## ECE692

## Exact analysis of a lossy buck boost

The inverting buck-boost converter of Fig. 1 operates with large  $C_o$  such that  $V_{out}$  is nearly constant. Switch  $S_1$  is on during  $DT_s$ , and switch  $S_2$  is on for the remainder of the period. Other than resistance  $R_1$  all circuit elements are lossless. Inductor L has significant ac current ripple under normal operating conditions.



Fig. 1: Inverting Buck-Boost Converter

For subparts (a) and (b), allow the small-ripple approximation to be applied to both L and  $C_o$ 

- a) Solve for an expression for the switching period averaged output voltage, V, of the converter as a function of only  $V_g$ ,  $I_{load}$ , switch timing parameters, and passive values of the converter.
- b) Find the value of the duty cycle, *D*, necessary to achieve V = 5 V when  $V_g = 48$  V,  $R_{in} = 1 \Omega$ , and  $I_{out} = 5$  A.

For subparts (c) and (d), solve without asserting any approximations other than those mentioned in the problem introduction

- c) Solve for an expression for the switching period averaged output voltage, V, of the converter as a function of only  $V_g$ ,  $I_{load}$ , switch timing parameters, and passive values of the converter.
- d) Find and plot the value of the duty cycle, *D*, necessary to achieve V = 5 V when  $V_g = 48$  V,  $R_{in} = 1 \Omega$ ,  $L = 1 \mu$ H, and  $I_{out} = 5$  A, for values of  $T_s$  ranging from 10  $\mu$ s to 1  $\mu$ s. Under what conditions does your answer from part (d) converge to that of part (b)?