

ugmented State Space Model

If
$$\psi \rightarrow new$$
 be calculate $\int_{0}^{\pi} A(t) e^{-t} B_{i} n(r) dr$ for every inharmal $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - \Gamma \right] B_{i} u$ when A_{i} non-shaplow $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - \Gamma \right] B_{i} u$ when $A_{i}^{+} = \left[e^{A(t)} - \Gamma \right] B_{i} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - \Gamma \right] B_{i} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - \Gamma \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - \Gamma \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} u dt$ and $\int_{0}^{\pi} A_{i}^{+} \left[e^{A(t)} - A_{i}^{+} \right] A_{i}^{+} u$ and $\int_{0}^{\pi} A_{i}^{+} u dt$ and $\int_{0}^{\pi} A_{i}^$

mall-Signal Linearization

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

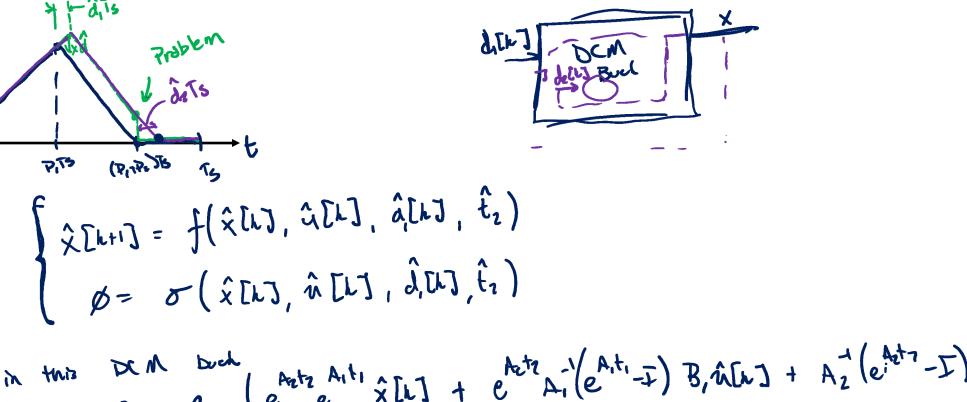
$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

$$x[L+1] = \overline{f}(ti) \times [L] + \overline{f}(ti) u[L] = f(x[L], u[L], ti)$$

ate-Dependent Switching



in this DCM buch (exets Aiti
$$\hat{\chi}[L]$$
 + exets $\hat{\chi}[L]$ + $\hat{\chi}[$

eneralized State Space Model

([LH] =
$$\int (x[L], u[L], d[L], \omega[L])$$

when inter control $\omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$

where $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$
 $\omega(L) = \omega(L) \rightarrow \text{come vector of auxiliary variables}$