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In the past, computation scientists have found it convenient and productive to 
adopt a model of the computational universe that was very different from our 
models of the physical universe. This is changing. As we build bigger computers 
out of smaller components, our models of computation are forced to change. 
There is reason to hope that our new models, for specific systems, will be similar 
to the models of physics. The paper is divided into three sections. The first argues 
that computer science is missing many of the things that make the laws of 
physics so powerful--locality, symmetry, invariance of scale. This is why physics 
is so nice and computer science isn't. The second section gives an example of a 
new-wave computing machine, and shows some physicslike laws that apply to its 
computations. The final section gives some reasons for expecting this conver- 
gence of physical and computational law. 

1. W H Y  C O M P U T E R  S C I E N C E  I S  N O  G O O D  

A c o m p u t e r  des igne r  is c o n s t r a i n e d  by  m u n d a n e  p r o b l e m s  that  have  no  

c o u n t e r p a r t s  in the  theore t i ca l  m o d e l s  of  c o m p u t e r  science:  the size of  

c o n n e c t o r s ,  the cost  and  ava i lab i l i ty  o f  c o m p o n e n t s ,  the  m e c h a n i c a l  l ayou t  

o f  the sys tem.  R e c e n t l y  these  fac tors  have  d i c t a t ed  a d r a m a t i c  change  in the 
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way we design computers. Things don't  look the same. Wires cost more than 
gates, software costs more than memory, and the air conditioner takes up 
more room than the computer. Our current models of computation are 
inadequate for designing or even describing our new architectures. An 
abstract model is powerful only when it allows us to pay attention to certain 
aspects of a situation while ignoring others. Our current models seem to 
emphasize the wrong details. 

The areas where computational models are weak are often the areas 
where they differ from physical models. In physics, for example, many 
fundamental quantities are conserved, whereas in our old models of compu- 
tation data can be created or destroyed at no cost. This is a difference and a 
weak point. The big air conditioner sitting next to the small computer is 
testimony to this fact. Other differences in physical and computational 
models also seem to cause problems. I will point to only one sort of 
difference here, the difference in locality, although similar arguments could 
be made for symmetry, linearity, or continuity. 

In the physical universe, the effect that one event has upon another 
tends to decrease with the distance in time or in space between them. This 
allows us to study the motions of the Jovian moons without taking into 
account the motion of Mercury. It is fundamental to the twin concepts of 
Object and Action. Locality of action shows itself in the finite speed of 
light, the inverse square of fields, and in macroscopic statistical effects like 
rates of reaction and the speed of sound. In computation, or at least in our 
old models of computation, an arbitrarily small event can, and often does, 
cause an arbitrarily large effect. A tiny program can clear all of memory. A 
single instruction can stop the machine. In computation there is no analog 
of distance. One memory location is as easily influenced as another. 

Fundamental to our old conception of computation was the idealized 
connection, the wire. A wire, as we once imagined it, was a marvelous thing. 
You put in data at one end and simultaneously they appear at any number 
of useful places throughout the machine. Wires are cheap, take up little 
room, and don't  dissipate power. 

Lately, we have become less enamored with wires. As switching compo- 
nents become smaller and less expensive we begin to notice that most of our 
costs are in wires, most our space is filled with wires, and most of our time 
is spent transmitting from one end of the wire to the other. We are 
discovering that it appeared as if we could connect a wire to as many places 
as we wanted, only because we did not yet want to connect to very many 
places. We have been forced to notice that we cannot measure a signal 
without disturbing it, so, for example, we must drive a wire with power 
proportional to the number of inputs that sense it. Of course we knew this 
before, but the fact seems more significant when the number in question is 
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ten million, instead of just ten. Also, real wires take up room. Since we are 
building in mere 3-space, it is impractical to connect components arbitrarily. 
When we were wiring up a few hundred vacuum tubes this was not a 
problem, but today we need to wire together hundreds of millions of 
components and we need to do it in a smaller space. Most of the wires must 
be short. There is no room for anything else. (There are also similar 
problems with memory locations, which are just wires turned sideways in 
time.) 

Our models of computation do not offer much help in solving the 
problem. Until recently, they abstracted the wire away into a costless and 
volumeless idealized connection. Our old models impose no locality on 
connections, even though the real world does. This is a prime example of 
where our old models break down. In classical computation the wire is not 
even considered. In current engineering it may be the most important thing. 
Something is wrong with the theory. 

2. AN EXAMPLE OF NEW WAVE COMPUTER 
ARCHITECTURE 

In this section I will describe a new type of computing machine, with 
some laws of behavior that are similar in form to physical laws. The 
intended application of the machine has nothing to do with physics. It is 
designed for knowledge retrieval and deduction operations, a problem of 
artificial intelligence. 

Artificial intelligence is the study of making machines smart. It is a 
field limited by its tools. Currently, our mechanisms are too slow. A typical 
AI program, written today, knows only a few hundred facts. We would like 
to increase this to a few million, but the programs already take minutes to 
make decisions which need to be made in seconds. Scaled up, they would 
take years. Von Neumann machines, even if they are built of exotic ultrafast 
components, are unlikely candidates for solving these problems. They are 
limited by the speed of light. A supercomputer inside a six-inch cube, which 
sends a single signal from one corner to the other, would have a cycle time 
of at least 1 nsec. This is less than a factor of a hundred better than 
currently available machines--not  nearly fast enough to solve our million- 
scaled AI problems. 

