ECE581

State Plane Analysis of the Dual Active Half-Bridge Converter

 C_{∞}

The dual active half-bridge (DAHB) converter is shown in Fig. 1. All capacitors C_{∞} are very large in value, such that their ripple can be neglected within one switching period. The converter operates with phase-shift modulation, as shown in the timing diagram in Fig. 1. Consider the following design of the converter:

- $L_l = 10 \ \mu H$
 - $V_g = 200 \text{ V}$
- V = 200 V
- $n_t = 1$

V

- $f_s = 200 \text{ kHz}$
- All devices Q_1 - Q_4 have an effective output capacitance of $C_{ds} = 100 \text{ pF}$
- All capacitors, C_{∞} , have the same voltage bias, $V_g/2 = V/2$ L_{l} 1:*n* + S_{2} v_p v_{s} S_3

Figure 1: DAHB converter with phase shift modulation control

 C_{∞}

- 1. Sketch the j_l - m_p and j_l - m_s state planes for operation at P_{out} large enough such that all devices obtain ZVS and the phase shift $t_{\varphi} > 0$. Label all salient features (angles, radii, J and M values) with appropriate variable names
- 2. Solve each state plane to determine the ZVS boundary of each bridge, as a function of the current at the start of the respective dead-time interval and any circuit parameters

For the 1:1 DAHB, with modulation timing as defined in Fig. 1, it is possible to operate with $t_{\varphi} = 0$, but $t_d > 0$, and maintain ZVS of all devices. Under this specific mode of operation

- 3. Sketch the j_l - m_p and j_l - m_s state planes, again labeling all salient features.
- 4. Sketch the time-domain v_p , vs, i_l , i_o , and i_g over one full switching period.
- 5. Solve for numerical values of the dead time t_d of each half-bridge, and the average output power *P*_{out} over one switching period.