Assembly validation
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Importing data to an AMOS bank
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Is it a good assembly?

* # of contigs

* Average size of contigs
* N50

« Genome coverage

* Misassemblies?



Contig size

* Average contig length doesn’t necessarily
capture how big your contigs are

E.g., you have a 100kb genome.

Assembly 1 contig lengths: 45 kb, 4 X 2 kb

Assembly 2 contig lengths: 5 X 20 kb
Average contig length is 20 kb in both cases.

Alternative: N50 (or N80, etc.) What is the
smallest contig you need to make up 50% of

the distribution of the contig lengths



Which is the best assembly?

Table from Pop, IEEE Computer

Assembler # of contigs |Avg contig [Total size
ength

Phrap 56 22.4 kbp 1.26 Mbp

TIGR 76 16.8 kbp 1.28 Mbp

IAssembler

ICelera 220 6.3 kbp 1.39 Mbp

IAssembler

ICelera, 101 12.5 kbp 1.26 Mbp

trimmed

data




Which Is the best assembly’?

# of Avg. Total # mis-
contigs [contig [size genome assemobli
ength covered s
Phrap |56 22.4 kbp 1.26 Mbp36.0 14
TIGR |76 16.8 kbp [1.28 Mbp93.1 2
Celera 220 6.3 kbp [1.39 Mbp99.1 1
Celera, [101 12.5 kbp [1.26 Mbp98.4 0
trimmed
data Table from Pop, IEEE Computer




What causes misassemblies?

REPEATS
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Other Factors

e Heterozygosity
e Contaminated samples

e Sequencing errors — e.g. homopolymer
runs, substitutions



Types of misassembly

* Collapsed repeat

* Polymorphic region assembled as 2 or
more copies (like the Phrap assembly in
Computer paper)

* Rearrangement of sequence in between
repeats

* Inversion misassembly



Rearrangement misassembly
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Inversion misassembly
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Why is it important to find
misassemblies?

All downstream analysis is affected by
misassembly

e Orthology/paralogy

e SNPs

e Synteny



What tools do we have to detect
misassemblies?

Sequence read data: mate pair information
(distance and orientation), coverage

We need to picture the whole assembly:
consensus sequence and the multiple
alignment of reads.

An AMOS bank can represent this.



Brainstorm

« Suppose you have the following information
available to you:
— How many reads go to a specific region of a contig
— The known sizes of paired end reads

— Alignment data between two reads using semiglobal
alignment

— Read orientation

* What are some metrics you can use to find
misassemblies?



Statistical methods

 A-statistic (TIGR assembler)

» C/E statistic (Yorke et al. at UMD)

* Good-minus-bad (Sun et al. at U
Bloomington)



A-statistic

* We expect reads to be sequenced
randomly from the genome.

Target
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C/E statistic

Compression/Expansion
Zimin et al., Bioinformatics 2008

CE samplemean — populationmean e & e
o populationstddev TS —
v/ samplesize f

'

> 3 indicates expansion,
> < -3 indicates compression



Good-minus-bad

These three mate pairs are “good”

(correct distance and orientation)
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These two mate pairs are “bad”

(incorrect distance or orientation)

Good-minus-bad = 3-2 = 1



Combination methods

* The problem with statistical methods is that they
generate many false positives.

* Machine-learning approach (Jeong-Hyeon Choi)
— Calculate several statistics across the genome
— Create a classifier using a labeled training set that
combines the different statistics to more confidently
predict mis-assemblies
« amosvalidate (Adam Phillipy)
— Detect “features” using several approaches
— Combine nearby features into “suspicious” regions

— Written in the AMOS framework — takes an AMOS
bank as input



Amosvalidate: combine many types
of evidence
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Assembly Visualization

» EagleView
« Consed
 Hawkeye



Hawkeye: Scaffold View
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Takeaway

* Verifying assembly “correctness” is a real
challenge and an open problem.

* Assembly errors do occur and need to be
considered in downstream analysis (gene
finding, genome comparisons, etc.)

* How to best do this is still an open
problem.



Finding errors with unsupervised
learning

Each type of error can be quantified, and together

they can generate vector that captures read

behaviour for a given section of the assembly.
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Data sets and evaluation
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* Windows were classified as COR/MIS based
on whether they intersect with amosvalidate’s
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Our Approach
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Our ApprOaCh NOTRE DAME
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