Lecture 9

Intro to Hidden Markov Models
(decoding, basic learning)



Assumptions

* Markov assumption
— States depend on previous states
« Stationary assumption

— Transition probabilities are independent of
time (“memoryless”)

* Output independence

— Observations are independent of previous
observations



Review

e Structure

— Number of states Q, .. Qy
— M output symbols

» Parameters:
— Transition probability matrix a;

— Emission probabilities b(a), which is the
probability state / emits character a

— Initial distribution vector T,



Cases

Example Observations |Hidden state
Football Plays Coach
Text Words Shakespeare
/
monkey
Casino Rolled numbers |Fair/loaded
DNA ACGT Coding/not




In class (re)review

* Suppose in instead of a dishonest
casino we used fair and loaded coins.

» Just like before the player shifts
between fair and loaded states.

« How could we model this?






Basic problems

 Evaluation

— What is the probability that the observations were
generated by a given model?

* Decoding

— Given a model and a sequence of observations,
what is the most likely state observations?

* Learning:
— Given a model and a sequence of observations,

how should we modify the model parameters to
maximize p{observe|model)



Forward algorithm

( sunny sunny sunny ]
[ Cloudy Cloudy Cloudy j
( Rainy Rainy Rainy J

Observations :  dry S04gy




Decoding

» Text: Shakespeare or Monkey?

» Case 1.
— Fehwufhweuromeojulietpoisonijigjreijge

e Case 2:
— mmmmbananammmmmmmbananammm



Observed sequence, hidden path and Viterbi path

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFPFFPFFFFPFPFFFFFRFEFFFFFFFFFFFFFRFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLEFFFFFFFF
Viterbi LLLLLLFPFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFPFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFF¥FFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFRFFFFFFFFFELL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFRFFFEFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFPFFFFFFFFFFFFFFFFFFFFPFFFFPRFFPRFPFFFFA PP PFPFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFEFFFFFFPFFFFPFFFRPPFFFFFFFPRERFPFPFEEF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFPRFEF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFPFFRFEFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

From Durbin



Algorithm: Forward algorithm
Initialisation (i = 0): SHo0) =1, fi(0)y=0fork > 0.

Recursion (i = 1...L):  fi(i) =e(x) Y fiuli — Day.
) k

Termination: P(x)=" fi(L)a.
k

Algorithm: Viterbi
Initialisation (i = 0): vp(0) =1, v,(0) =0 for k > O,

Recursion (i = 1...L): v;(i) = e;(x;) maxg(ve (i — Day);
ptr;{{) = argmax; (v (i — Dag).

Termination: P(x,7*) = maxp{vp(L)ago);
7y == argmax (Ve(L)axo).

Traceback (i = L ... 1): w} | = ptr;(z).

The structure of the
Forward algorithm 1s
essentially the same
as that of the Viterbi
algorithm, except that
a maximization
operation 1s replaced
by summation.



Solutions

Problem Algorithm | Complexity

Evaluation |Forward/ O(TN?)
Backward

Decoding Viterbi O(TN?)

Learning Baum-Welch | O(TN?)

(EM)

T is # timesteps (or observations)

N = # states




Learning

* |f state path is known and there are no hidden
states, this is easy and involves:
— Counting how often each parameter is used
— Normalizing to get probabilities
— Then treating it just like Markov chain models

» Harder without knowing state paths

— |ldea: estimate counts by considering every path
weighted by its probability



Parameter estimation
for HMMs

* We generally need to estimate transition and
emission probabilities a; and e(b).

* We have in hand a set of training examples,
that correspond to output from the HMM.

* Two potential strategies:
— Estimation when state sequence is known
— Estimation when paths are unknown



Estimation when state
sequence Is known

Easier than estimation when paths unknown
Maximum likelihood estimators are:
Akl

2o — e(b) = 2O)
ym Z E«(b")

A, = number of transitions k to / in training data + ry,

E.(b) = number of emissions of b from k in training
data + r,(b)




Potential problems

 Maximum likelihood estimators are prone to
overfitting

— For example, states never encountered

* For this reason, we introduce rkl and rk(b),
which reflect prior biases

* Can be interpreted as parameters of a
Bayesian Dirichlet prior.



Estimation when paths are unknown

* More complex than when paths are
Known

« Because we can’ t use maximum
likelihood estimators, we will use an
iterative algorithm

— Baum-Welch



Baum-Welch Algorithm

* Aka the Forward-Backward algorithm

* Also an example of an expectation
maximization (EM) algorithm

 |dea: hidden state path is the best that
explains a training sequence



Overview

* More formally, Baum-Welch calculates
Akl and Ek(b) as the expected number
of times each transition or emission is
used.

* This will use the same Forward and
Backward probabilities as posterior
decoding.

— Topic of discussion maybe next week



Drawbacks

* ML estimators
— Vulnerable to overfitting if not enough data

— Estimations can be undefined if never used
in training set (so use of pseudocounts)

« Baum-Welch

— Many local maximums instead of global
maximum can be found, depending on
starting values of parameters

— This problem will be worse for large HMMs



Example from Durbin

1: 1/6 1: 1/10 1: 0.19 1: 0.07
2:1/6 2:1/10 2:0.19 2:0.10
3:1/6 3:1/10 3:0.23 3:0.10
4:1/6 4:1/10 4:0.08 4: 017
5:1/6 5:1/10 5:0.23 5: 0.05
6: 1/6 6: 1/2 6: 0.06 6: 0.52

Note transition probabilities are different from real ones
Partly a result of local minima, but its never possible to
Estimate parameters exactly



Other methods

 Durbin also discusses an alternative method
called Viterbi training based on the Viterbi
algorithm.

* Does not maximize the true likelihood as a
function of model parameters, but rather finds
the model from the most probable paths.

* For this reason it generally does worse than
Baum-Welch, but it is widely used.



