(c) 2008 Focus Shift/OSNews/Thom Holwerda - http://www.osnews.com/comics

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

www.dilbert.com scottadams®acl.com

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

12607 £2007 Scott Adams, Inc./Dist. by UFS, Inc

‘M GLAD THAT
'}T H%Ls A WAS YOUR

NAME. TRAINING.
| /
/ /
3 "Q
> D . O_f-

[I1L NEED TO KNOW
| YOUR REQUIREMENTS
| BEFORE I START TO
| DESIGN THE SOFTWARE.

~

u

£-mal: SCOTTADANS# AQL CON

WHAT ARE YOU
TRYING TO
| ACCOMPLISH?

\

- ‘\
FIRST OF ALL, l

i

J

1 !

l/-

_

I™M TRYING TO
MAKE YOU DESIGN
MY SOFTWARE.

R
2 |

A

1

-

© 2006 Scoll Adama, Inc. Dt by UFS, Ine

_/ I MEAN WHAT ARE \
¢ YOU TRYING TO

. ACCOMPLISH WITH |
i\ THE SOFTWARE?)

[T WONT KNOW WHAT |
1 CAN ACCOMPLISH
UNTIL YOU TELL ME

WHAT THE SOFTWARE

CAN DO. }

S

(TRY TO GET THIS
| CONCEPT THROUGH YOUR
‘ THICK SKULL: THE
SOFTWARE CAN DO
WHATEVER I DESIGN
IT TO DO

www.diibert com

CAN YOU DESIGN
IT TO TELL YOU

_MY REQUIREMENTS?

(
|
|

/

How the customer expiainad it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrote it

Hovy the Business Consuliant
described it

How the project was
decumented

What operations installed

How the customer was billed

How it was supported

What the customer reaily
needed

Types of documentation

 Internal documentation (comments 1n your code)
— Plenty of this so far

» External programmer documentation (for other
programmers who would work with your code)

— UML documents

» User documentation (the manual for the poor fools
who will be using your code)

— DOxygen

How to write good comments

Does your comment help your reader
understand the code?

Are you writing a comment just because
you know that "comments are good"?

Is the comment something that the reader
could easily work out for themselves?

Don't be atraid to add a reference instead of
a comment for tricksy things

Some poor commenting

i= i+41; /* Add one to 1 */

for (i= 0; 1 < 1000; i+4+) { /* Tricksy bit */
: Hundreds of lines of obscure uncommented code here

i

int x,v,93,z4; /* Define some variables */

int main ()
/* Main routine */

while (1 < 7) { /*This comment carries on and on

How comments can make code
WOrse

while (J < ARRAYLEN) {
printf ("J is %d\n", 7J);
for (i= 0; 1 < MAXLEN; 1i++) {
for (k= 0; k < KPOS; k++) {
printf ("%d %d\n", i, k);
}

J
J++;

Some more poor comments

while (jJ < ARRAYLEN) {
printf ("J is %d\n", J);
for (i= 0; 1 < MAXLEN; i++) {
/* These comments only */
for (k= 0; k < KPOS; k++) {
/* Serve to break up */
printf ("%d %d\n",1i,k);
/* the program */
}
/* And make the indentation */
}
/* Very hard for the programmer to see */
J++;

Review: how much to comment?

 Just because comments are good doesn't
mean that you should comment every line.

* Too many comments make your code hard
to read.

* Too few comments make your code hard to
understand.

* Comment only where you couldn't trivially
understand what was going on by looking at
the code for a minute or so.

What should I comment for our
project/ in general?

Every file (if you do multi-file programming) to
say what 1t contains

Every function — what variables does it take and
what does it return. (I like to slightly comment the
prototypes too to give a hint)

Every variable apart from "obvious" ones (i, j, k
for loops and FILE *fptr don't require a
comment but int total; might)

Every class/typedef (unless it's really trivial)

Other rules for comments

* Comment 1f you do something "weird" that
might fool other programmers.

» [f a comment 1s getting long consider
referring to other text instead

 Don't let comments interfere with how the
code looks (e.g. make indentation hard to

find)

External (programmer)
documentation

This tells other programmers what your code does

Most large companies have their own standards
for doing this

The aim 1s to allow another programmer to use
and modify your code without having to read and
understand every line

Y our projects will include this type of
documentation (but probably not enough to really
be passed on to other programmers)

Note — everyone has their own rules.

External documentation (Stage 1)

* Describe how your code works generally

hat 1s 1t supposed to do?
nat files does 1t read from or write to?

nat does 1t assume about the input?

£ S

hat algorithms does it use

External Documentation (stage 2)

* Describe the general flow of your program
(no real need for a flowchart though)

 UML Diagrams can help here.

» Explain any complex algorithms which your
program uses or refer to explanations
elsewhere. (e.g. "I use the vcomplexsort see
Knuth page 45 for more details")

External documentation(stage 3)

* [If you use multi-file programming explain
what each file contains

* Explain any class used a lot in your program

* You might also like to explain (and justify)
any global variables you have chosen to use

— More important for C, but mentioned for
completeness

External documentation (stage 4)

* Describe every "major" member function in your
classes and functions 1n your program

* Describe what arguments must be passed and what
1s returned.

e (It1s up to you to decide what 1s a "major"
function — and really depends on the level of detail
you wish to document to).

* Consider which functions are doing "the real
work" — they might not necessarily be the longest
or most difficult to write ones.

User documentation

This 1s documentation for the user of your
program

It 1s the "user manual"

Entire books have been written on the
subject and we will not cover 1t here

Feel free to include user documentation for

your project, but the mimimum requirement
1s a README as described.

