
Whole genome alignment



Applications of genome 
alignment

• Comparing different genome assemblies
• Locating genome duplications and 

conserved segments
• Gene finding through comparative 

genomics
• Analyzing pathogenic bacteria against 

their harmless close relatives



Homology map

Species 1

Species 2

We multiply align these blocks together



Overview/Goals
• Input:

– Set of whole genomes, which may differ by 
substitutions, indels and rearrangements

– Uses open reading frames or other gene 
predictions

• Output:
– One alignment per region of genomes that 

has not been �shuffled�
• Two genomes = global
• > 2 genomes = multiple
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http://fig.cox.miami.edu/Faculty/Dana/synteny.jpg



Two different most parsimonious scenarios that transform the order of the 11 synteny blocks 
on the mouse X chromosome into the order on the human X chromosome

Pevzner P., Tesler G. PNAS 2003;100:7672-7677

Copyright © 2003, The National Academy of Sciences
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Whole-genome alignment

• Advanced data structures can also be 
used to efficiently speed up genomic 
alignments of closely-related organisms.

• We will introduce suffix trees and the 
MUMmer algorithm before going into detail 
next week.



Suffix trees

• Specialized form of keyword trees/tries
• Key idea:

– preprocess text T, not pattern P 
• O(m) preprocess time
• O(n+k) search time

– k is number of occurrences of P in T



Keyword Tree

• P = {poet, pope, popo, too}
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Suffix Tree
• Take any m character string S like xabxac
• Set of keywords is the set of suffixes of S

– {xabxac, abxac, bxac, xac, ac, c}

• Changes relative to keyword trees:
– Assumption: no suffix is a prefix of another suffix (can 

be a substring, but not a prefix)
• Assure this by adding a character $ to end of S

– Internal nodes except root must have at least 2 
children



Example suffix tree

• {xabxac, abxac, bxac, xac, ac, c}
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Notation to keep track of
• Label of a path from root r to a node v is 

simply the concatenation of labels on 
edges from r to v

• label of a node v is L(v) 
– path label from r to v

• string-depth of v 
– number of characters in v�s label L(v)



Using suffix trees in exact 
matching

• Build suffix tree for text T
• Match pattern P against tree starting at 

root until 
– Case 1, P is completely matched

• Every leaf below this match point is the starting 
location of P in T

– Case 2: No match is possible
• P does not occur in T



Illustration
• T = xabxac

– suffixes ={xabxac, abxac, bxac, xac, ac, c}
• Pattern P1: xa
• Pattern P2: xb
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In-class example

• S = xabxabdeabhixab$
• xabxacdefghixab$
• abxacdefghixab$
• bxacdefghixab$
• xacdefghixab$
• …
• $



Building trees: O(m2) algorithm

• Initialize
– One edge for the entire string S[1..m]$

• For i = 2 to m
– Add suffix S[i..m] to suffix tree

• Find match point for string S[i..m] in current tree

• If in �middle� of edge, create new node w
• Add remainder of S[i..m] as edge label to suffix i leaf

• Running Time
– O(m-i) time to add suffix S[i..m]



Running Time Analysis
• Build suffix tree: 

– Will show this is O(m)
– This is preprocessing

• Search time: 
– O(n+k) where k is the number of occurrences 

of P in T
– O(n) to find match point if it exists
– O(k) to find all leaves below match point 
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Why suffix trees are important in 
genome alignment

• Long unique matches have a high 
probability of being included in the final 
genomic alignment.

• We need to set the minimum length high-
enough, however, to avoid random noise.
– MUMs = maximal unique matches
– MEMs = maximal exact matches 
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Overview

Genome A

Genome A

X                         X                             X

Genome A�

1 4 3 25

We have 5 matches that can not be extended to left or right

We have 4 gaps to fill between these matches
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MUM-based alignments

• MUMs are by definition unique maximal 
matches in both sequences
– Originally required building a generalized 

suffix tree of both genomes
– Internal nodes w/ only two leaves, one from 

each input, are unique and not right-
extensible

– Check for left-extensibility, then go!
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Maximal Unique Matches
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Early whole genome 
alignment algorithms

• Arranged MUMs relative to one genome 
using Longest Increasing Subsequence 
(LIS) algorithm

• Filled in small gaps using dynamic 
programming 
– Space inefficient for large gaps
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Banded Dynamic Programming
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– Compute only lower and upper rectangles based on 
desired percent similarity

MUM
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Suffix links are in green

From Delcher et al., 2002, Nucleic Acids Res30(11):2478-83 
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Applications

• Comparing different genome assemblies
• Locating genome duplications and 

conserved segments
• Gene finding through comparative 

genomics
• Analyzing pathogenic bacteria against 

their harmless close relatives



From:  Miller et al. Annu. Rev. Genom. Human. Genet. 2004.5:15-56.



BLASTZ

• Modification of BLAST for whole-genome 
alignment of close species (i.e. human-mouse)

• Optimized for intron-exon discovery.

• Two differences with gapped BLAST:
– Matching regions can be restricted to occur in same 

order and orientation.
– Uses a special scoring matrix that limits false positive 

alignments in low complexity regions.



Optimization
• Two changes to BLASTZ significantly improved its 

execution speed.

• If the software realizes that many regions of the mouse 
genome align to the same human segment,that segment 
is marked so that it will be ignored in later steps

• Second,the idea of Ma et al. (2002) where for runs of 19 
consecutive within which the 12 positions indicated by a 
1 in the string 1110100110010101111 are identical. 



Results

• Data: 
– human genome into ~3000 segments (1 MB each)

– Divided mouse genome into 100 30MB segments

• Run time:
– 481 CPU days

– 0.5 days on a 1,024 processor cluster

– 20 GB of output



2/8/18 30

MUMmer 2.0
• Improved space implementation of suffix 

tree using a few tricks  (17 bytes/base)

• Introduced banded dynamic programming 
and advanced clustering to tackle larger 
gaps

• Used suffix tree �streaming� of multiple 
queries against a reference
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MUMmer 2

• Three times faster
• One-third memory usage
• Support protein sequence and multiple 

sequences.
• Entire human chromosomes

• Can align millions of nucleotides in a few 
minutes on a desktop computer.



Linear time of suffix arrays
• There were three papers in 2002 that solved the old 

problem of constructing suffix arrays in linear time.

• These were:
– Ko and Aluru – very interesting, but hard to 

understand
– Kim et al. – was based on older parallel suffix tree 

algorithms
– Karakkanen and Sanders is the simplest and most 

elegant.
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