
International Journal of Theoretical Physics, Vol. 21, Nos. 3/4, 1982

New Computer Architectures and Their
Relationship to Physics

or
Why Computer Science Is No Good

W. Daniel HUlis,

Artificial Intelligence Laboratoo', Massachusetts Institute of Technolog3:, Cambridge,
Massachusetts

Received May 6, 1981

In the past, computation scientists have found it convenient and productive to
adopt a model of the computational universe that was very different from our
models of the physical universe. This is changing. As we build bigger computers
out of smaller components, our models of computation are forced to change.
There is reason to hope that our new models, for specific systems, will be similar
to the models of physics. The paper is divided into three sections. The first argues
that computer science is missing many of the things that make the laws of
physics so powerful--locality, symmetry, invariance of scale. This is why physics
is so nice and computer science isn't. The second section gives an example of a
new-wave computing machine, and shows some physicslike laws that apply to its
computations. The final section gives some reasons for expecting this conver-
gence of physical and computational law.

1. W H Y C O M P U T E R S C I E N C E I S N O G O O D

A c o m p u t e r des igne r is c o n s t r a i n e d by m u n d a n e p r o b l e m s that have no

c o u n t e r p a r t s in the theore t i ca l m o d e l s of c o m p u t e r science: the size of

c o n n e c t o r s , the cost and ava i lab i l i ty o f c o m p o n e n t s , the m e c h a n i c a l l ayou t

o f the sys tem. R e c e n t l y these fac tors have d i c t a t ed a d r a m a t i c change in the

1This report describes research done at the Artificial Intelligence Laboratory of the Massachu-
setts Institute of Technology. Support for the Artificial Intelligence Laboratory's artificial
intelligence research is provided in part by the Advanced Research Projects Agency of the
Department of Defense under contract with the Office of Naval Research, Contract N00014-
80-c-0505. The author is supported by a fellowship provided by the Fannie and John Hertz
Foundation.

255
0020-7748/82/(M00-0255503.00/0 '~ 1982 Plenum Publishing Corporation

256 Hillis

way we design computers. Things don't look the same. Wires cost more than
gates, software costs more than memory, and the air conditioner takes up
more room than the computer. Our current models of computation are
inadequate for designing or even describing our new architectures. An
abstract model is powerful only when it allows us to pay attention to certain
aspects of a situation while ignoring others. Our current models seem to
emphasize the wrong details.

The areas where computational models are weak are often the areas
where they differ from physical models. In physics, for example, many
fundamental quantities are conserved, whereas in our old models of compu-
tation data can be created or destroyed at no cost. This is a difference and a
weak point. The big air conditioner sitting next to the small computer is
testimony to this fact. Other differences in physical and computational
models also seem to cause problems. I will point to only one sort of
difference here, the difference in locality, although similar arguments could
be made for symmetry, linearity, or continuity.

In the physical universe, the effect that one event has upon another
tends to decrease with the distance in time or in space between them. This
allows us to study the motions of the Jovian moons without taking into
account the motion of Mercury. It is fundamental to the twin concepts of
Object and Action. Locality of action shows itself in the finite speed of
light, the inverse square of fields, and in macroscopic statistical effects like
rates of reaction and the speed of sound. In computation, or at least in our
old models of computation, an arbitrarily small event can, and often does,
cause an arbitrarily large effect. A tiny program can clear all of memory. A
single instruction can stop the machine. In computation there is no analog
of distance. One memory location is as easily influenced as another.

Fundamental to our old conception of computation was the idealized
connection, the wire. A wire, as we once imagined it, was a marvelous thing.
You put in data at one end and simultaneously they appear at any number
of useful places throughout the machine. Wires are cheap, take up little
room, and don't dissipate power.

