Course Info

- Course focuses on advanced topics in modeling and control of power electronics
 - Course website: http://web.eecs.utk.edu/~dcostine/ECE692
 - Goal of course is broad understanding of the modeling of switched systems, discrete time modeling and digital control
- Prerequisites: undergraduate Circuits sequence, Microelectronics, ECE 481 – Power Electronics, or equivalent
- Recommended: ECE 581 High Frequency Power Electronics or equivalent experience

Contact Info

Instructor: Daniel Costinett

- Office: MK504
- E-mail: Daniel.Costinett@utk.edu
- Email questions will be answered within 24 hours (excluding weekends)
- Please use [ECE 692] in the subject line

Course Structure

- Course meets MWF 11:30 12:20
- Plan to spend ~9 hours per week on course outside of lectures
- Grading:
 - Homework: 40%
 - ~One homework per week
 - Assignments due on Fridays unless otherwise noted on course website
 - Midterm Project: 25%
 - Final Project: 35%

Lectures

- Powerpoint slides for lectures posted to website prior to class
- Annotated slides posted after class
- Lectures recorded and available on website
 - Accessible from UTK network
 - *Not* re-recorded in the event of a technical difficulty

Assignments

- Assignments due *at the start of lecture* on the day indicated on the course schedule
- No late work will be accepted except in cases of documented medical emergences
- Collaboration is encouraged on all assignments except exams; Turn in your own work
- All work to be turned in through canvas

Textbook and Materials

• The optional textbook for the course is

L Corradini, D Maksimovic, P Mattavelli, and R. Zane *Digital Control of High-Frequency Switched-Mode Power Converters*, Wiley 2015

- MATLAB/Simulink, LTSpice will be used; All installed in the Tesla Lab
- Lecture slides and notes, additional course materials, homework, due dates, etc. posted on the course website
- Additional information on course website

COURSE INTRODUCTION

DAB Example

Motivating Example

DAB Topology

- Dual Active Bridge (DAB) with phase shift modulation
- Transformer isolation with incorporated leakage inductance
- Soft switching of all devices across a wide range of loads

STEADY-STATE MODELING

Averaged Modeling ECE 481: Intro Perer Electronics

) Small Ripple Approximation
$$i_{L}(t) \approx I_{L} \qquad Problem$$

 $V_{c}(t) \approx V$

2) Apply Volt-see balance
$$\ddagger cap-Q = balance$$

 $\langle N_L \rangle \Big|_{T_s} = \not S = \frac{1}{T_s} \Big[V_a \frac{T_s}{2} + (-U_a) \frac{T_s}{2} - (\frac{V_{out}}{T_s}) \frac{T_s}{2} + (\frac{V_{out}}{T_s}) \frac{T_s}{2} \Big] = \not S$
 $\langle i_L \rangle \Big|_{T_s} = \not S = \frac{1}{T_s} \Big[\frac{T_s}{2} \frac{T_s}{T_s} - \frac{T_s}{2} \frac{T_s}$

Limitations of Average Modeling

Averaging: Discussion

Applicability of Averaging