The potential solution to the problem is concurrency. Integrated circuit 
technology makes it economically feasible to produce millions of computing 
devices to work on different parts of the problem in parallel. We are now in 
the process of designing such a machine at the MIT AI Laboratory (Hillis, 
1981). The proposed architecture, called the connection machine, is a locally 
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connected array of process ing-memory cells. A medium-sized ma- 
chine, built today, might have a million such cells. Unlike the classical 
word-at-a-time von Neumann architecture, each object in memory has 
associated with it not only the hardware necessary to hold the state of the 
object, but also the hardware necessary to process it. 

The machine will be used to manipulate information stored in semantic 
networks (Woods, 1975; Quillian, 1968). Semantic networks are a way of 
representing knowledge as labeled graphs. The vertices represent concepts 
and the edges represent relations between those concepts. Semantic 
networks are a favorite representation tool of artificial intelligence. Unfor- 
tunately, retrieving information from such a network often involves search- 
ing through the entire ne twork - - a  slow job on a serial machine. Worse yet, 
the desired information may not even be explicitly stored in the network; it 
may need to be deduced. The connection machine was designed for such 
deduction and retrieval operations. I will not discuss here how it accom- 
plishes this task. Instead, I will skip directly to describing the machine's 
physical structure. 

If you were to pull out one of the printed circuit boards of the 
proposed connection machine, you would see an array of identical integrated 
circuit packages connected in a grid. Each package would be wired to only it 
four nearest neighbors, as in the grid shown in Figure 1. If you were to 
remove one of the integrated circuits and look at the chip under a micro- 
scope, you would see the same picture repeated. If you were to unfold the 
rack of printed circuit boards, you would see that they too were wired in a 
locally connected two-dimensional grid. This sort of scale invariance may be 
commonplace in physics, but until recently it has been unusual in computer 
science. 

The repeating grid structure was chosen not because we like it, but 
because we can wire it. We might have chosen a one- or a three-dimensional 
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Fig. 1. At any scale, the machine is a grid. 
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structure, but if we had chosen, say, a four-dimensional grid or a boolean n 
cube, we would not have been able to put it together. It would have been all 
wires. The thing that makes us wire it as a grid at the chip level also makes 
us wire it that way at the board level and at the system level. The scale 
invariance comes naturally. 

Unfortunately, our semantic network problems do not arrange them- 
selves into nice rectangular grids. Each cell only needs to talk to a few other 
cells, but they are not necessarily the cells in the immediate neighborhood. 
The machine must have some mechanism for nonlocal communication. It 
would be nice if we could run a wire between any two cells that need to 
communicate,  but we cannot, for the reasons stated above. Instead, the 
entire grid functions as a packet-switched communications ne twork- -a  sort 
of postal system where messages travel from one cell to another by being 
relayed through the grid. Cells communicate by sending messages to each 
other. 

A message is addressed to the appropriate cell by specifying the relative 
displacement in the grid of the recipient from the sender (example: up two 
and over five). This does not specify the route the message is to take, just its 
destination. The sender mails a message by handing it to a neighbor, and 
the neighbor decides on the basis of the address which way to send the 
message next. If the y displacement is positive, it will go up. If the x 
displacement is negative, it will go left. The neighbor modifies the address 
by incrementing or decrementing is appropriately, so that when the message 
reaches its intended destination both displacements will be zero. For exam- 
ple, a communicator  receiving a message addressed " two  up and two over" 
can change it to "one up and two over" and send the message to the 
communicator  above. This is illustrated in Figure 2. 

Delivering messages takes time, so the distance between communicat- 
ing cells is important. The metric is not the same as in Euclidean space 
because there are no diagonals. The taxicab metric (delta x plus delta y)  is 
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Fig. 2. A message moving toward its destination. 
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closer, but even this needs some refinement. The problem is that each cell 
has only a finite number  of states, so it can only handle a few messages at 
one time. Messages may need to sidestep congestion. It is no problem to 
design local routing algorithms that will accomplish this, but the effective 
distance between two objects is increased. We need a metric that takes this 
into account. 

We define the distance between two points as the average commumca-  
tion time between them. In an empty cellular space, this is the same as the 
taxicab metric. The presence of an intervening object distorts the metric 
because messages must flow around it. The curvature of the opt imum 
message paths (geodesics) increases with the density of objects. The farther 
away the objects, the less the effect, so there is a local distortion in the 
metric proportional to the density of objects. 

This distortion is not quite the same as physical gravity, and I will not 
suggest that the causes of the two are sirmlar, but it is interesting to find an 
effect in computat ion that is so similar in form to one in physics. 

