Formulation of State Space Matrices

- •Network theoretic approaches exist for the formulation of state space equations
- • Available commercial tools, e.g. PLECS expose solved state space descriptions to the user through command-line interface

L. O. Chua and P. M. Lin, Chapter 8, *Computer-Aided Analysis of Electronic Circuits: Algorithms & Computational Techniques*, 1975 E. Purslow, "Solvability and analysis of linear active networks by use of the state equations," in *IEEE Transactions on Circuit Theory*, 1970

Example State Space Parsing

$$
\begin{bmatrix} c & o \\ o & L \end{bmatrix} \frac{d}{dt} \begin{bmatrix} v_c(t) \\ i_L(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_c(t) \\ i_L(t) \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} V_g & I_{out} \end{bmatrix}
$$

$$
G_{real}: \text{Express} \quad \text{where} \
$$

Component Partitioningんしし $i_{L}(t)$ $L \$ $i_c(t)$ Graph / Network Theory $C = I_{out} \oplus v(t)$
 $I_{out} \oplus v(t)$
 I_{net} interfection and the tree ("which is not be the line of the second rode but has not loops $\int_{\text{out}} \bigcup v(t)$ co -Tree: - Tree + any one tak fams a loop

\n The number of three with only 180 components
\n can while every voltage on light element as 2
$$
v_x
$$
 8 v_c \n

Incidence Matrix

Loop Matrix

 B_0 $v = \phi$

 $\sqrt{2}$

Selecting a Tree

Components (columns) associated

$$
A_{0} = \begin{bmatrix} \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & -\frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} &
$$

Partitioning $rac{1}{4}$ simplest case:
A = Γ get an expecten for current through
all Tree computents as a
function of co-Tree currents $A = [A_{\tau} | A_{\tau}]$ $B = \left[B_{T} ; B_{L} \right]$ -> yet eg untren for voltage on all $B_{L} = I$ (flip columns belove co-Tree compents as forefrom of (14) row of A) * (Any now of B) $T = \emptyset$ $AB^T = \phi$ $\boxed{D = A_1^{-1}A}$ $AB^T = \phi$ It log to note
Joil share any elements e - The sant $B=[B_{1}^{\prime},I_{1}]$ $[A_r : A_L] \begin{bmatrix} B_l^T \\ -\frac{1}{B_l^T} \end{bmatrix} = \emptyset$ $780⁰$ $=\left[(-A_{y}^{A}A_{b})_{q}^{T}\right]^{T}\mathcal{I}$ $=$ zero $\sqrt{ }$ $[A, A, B] = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \emptyset = A B_1 + A_2 = \emptyset$ $-m=\frac{1}{\sqrt{6}}\cdot\frac{1}{2}$

Loop and Cutset Matrices

Final State Space

L. O. Chua and P. M. Lin, Chapter 3, Computer-Aided Analysis of Electronic Circuits: Algorithms & Computational Techniques, 1975

Including Resistances

Including Resistances

- Additional step to eliminate all resistor currents/voltages
	- solve voltage on tree resistors and current in link resistors

$$
D = \begin{bmatrix} V_g & C & RL & \frac{1}{2} & R & L \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} I & \frac{1}{2} & D_L \end{bmatrix}
$$
\n
$$
D_L = \begin{bmatrix} D_{EG} & D_{EJ} \\ D_{RG} & D_{RJ} \end{bmatrix}
$$
\n
$$
\begin{bmatrix} I_{V,c} \\ V_{L,L} \end{bmatrix} = \begin{bmatrix} -(D_{EG}Z^{-1}D_{EG}^T) & D_{EG}Z^{-1}D_{RG}^TZ_RD_{RJ} - D_{EJ} \\ D_{EJ}^T - D_{RJ}^TY^{-1}D_{RG}Y_GD_{EG}^T & -(D_{RJ}^TY^{-1}D_{RJ}) \end{bmatrix} \begin{bmatrix} V_{V,c} \\ I_{L,L} \end{bmatrix}
$$
\n
$$
\begin{pmatrix} i_g(t) \\ i_c(t) \\ v_L(t) \end{pmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -\frac{1}{R} & 1 \\ 1 & -1 & -R_L \end{bmatrix} \begin{bmatrix} V_g \\ v_c(t) \\ i_L(t) \end{bmatrix}
$$

