
Sequence Alignment

Brief review from last class

•  DNA is has direction, we will use only one (5’ -> 3’) and
generate the opposite strand as needed.

•  DNA is a 3D object (see lecture 1) but we will model it as
a 2D object/string.

•  Two generative models of sequences:
–  Multinomial: probability is equal to product of

individual probabilities (no prior dependence)
–  Markov: probabity is equal to product of probabilities

given a fixed number of preceding characters.

Today
•  The next two weeks, we will discuss sequence

alignment and all of its basic flavors.

•  Arguably one of the most important algorithms in
bioinformatics; over 40 years old.

•  The ultimate goal of alignment is to describe
sequence similarity, or how closely two sequences
match each other.
–  Can be a score (number)
–  Can also be an “alignment” (visual)

Similarity vs. biology

•  Similarity (also called identity) is the number of
matches / alignment length

•  Homology, on the other hand, implies sequences
came from a common ancestor

•  Two kinds of homology:
–  Orthologous - speciation-based split
–  Paralogous - gene duplication-based split

Various types

Examples

Database search

Protein structure

Phylogeny
Gene finding

Applications

•  Prediction on function
–  Commonalities among sequences can imply similar

functions
•  Database searching (BLAST)

–  Find interesting genes in a new genome
•  Sequence divergence

–  Look at evolutionary relationships
•  Sequence assembly

–  Making a big sequence from a bunch of small ones

Global alignment

•  Also called a pairwise alignment.

•  Intuitive goal: related sequences will share
many (most?) characters. To maximize this
we introduce gaps represented by “-”

Two simple rules
•  Rule #1:

–  A gap must be aligned to a nongap, i.e., “-” can not
align to “-”

•  Rule #2:
–  To distinguish good alignment from not so good ones,

we introduce a scoring function E. Some functions have
biological meaning, some are arbitrary.

•  Consequence #1:
–  Alignment length can be no longer than sum of two

sequences!

Example from text

•  How do we align these proteins:
– VIVALASVEGAS
– VIVADAVIS

Alignments

A: C A T - T C A - C
B: C - T C G C A G C

•  Show one sequence placed above another
such that similarity is revealed.

•  Alignments can be longer than either string!

Example:

Improving readability

A: C A T - T C A - C
 | | | | |
B: C - T C G G A G C

Example:

Scoring functions

•  Here is a basic scoring function that rewards
1 for a match and -1 for a mismatch gap

•  Can also be represented as a substitution
matrix. €

E(−,a) = E(a,−) = E(a,b) = −1 ∀a ≠ b
E(a,b) =1 ∀a = b

In class example

S: CATCAC
 T: CTCCAGC

€

E(−,a) = E(a,−) = E(a,b) = −1 ∀a ≠ b
E(a,b) =1 ∀a = b

Measuring similarity

Score: A measure of alignment quality

 C A T - T C A - C
 C - T C G C A G C

 10 -5 10 -5 -2 10 10 -5 10

Total = 33

Scored as E(C,C) E(A,-), E(T,T), E(-,C),
etc.

Alignment overview

•  Computationally, naïve alignments grow exponentially
with n : not good
–  There are 1017 alignments for two length 30 sequences.

•  Luckily, a tried and true method for solving similar
problems (we’ll provide an overview today) comes to the
rescue.

•  First efficient algorithm published in 1970 by Needleman
and Wunch, improved by Smith and Waterman in 1981.

Basic intuition

•  Suppose we have an optimum alignment of
size L. Is the following true?

•  A* = A*(s1 … si ,t1 … tj) + A*(si+1 … sn ,tj+1 … tm)
–  Where |s| = n and |t| = m

•  If so, what would happen if i = n - 1 and j = m - 1?

Visualization
Case 1: Match s[n] w/ t[m]

 s: C A T T C A C
 t: C - T T C A G

n - 1 n

m m -1

 s: C A T T C A -
 t: C - T T C A G

Case 2: Match t[m] w/ gap n - 1

m m -1

 s: C A T T C A C
 t: C - T T C A -

Case 3: Match s[n] w/ gap n - 1 n

m-1

Global alignment

•  Dynamic programming (DP) will save the day!

•  DP is a general technique used when a large
problem can be broken into smaller, easier
problems like this.

•  To solve sequence alignment, we will fix two
substrings and find the best way to add the next
character from at least one string.

Notation from Jackson and Aluru

Requirements

•  We will need four things to compute a
global alignment:

1.  Substitution matrix (parameters)
2.  Recurrence relation
3.  Filling up a table
4.  Traceback

Pairwise Global Alignment

T[i,j] = Score of optimally aligning first i
 bases of s with first j bases of t.

€

T i, j[] = max

T[i −1, j −1] + score s i[] ,t j[]()
T i −1, j[] + g

T i, j −1[] + g

⎧

⎨
⎪

⎩
⎪

λ C T C G C A G C

A
C

T

T

C
A

C

+10 for match, -2 for mismatch, -5 for space (rowwise)

 0 -5 -10 -15 -20 -25 -30 -35 -40

-5

-10

-15

-20

-25

-30

-35

10 5

λ

0 -5 -10 -15 -20 -25 -30 -35 -40
-5 10 5 0 -5 -10 -15 -20 -25
-10 5 8 3 -2 -7 0 -5 -10
-15 0 15 10 5 0 -5 -2 -7
-20 -5 10 13 8 3 -2 -7 -4
-25 -10 5 20 15 18 13 8 3
-30 -15 0 15 18 13 28 23 18
-35 -20 -5 10 13 28 23 26 33

 λ C T C G C A G C

A
C

T

T

C
A

C

λ

Traceback yields both optimal alignments in this example

*
*

Some Results

•  Most pairwise sequence alignment problems can
be solved in O(mn) time. Some speedups exist,
most notably the Four Russians technique.

•  Space requirement can be reduced to O(m+n),
while keeping run-time fixed [Myers88].

•  Two highly similar sequences can be aligned in

O(dn) time, where d is a measure of the distance
between the sequences [Landau86].

Pairwise Sequence Alignment
Variations for future classes:

•  Given two sequences, find if parts of them are similar

(local alignment).

•  Given a large sequence and a short sequence, find if the
short sequence is similar to a stretch of the long
sequence.

•  Cool fact is these are easy to do once we learn the
basics of global alignment!