Here is another one. Imagine that two cells are sitting next to each 
other in the grid. Imagine that the left cell communicates mostly with cells 
off to the right and the right cell communicates with cells to left. It would be 
advantageous (in the sense of minimizing communication time) if the cells 
were to exchange places, bringing each of them nearer to the cells with 
which they communicate.  The hardware of the cell cannot move, but two 
cells can exchange all internal states. The effect is the same. The computa- 
tion object that was in the right cell moves to the left cell, and vice versa. 
(Interested parties must be informed of the change of address, but this lurns 
out to be easy on the connection machine.) 

By this mechanism, with some refinements, the hardware of the ma- 
chine causes each cell to migrate in the direction in which it sends most of 
its messages. Groups of intercommunicating cells will tend to cluster. In 
such a system, paths of communication act like attractive forces which bind 
the cells together. At a larger scale, the clusters act like objects. They have 
strong internal forces and weaker interactions with other objects. Communi-  
cation between two clusters tends to pull them together. This motion is a 
cumulative effect of the local behavior of the individual cells, but it can be 
analyzed as a macroforce between two objects. There is no need to pay 
attention to the detailed interactions of the individual cells. 

I could give a specific local rules that cause the macroforces to behave 
like F =  Ma, but that would miss the point. The point is not that this is a 
good model of physics (it isn't), but that the laws that describe its behavior 
will be similar in form to physical laws. Remember  that the purpose of the 
machine has nothing to do with physics_ It was designed the way it was for 
good, hard engineering reasons: the cost of connectors, the need to dissipate 
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heat, the volume of wires. Any similarity to physics, living or dead, is purely 
unintentional. But not coincidental. 

3. NEW H O P E  FOR A SCIENCE OF C O M P U T A T I O N  

Progress in physics comes by taking things apart, in computation, by 
putting things together. We might have had an analytic science of computa- 
tion, but as it worked out we learned more from putting together thermo- 
stats and computers than we did from taking apart monkey brains and frogs 
eyes. The science of computation, such as it is, is synthetic. 

The respective models of physics and computation reflect the difference 
in approach. For example, in classical physics most quantities are continu- 
ous. As physicists probe deeper into lower and more fundamental levels of 
reality, things begin to look discrete. The physicist of yesterday measured. 
The physicist of today counts. In computation things are reversed. We have 
begun in the other direction, and, because we have begun only recently, we 
have not gone far. This is one of the reasons that computer science seems to 
be "no good" - -we  have not gotten beyond counting. Knowing the lowest 
level rules is good, but it is in no way sufficient. Quantum chromodynamics 
is not much use in designing bridges. Computer science is not much use in 
designing computers. 

I am not discouraged. While physics is looking down into lower and 
lower levels, computer science is looking up. It is looking up because 
systems are becoming large enough for there to be a forest to see through 

the trees. 
There are two sorts of things that could be called computational 

models, and I would like to make clear which one I am talking about. By 
"computational model," we could mean a model of all possible computa- 
tional worlds. There have been a few important steps toward such meta- 
computational theory (theories of servomechanisms, Turing computability, 
information theory), but so far a complete and coherent model is still 
beyond sight. The second sense of "computational model," the one that I 
am using in this paper, is a model of a particular computational system. 
Physics may be such a model. Physical law does not need to describe what 
might happen in any possible universe, just this one. In computation, the 
distinction is more important because we design our own worlds. The 
connection machine described earlier is an example of such a world. 

I see no way to predict the development of a generalized theory of 
computation, but I do see reasons to expect good, clean, useful models of 
specific computational systems--models that will look like physics. The first 
reason is that physical law itself seems to be such a model. If the universe is 
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a computing machine, then we know that at least some computing machines 
have elegant laws. This view of the universe is well represented elsewhere 
(Landauer, 1967; Toffoli, 1977), and I will not dwell on it. 

The second reason for believing in physical-computat ional  model 
convergence is more profound, and therefore more likely to be wrong. Both 
sciences study large systems of weakly interacting components.  Such sys- 
tems, with local rules of interaction, often seem to have simple macro laws. 
There may be a " law of large systems," corresponding to the statistical " law 
of large numbers." The statistical law says that the sum of many random 
variables always has a simple gaussian distribution, whatever the distribu- 
tions of the variables. A sum represents less information than its addends, 
and the gaussian distribution has minimum information. In the same way, 
when we add together the individual behaviors of components we lose 
information. Only the simple linear properties show through. Classical 
physics is simple because only simple additive properties, like momentum, 
remain visible at the macro scale. 

The final reason for expecting physicslike behavior in computational 
systems is that all of our computing machines must be implemented in the 
physical world. As our components  become smaller and more efficient, they 
must inherit some of the constraints of the physical laws. Machines will 
have three-dimensional connectivity, because space is three dimensional. 
They will have limited propagation rates, because space has a finite speed of 
light. As less is wasted between function and implementation, the physics 
begins to show through. 

These conjectures will be tested, because in the future we will be 
building even larger computing machines, out of even smaller components.  
Perhaps we will grow crystals, with each lattice point a processor. What will 
computat ion look like with a mole of processors? Much like physics, I think. 
When this happens, we can look forward to new models of computation, 
models that may inherit some of the power and the beauty of physical law. 
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