Lately, we have become less enamored with wires. As switching compo-
nents become smaller and less expensive we begin to notice that most of our
costs are in wires, most our space is filled with wires, and most of our time
is spent transmitting from one end of the wire to the other. We are
discovering that it appeared as if we could connect a wire to as many places
as we wanted, only because we did not yet want to connect to very many
places. We have been forced to notice that we cannot measure a signal
without disturbing it, so, for example, we must drive a wire with power
proportional to the number of inputs that sense it. Of course we knew this
before, but the fact seems more significant when the number in question is

New Computer Architectures 257

ten million, instead of just ten. Also, real wires take up room. Since we are
building in mere 3-space, it is impractical to connect components arbitrarily.
When we were wiring up a few hundred vacuum tubes this was not a
problem, but today we need to wire together hundreds of millions of
components and we need to do it in a smaller space. Most of the wires must
be short. There is no room for anything else. (There are also similar
problems with memory locations, which are just wires turned sideways in
time.)

Our models of computation do not offer much help in solving the
problem. Until recently, they abstracted the wire away into a costless and
volumeless idealized connection. Our old models impose no locality on
connections, even though the real world does. This is a prime example of
where our old models break down. In classical computation the wire is not
even considered. In current engineering it may be the most important thing.
Something is wrong with the theory.

2. AN EXAMPLE OF NEW WAVE COMPUTER
ARCHITECTURE

In this section I will describe a new type of computing machine, with
some laws of behavior that are similar in form to physical laws. The
intended application of the machine has nothing to do with physics. It is
designed for knowledge retrieval and deduction operations, a problem of
artificial intelligence.

Artificial intelligence is the study of making machines smart. It is a
field limited by its tools. Currently, our mechanisms are too slow. A typical
AI program, written today, knows only a few hundred facts. We would like
to increase this to a few million, but the programs already take minutes to
make decisions which need to be made in seconds. Scaled up, they would
take years. Von Neumann machines, even if they are built of exotic ultrafast
components, are unlikely candidates for solving these problems. They are
limited by the speed of light. A supercomputer inside a six-inch cube, which
sends a single signal from one corner to the other, would have a cycle time
of at least 1 nsec. This is less than a factor of a hundred better than
currently available machines--not nearly fast enough to solve our million-
scaled AI problems.

The potential solution to the problem is concurrency. Integrated circuit
technology makes it economically feasible to produce millions of computing
devices to work on different parts of the problem in parallel. We are now in
the process of designing such a machine at the MIT AI Laboratory (Hillis,
1981). The proposed architecture, called the connection machine, is a locally

258 HiUis

connected array of process ing-memory cells. A medium-sized ma-
chine, built today, might have a million such cells. Unlike the classical
word-at-a-time von Neumann architecture, each object in memory has
associated with it not only the hardware necessary to hold the state of the
object, but also the hardware necessary to process it.

The machine will be used to manipulate information stored in semantic
networks (Woods, 1975; Quillian, 1968). Semantic networks are a way of
representing knowledge as labeled graphs. The vertices represent concepts
and the edges represent relations between those concepts. Semantic
networks are a favorite representation tool of artificial intelligence. Unfor-
tunately, retrieving information from such a network often involves search-
ing through the entire ne twork - - a slow job on a serial machine. Worse yet,
the desired information may not even be explicitly stored in the network; it
may need to be deduced. The connection machine was designed for such
deduction and retrieval operations. I will not discuss here how it accom-
plishes this task. Instead, I will skip directly to describing the machine's
physical structure.

If you were to pull out one of the printed circuit boards of the
proposed connection machine, you would see an array of identical integrated
circuit packages connected in a grid. Each package would be wired to only it
four nearest neighbors, as in the grid shown in Figure 1. If you were to
remove one of the integrated circuits and look at the chip under a micro-
scope, you would see the same picture repeated. If you were to unfold the
rack of printed circuit boards, you would see that they too were wired in a
locally connected two-dimensional grid. This sort of scale invariance may be
commonplace in physics, but until recently it has been unusual in computer
science.

The repeating grid structure was chosen not because we like it, but
because we can wire it. We might have chosen a one- or a three-dimensional

-{

-E

4:

-E
Fig. 1. At any scale, the machine is a grid.

New Compuler Architectures 259

structure, but if we had chosen, say, a four-dimensional grid or a boolean n
cube, we would not have been able to put it together. It would have been all
wires. The thing that makes us wire it as a grid at the chip level also makes
us wire it that way at the board level and at the system level. The scale
invariance comes naturally.

