Natural selection on the molecular level

Map from Genographic project

Review: some terms

Polymorphism

 Any difference between individuals in a population (e.g., humans)

SNP

- Single nucleotide polymorphism
- Pronounced "snip", usually single base differences (A or T polymorphism)

Allele

- An element of the set of possibilities at a specific location where there is a polymorphism
- Mary has an "A" allele and John has a "T"

In class exercise

Consider the following four individuals:

– Calvin: AATGTA

– Hobbes: ATTA

- Snoopy: ACCATG

- Tom: ATTA

- How to find polymorphisms (SNPs, indels) and what are they?
- How many alleles are there?

	SNP	Discovery		
	SNPs/1,000 Bases	Transitions: Transversions	Syn. SNPs	Nonsyn. SNPs
E. propertius	5.89	1.26:1	6,886	1,552
P. zelicaon	9.28	1.36:1	15,510	4,026

O'Neil et al.,2010, BMC Genomics.

Substitution rate

- Consider a new mutation in a diploid
 - 1 chromosome from mom and 1 from dad
- Any new mutation in a population of N individuals now is present at a frequency of 1/2N
- What are the chances this becomes the allele all members of a population have at random?

Substitution rate

Let u be the mutation rate

Substitution rate is:

$$-P = 2Nu(1/2N) = u$$

 Note that the substitution rate is independent of population size!

Lecture today

- "Nothing makes sense except in the light of evolution"
 - Theodosius Dobzhansky

Selection

"survival of the fittest"

- Two types in a genome:
 - Negative, or purifying selection that removes bad mutations from a population
 - Positive selection, that leads to an increase in allele frequency in a population

Case study: HIV virus

- Evolves during the course of infection, such that the virus that kills a patient is very different from the original strain
- Accomplished by a high mutation rate and short generation times.
- Example:
 - Resistance to AZT developing shortly after introduction in 1987

HIV

- Infects helper T cells, which are responsible for identifying infected targets.
- Infected cells are tagged by an epitope that sticks out and can be recognized by the immune system.
- These change quickly; mutation rate in HIV is 1000 times that of humans and takes 1.5 days for a single generation.

Types of mutations

Neutral

No effect, usually in third "wobble" position

Positive

- Leads to a fitness advantage
- FOXP2, olfactory receptors

Negative

- Leads to a loss of fitness.
- 80-90% of changes that affect proteins are negative

Neutral model

- Proposed by Kimura in 1968
- Most changes have no effect under:
 - Random mating
 - Constant population size
- Two deviations:
 - Selection
 - Demography (population structure)

Adding selection to the system

http://
evolutiongenetics.georgetown.edu/
simulations/driftselection/

Ka/Ks test

- Lets define two types of differences:
 - Synonmous, that do not change proteins (Ks)
 - Nonsynonmous, that DO change proteins (Ka)
- If both normalized rates are equal, then the ratio of the two is one.
- Interesting cases:
 - Ka / Ks > 1 = positive selection
 - Ka / Ks < 1 = purifying selection</p>

Estimating Ka/Ks

- Count the number of possible synonymous and non-synonymous sites
- Then count the number of differences
- After correction, we compute the number of non-synonymous and synonymous substitutions per site

Nei and Gojobori's algorithm

Step 1: Count A and S sites

Consider: UUA that codes for Leucine

We will denote f_i as the fraction of changes that result in a synonomous site

Second base in codon

First base in codon

	U	С	Α	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	STOP	STOP	A
	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
А	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	G

Third base in codon

•
$$f_1 = 1 / 3$$
 $f_2 = 0/3$ $f_3 = 1/3$

Calculating s_c and a_c

• Let *s_c* be:

$$s_c = \sum f_i$$

• And *a_c* be:

$$a_c = 3 - \sum f_i = 3 - s_c$$

Number of sites

For a gene containing r codons:

$$S_c = \sum_{k=1}^{r} s_c(c_k)$$

$$A_c = 3r - S_c$$

Because these are defined on alignments, we use:

$$\hat{S}_c = (S_{c1} + S_{c2})/2$$
 $\hat{A}_c = (A_{c1} + A_{c2})/2$

Use of Ka / Ks test

 One of the first tests proposed and to show positive selection in genomes.

Problems:

 Very conservative; often misses interesting regions that other tests find

HKA test

Hudson, Richard, Martin Kreitman, and Montserrat Aguade. "A Test of Neutral Molecular Evolution Based on Nucleotide Data." *Genetics* 116, no. 1 (1987): 153-159.

		5' Flanking			Adh Locus		
	Length	No. sites compared	No. sites variable	Length	No. sites compared	No. sit variab	
Wishin anning (n = 91)	4000	414	0	000	70		
Within species (n = 81)	4000	414	9	900	79	8	
Between species	4052	4052	210	900	324	18	

Figure by MIT OpenCourseWare, based on paper cited above.

apply chi-squared test to summary statistics of polymorphism, divergence Conclusion: *Adh* exhibits excessive polymorphism

One more thing

- There is some confusion of substitution rate (new alleles are fixed in a population) as previously defined and genetic distance (# differences between two sequences)
- If we know the divergence time, T, the "other" substitution rate can be defined as
 - -P = K / (2 T)
 - We divide by 2 T as there are two lineages

Jukes-Cantor model

- If the distances between two sequences are large, we may be missing some.
- On the other hand, if the distance is short then most differences should be real.
- The model of Thomas Jukes and Charles Cantor (1969) addresses this.

Correction

- We want to correct for the possibility of multiple substitutions.
- Let d be the fraction of sites that differ.

$$K = -\frac{3}{4} \ln \left(1 - \frac{4}{3} d \right)$$

This states that the substitutions per site (K) can be estimated from observed differences (d)

Neanderthal + humans

- Coexisted with humans as late as 30,000 years ago in Europe and western Asia.
- Previous to the Noonan et al. study, little or no admixture, or human-neanderthal hybrids, was reported.
- However, for reasons discussed in the text, most of these results were based on mitochondrial DNA.

Noonan et al. (2006)

Coalescence time

 Based on statistical modeling, the most recent common ancestor existed 706,000 years ago

95% CI is 468,000 to 1,015,000 years

Admixture results

 Based on these ~1000 loci, the estimate is no admixture between modern humans and neanderthals (ca. 2006)

 However, statistically as much as 20% could be, providing a rationale for additional sequencing.

Evolutionary lineage of human and Neanderthal reference sequences

Evolutionary lineage of ancestral human and Neanderthal populations

The evolution of maize (corn)

A: teosinte plant

B: maize plant

C: maize plant carrying mutation in tb1

Nature Reviews Genetics 2, 370-381 (May 2001)

Domestication in maize

- Yamasaki and colleagues looked at other 1000 genes in 14 diverse lines of corn.
- 35 of these had no differences over at least 200bp
- Additional testing (HKA test and coalescent simulation) predicted 6 domestication genes and 11 "improvement" genes.

Effect of Domestication and Plant Breeding on Genetic Diversity of Maize Genes

Yamasaki, M., et al. Plant Cell 2005;17:2859-2872

Tests and their value

- HKA test
 - Compares diversity of gene of interest to one that is neutral

- Coalescent simulation
 - Looks at reduction on diversity relative to estimated demographic history
 - Relies on sophisticated models