

Types of documentation

•  Internal documentation (comments in your code)
– Plenty of this so far

•  External programmer documentation (for other
programmers who would work with your code)
– UML documents

•  User documentation (the manual for the poor fools
who will be using your code)
– DOxygen

How to write good comments

•  Does your comment help your reader
understand the code?

•  Are you writing a comment just because
you know that "comments are good"?

•  Is the comment something that the reader
could easily work out for themselves?

•  Don't be afraid to add a reference instead of
a comment for tricksy things

Some poor commenting

i= i+1; /* Add one to i */

for (i= 0; i < 1000; i++) { /* Tricksy bit */
.
. Hundreds of lines of obscure uncommented code here
.
}
int x,y,q3,z4; /* Define some variables */

int main()
/* Main routine */

while (i < 7) { /*This comment carries on and on */

How comments can make code
worse

while (j < ARRAYLEN) {
 printf ("J is %d\n", j);
 for (i= 0; i < MAXLEN; i++) {
 for (k= 0; k < KPOS; k++) {
 printf ("%d %d\n",i,k);
 }
 }
 j++;
}

Some more poor comments
while (j < ARRAYLEN) {
 printf ("J is %d\n", j);
 for (i= 0; i < MAXLEN; i++) {
/* These comments only */
 for (k= 0; k < KPOS; k++) {
/* Serve to break up */
 printf ("%d %d\n",i,k);
/* the program */
 }
/* And make the indentation */
 }
/* Very hard for the programmer to see */
 j++;
}

Review: how much to comment?
•  Just because comments are good doesn't

mean that you should comment every line.
•  Too many comments make your code hard

to read.
•  Too few comments make your code hard to

understand.
•  Comment only where you couldn't trivially

understand what was going on by looking at
the code for a minute or so.

What should I comment for our
project/ in general?

•  Every file (if you do multi-file programming) to
say what it contains

•  Every function – what variables does it take and
what does it return. (I like to slightly comment the
prototypes too to give a hint)

•  Every variable apart from "obvious" ones (i,j,k
for loops and FILE *fptr don't require a
comment but int total; might)

•  Every class/typedef (unless it's really trivial)

Other rules for comments

•  Comment if you do something "weird" that
might fool other programmers.

•  If a comment is getting long consider
referring to other text instead

•  Don't let comments interfere with how the
code looks (e.g. make indentation hard to
find)

External (programmer)
documentation

•  This tells other programmers what your code does
•  Most large companies have their own standards

for doing this
•  The aim is to allow another programmer to use

and modify your code without having to read and
understand every line

•  Your projects will include this type of
documentation (but probably not enough to really
be passed on to other programmers)

•  Note – everyone has their own rules.

External documentation (Stage 1)

•  Describe how your code works generally
•  What is it supposed to do?
•  What files does it read from or write to?
•  What does it assume about the input?
•  What algorithms does it use

External Documentation (stage 2)

•  Describe the general flow of your program
(no real need for a flowchart though)

•  UML Diagrams can help here.
•  Explain any complex algorithms which your

program uses or refer to explanations
elsewhere. (e.g. "I use the vcomplexsort see
Knuth page 45 for more details")

External documentation(stage 3)

•  If you use multi-file programming explain
what each file contains

•  Explain any class used a lot in your program
•  You might also like to explain (and justify)

any global variables you have chosen to use
– More important for C, but mentioned for

completeness

External documentation (stage 4)

•  Describe every "major" member function in your
classes and functions in your program

•  Describe what arguments must be passed and what
is returned.

•  (It is up to you to decide what is a "major"
function – and really depends on the level of detail
you wish to document to).

•  Consider which functions are doing "the real
work" – they might not necessarily be the longest
or most difficult to write ones.

User documentation

•  This is documentation for the user of your
program

•  It is the "user manual"
•  Entire books have been written on the

subject and we will not cover it here
•  Feel free to include user documentation for

your project, but the minimum requirement
is a README as described.

