

Linearization of States
Can also linearite just select subintervals. Instead of Peg, find $\theta_{i,eq}$ also linearite just select subintervals. Instead
 $\theta_{i,eg} = \begin{bmatrix} \frac{\partial x_i(t_{i1})}{\partial x_i(t_i)} & \frac{\partial x_i(t_{i1})}{\partial x_i(t_i)} & \cdots \\ \frac{\partial x_g(t_{i1})}{\partial x_i(t_i)} & \cdots \\ \frac{\partial x_g(t_{i1})}{\partial x_i(t_i)} & \cdots \end{bmatrix}$ Optrons to deal with nonlinear state-dependent switching C Gereralized State Space in select subintervals everalized state space in solutions
(2b) use circuit analyers to directly find lives

Example: DAB Model

 $C_{\alpha\beta}$

 C_{σ}

 52

D. Costinett, "Reduced Order Discrete Time Modeling of ZVS Transition Dynamics in the Dual Active Bridge Converter", APEC 2015

Order of System

- Including $v_p(t)$ as a state results in 3rd-order model \bullet
- Resulting transfer function is of the form \bullet

$$
G_{\nu\varphi}(z) = G_{\nu\varphi 0} \frac{1 - q_1 z^{-1}}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})}
$$

- Outside of resonant transition $|v_p|=V_g$ is constant, resulting in reduced order
- Goal: eliminate constant state, \bullet while maintaining effect of resonant transition on $i_1(t)$, $v_{out}(t)$

Model ZVS as Disturbance

 \bullet Consider how model takes transition dynamics into account:

> $\boldsymbol{\varPhi}=\mathit{e}$ $\mathrm{A}_3t_3e_\theta$ $\mathrm{A}_2 t_2$ $\boldsymbol{\varrho}$ $\mathbf{A_1}t_1$ \mathbf{I}_{HC}

• Red term models relation between states at start/end of ZVS subinterval

$$
\widehat{x}(t_1) = \underbrace{\widehat{e^{\mathbf{A}_1 t_1}} \widehat{x}(t_0)}_{\text{with } \mathbf{A}_1 \in \mathfrak{R}^{3 \times 3}}
$$

 \bullet Using circuit analysis, solve new matrix $\boldsymbol{A}_{res}\!\in\!\mathfrak{R}^{2\times 2}$ which models how ZVS transition affects states at t = $t_{\scriptscriptstyle 1}$

Resonant Transition Matrix

- \bullet • Maintaining second order, $x = \left[\right.i_{l}\right.\left.v_{out}\right.$ $\, T \,$
- New matrix takes the linear form

• Linearized with respect to *x*(0), rather than time

Case I: Above ZVS

• Linearized relations solved using circuit analysis

$$
\frac{\Delta\lambda}{\Delta I} = L_l - L_l \sqrt{1 - \left(\frac{2V_g}{R_0 I_0}\right)^2} ,
$$

$$
\frac{\Delta Q}{\Delta I} = \frac{2V_g C_p}{I_0} ,
$$

D. Costinett, D. Seltzer, R. Zane, and D. Maksimovic, "Analysis of inherent volt-second balancing of magnetic devices in zero-voltage switched power converters," in Proc. Appl. Power Electron. Conf. (APEC), arch 2013, pp. 9–15.

Case II: Below ZVS

• Solution different when partial hard switching occurs

$$
\frac{\Delta\lambda}{\Delta I} = L_l - L_l \cos(\omega_0 t_1) ,
$$

$$
\frac{\Delta Q}{\Delta I} = \frac{\sin(\omega_0 t_1)}{\omega_f} .
$$

Linearized Result

• Assuming balanced operation and small ripple on V_{out}

$$
\mathbf{A}_{res} = \begin{bmatrix} \frac{\partial v_{out}(t_1)}{\partial v_{out}(0)} & \frac{\partial v_{out}(t_1)}{\partial i_l(0)} \\ \frac{\partial i_l(t_1)}{\partial v_{out}(0)} & \frac{\partial i_l(t_1)}{\partial i_l(0)} \end{bmatrix} = \begin{bmatrix} \mathbf{\hat{x}} & \frac{\Delta Q}{\Delta I} \frac{1}{C_{out}} \\ \mathbf{\hat{y}} & 1 - \frac{\Delta \lambda}{\Delta I} \frac{1}{L_l} \end{bmatrix}
$$

• Resulting model is now

$$
\Phi = e^{\mathbf{A}_3 t_3} e^{\mathbf{A}_2 t_2} \mathbf{A}_{\text{res}} \mathbf{I}_{HC}
$$

$$
\mathbf{\Gamma} = e^{\mathbf{A}_3 t_3} (\mathbf{A}_2 \mathbf{-A}_3) \mathbf{X}_0
$$

where $\Phi \in \mathbb{R}^{2 \times 2}$ and $\Gamma \in \mathbb{R}^{2 \times 1}$

Model Accuracy

D. Costinett, "Reduced Order Discrete Time Modeling of ZVS Transition Dynamics in the Dual Active Bridge Converter", APEC 2015