

— Assumption: no suffix is a prefix of another suffix (can
be a substring, but not a prefix)

« Assure this by adding a character $ to end of S

— Internal nodes except root must have at least 2
children



Example suffix tree

 {xabxac, abxac, bxac, xac, ac, c}




Notation to keep track of

» Label of a path from root r to a node v is
simply the concatenation of labels on
edges fromrtov

* |label of a node v is L(v)
— path label fromrto v
* string-depth of v
— number of characters in v’ s label L(v)



Using suffix trees in exact

matching
 Build suffix tree fortext T

» Match pattern P against tree starting at
root until

— Case 1, P is completely matched

* Every leaf below this match point is the starting
locationof Pin T

— Case 2: No match is possible
« Pdoes notoccurinT



lllustration

T =xabxac
— suffixes ={xabxac, abxac, bxac, xac, ac, c}

» Pattern P,: xa
» Pattern P,: xb




In-class example

S = xabxabdeabhixab$
xabxacdefghixab$
abxacdefghixab$
bxacdefghixab$
xacdefghixab$



Building trees: O(m?) algorithm

* |nitialize
— One edge for the entire string S[1..m]$

e Fori=2tom

— Add suffix SJi..m] to suffix tree
« Find match point for string S[i..m] in current tree
« If in “middle” of edge, create new node w
« Add remainder of S[i..m] as edge label to suffix i leaf

* Running Time
— O(m-i) time to add suffix SJi..m]



Running Time Analysis

» Build suffix tree:
— Will show this is O(m)
— This Is preprocessing
» Search time:

— O(n+k) where k is the number of occurrences
of PinT

— O(n) to find match point if it exists
— O(k) to find all leaves below match point



Why suffix trees are important in
genome alignment

» Long unique matches have a high
probability of being included in the final
genomic alignment.

* We need to set the minimum length high-
enough, however, to avoid random noise.

— MUMs = maximal unique matches
— MEMs = maximal exact matches
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Overview

Genome A

Genome A’

We have 5 matches that can not be extended to left or right

We have 4 gaps to fill between these matches
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MUM-based alignments

 MUMSs are by definition unigue maximal
matches in both sequences

— Originally required building a generalized
suffix tree of both genomes

— Internal nodes w/ only two leaves, one from
each input, are unique and not right-
extensible

— Check for left-extensibility, then go!
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Maximal Unique Matches
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Early whole genome
alignment algorithms

» Arranged MUMSs relative to one genome

using Longest Increasing Subsequence
(LIS) algorithm

 Filled in small gaps using dynamic
programming
— Space inefficient for large gaps
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Banded Dynamic Programming

— Compute only lower and upper rectangles based on

Ky

MUM

C

desired percent similarity
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Applications

« Comparing different genome assemblies

» Locating genome duplications and
conserved segments

* Gene finding through comparative
genomics

* Analyzing pathogenic bacteria against
their harmless close relatives
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BLASTZ

* Modification of BLAST for whole-genome
alignment of close species (i.e. human-mouse)

* Optimized for intron-exon discovery.

» Two differences with gapped BLAST:

— Matching regions can be restricted to occur in same
order and orientation.

— Uses a special scoring matrix that limits false positive
alignments in low complexity regions.



Optimization

 Two changes to BLASTZ significantly improved its
execution speed.

 If the software realizes that many regions of the mouse
genome align to the same human segment,that segment
IS marked so that it will be ignored in later steps

* Second,the idea of Ma et al. (2002) where for runs of 19
consecutive within which the 12 positions indicated by a
1 in the string 1110100110010101111 are identical.



Results

 Data:

— human genome into ~3000 segments (1 MB each)
— Divided mouse genome into 100 30MB segments

« Run time:
— 481 CPU days

— 0.5 days on a 1,024 processor cluster
— 20 GB of output



MUMmer 2.0

* Improved space implementation of suffix
tree using a few tricks (17 bytes/base)

* Introduced banded dynamic programming
and advanced clustering to tackle larger

gaps

« Used suffix tree “streaming” of multiple
queries against a reference
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MUMmer 2

* Three times faster
* One-third memory usage

* Support protein sequence and multiple
sequences.

 Entire human chromosomes

* Can align millions of nucleotides in a few
minutes on a desktop computer.
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Linear time of suffix arrays

* There were three papers in 2002 that solved the old
problem of constructing suffix arrays in linear time.

e These were:

— Ko and Aluru — very interesting, but hard to
understand

— Kim et al. — was based on older parallel suffix tree
algorithms

— Karakkanen and Sanders is the simplest and most
elegant.
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FIGURE 1.1: Suffix tree, suffix array and Lep array of the string mississippi. The suffix
links inthe tree are given by z - 2 —w gy —wu —r, v —r, and w —r.
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