Dual of the series resonant converter. In the converter illustrated in Fig. 19.54, L_{F1} , L_{F2} , and C_F are large filter elements, whose switching ripples are small. L and C are tank elements, whose waveforms $i_L(t)$ and $v_C(t)$ are nearly sinusoidal.

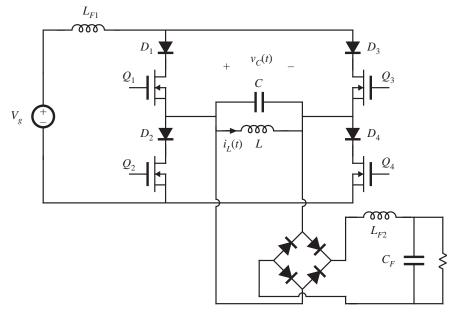


Fig. 19.54 Dual of the series resonant converter, Problem 19.3.

- (a) Using the sinusoidal approximation method, develop equivalent circuit models for the switch network, tank network, and rectifier network.
- **(b)** Sketch a Bode diagram of the parallel *LC* parallel tank impedance.
- (c) Solve your model. Find an analytical solution for the converter voltage conversion ratio $M = V/V_g$, as a function of the effective Q_e and the normalized switching frequency $F = f_s/f_0$. Sketch M vs. F.
- (d) What can you say about the validity of the sinusoidal approximation for this converter? Which parts of your *M* vs. *F* plot of part (c) are valid and accurate?