Unfortunately, our semantic network problems do not arrange them-
selves into nice rectangular grids. Each cell only needs to talk to a few other
cells, but they are not necessarily the cells in the immediate neighborhood.
The machine must have some mechanism for nonlocal communication. It
would be nice if we could run a wire between any two cells that need to
communicate, but we cannot, for the reasons stated above. Instead, the
entire grid functions as a packet-switched communications ne twork- -a sort
of postal system where messages travel from one cell to another by being
relayed through the grid. Cells communicate by sending messages to each
other.

A message is addressed to the appropriate cell by specifying the relative
displacement in the grid of the recipient from the sender (example: up two
and over five). This does not specify the route the message is to take, just its
destination. The sender mails a message by handing it to a neighbor, and
the neighbor decides on the basis of the address which way to send the
message next. If the y displacement is positive, it will go up. If the x
displacement is negative, it will go left. The neighbor modifies the address
by incrementing or decrementing is appropriately, so that when the message
reaches its intended destination both displacements will be zero. For exam-
ple, a communicator receiving a message addressed " two up and two over"
can change it to "one up and two over" and send the message to the
communicator above. This is illustrated in Figure 2.

Delivering messages takes time, so the distance between communicat-
ing cells is important. The metric is not the same as in Euclidean space
because there are no diagonals. The taxicab metric (delta x plus delta y) is

E
E

3-E

3-E

3--s
}-s

k--E I

 F--E

t--s L__

]-E
]--s

Fig. 2. A message moving toward its destination.

3-s

-1

-i

-1

260 Hillis

closer, but even this needs some refinement. The problem is that each cell
has only a finite number of states, so it can only handle a few messages at
one time. Messages may need to sidestep congestion. It is no problem to
design local routing algorithms that will accomplish this, but the effective
distance between two objects is increased. We need a metric that takes this
into account.

We define the distance between two points as the average commumca-
tion time between them. In an empty cellular space, this is the same as the
taxicab metric. The presence of an intervening object distorts the metric
because messages must flow around it. The curvature of the opt imum
message paths (geodesics) increases with the density of objects. The farther
away the objects, the less the effect, so there is a local distortion in the
metric proportional to the density of objects.

This distortion is not quite the same as physical gravity, and I will not
suggest that the causes of the two are sirmlar, but it is interesting to find an
effect in computat ion that is so similar in form to one in physics.

Here is another one. Imagine that two cells are sitting next to each
other in the grid. Imagine that the left cell communicates mostly with cells
off to the right and the right cell communicates with cells to left. It would be
advantageous (in the sense of minimizing communication time) if the cells
were to exchange places, bringing each of them nearer to the cells with
which they communicate. The hardware of the cell cannot move, but two
cells can exchange all internal states. The effect is the same. The computa-
tion object that was in the right cell moves to the left cell, and vice versa.
(Interested parties must be informed of the change of address, but this lurns
out to be easy on the connection machine.)

By this mechanism, with some refinements, the hardware of the ma-
chine causes each cell to migrate in the direction in which it sends most of
its messages. Groups of intercommunicating cells will tend to cluster. In
such a system, paths of communication act like attractive forces which bind
the cells together. At a larger scale, the clusters act like objects. They have
strong internal forces and weaker interactions with other objects. Communi-
cation between two clusters tends to pull them together. This motion is a
cumulative effect of the local behavior of the individual cells, but it can be
analyzed as a macroforce between two objects. There is no need to pay
attention to the detailed interactions of the individual cells.

I could give a specific local rules that cause the macroforces to behave
like F = Ma, but that would miss the point. The point is not that this is a
good model of physics (it isn't), but that the laws that describe its behavior
will be similar in form to physical laws. Remember that the purpose of the
machine has nothing to do with physics_ It was designed the way it was for
good, hard engineering reasons: the cost of connectors, the need to dissipate

New Computer Architectures 261

heat, the volume of wires. Any similarity to physics, living or dead, is purely
unintentional. But not coincidental.

3. NEW H O P E FOR A SCIENCE OF C O M P U T A T I O N

Progress in physics comes by taking things apart, in computation, by
putting things together. We might have had an analytic science of computa-
tion, but as it worked out we learned more from putting together thermo-
stats and computers than we did from taking apart monkey brains and frogs
eyes. The science of computation, such as it is, is synthetic.

The respective models of physics and computation reflect the difference
in approach. For example, in classical physics most quantities are continu-
ous. As physicists probe deeper into lower and more fundamental levels of
reality, things begin to look discrete. The physicist of yesterday measured.
The physicist of today counts. In computation things are reversed. We have
begun in the other direction, and, because we have begun only recently, we
have not gone far. This is one of the reasons that computer science seems to
be "no good" - -we have not gotten beyond counting. Knowing the lowest
level rules is good, but it is in no way sufficient. Quantum chromodynamics
is not much use in designing bridges. Computer science is not much use in
designing computers.

I am not discouraged. While physics is looking down into lower and
lower levels, computer science is looking up. It is looking up because
systems are becoming large enough for there to be a forest to see through

the trees.
There are two sorts of things that could be called computational

models, and I would like to make clear which one I am talking about. By
"computational model," we could mean a model of all possible computa-
tional worlds. There have been a few important steps toward such meta-
computational theory (theories of servomechanisms, Turing computability,
information theory), but so far a complete and coherent model is still
beyond sight. The second sense of "computational model," the one that I
am using in this paper, is a model of a particular computational system.
Physics may be such a model. Physical law does not need to describe what
might happen in any possible universe, just this one. In computation, the
distinction is more important because we design our own worlds. The
connection machine described earlier is an example of such a world.

I see no way to predict the development of a generalized theory of
computation, but I do see reasons to expect good, clean, useful models of
specific computational systems--models that will look like physics. The first
reason is that physical law itself seems to be such a model. If the universe is

262 Hillis

a computing machine, then we know that at least some computing machines
have elegant laws. This view of the universe is well represented elsewhere
(Landauer, 1967; Toffoli, 1977), and I will not dwell on it.

The second reason for believing in physical-computat ional model
convergence is more profound, and therefore more likely to be wrong. Both
sciences study large systems of weakly interacting components. Such sys-
tems, with local rules of interaction, often seem to have simple macro laws.
There may be a " law of large systems," corresponding to the statistical " law
of large numbers." The statistical law says that the sum of many random
variables always has a simple gaussian distribution, whatever the distribu-
tions of the variables. A sum represents less information than its addends,
and the gaussian distribution has minimum information. In the same way,
when we add together the individual behaviors of components we lose
information. Only the simple linear properties show through. Classical
physics is simple because only simple additive properties, like momentum,
remain visible at the macro scale.

The final reason for expecting physicslike behavior in computational
systems is that all of our computing machines must be implemented in the
physical world. As our components become smaller and more efficient, they
must inherit some of the constraints of the physical laws. Machines will
have three-dimensional connectivity, because space is three dimensional.
They will have limited propagation rates, because space has a finite speed of
light. As less is wasted between function and implementation, the physics
begins to show through.

These conjectures will be tested, because in the future we will be
building even larger computing machines, out of even smaller components.
Perhaps we will grow crystals, with each lattice point a processor. What will
computat ion look like with a mole of processors? Much like physics, I think.
When this happens, we can look forward to new models of computation,
models that may inherit some of the power and the beauty of physical law.

R E F E R E N C E S

Backus, J, (1978). "Can programming be liberated from the yon Neumann style'?" Commvnica-
tion of the ACM, Vol. 21, No. 8., pp. 613-641, (August).

Hillis, W. D. (1981). "The Connection Machine," AI. Memo No. 646, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology.

Landauer, R. (1967). "Wanted: a physically possible theory of physics," IEEE Spectrum 4,
105-109.

Woods, W. (1975). "What's in a link: Foundations for semantic networks," in Representation
and Understanding. Academic Press, New York.

Quillian, M. (1968). "Semantic memory," in Semantic Information Processing, Minsky, ed. MIT
Press, Cambridge, Massachusetts.

Toffoli, T. (1977). "Cellular automata mechanics," Tech. Rep. No. 208, Logic of Computers
Group, CCS Dept., The University of Michigan (November}.

