Compensator Realizations (PLD compensators)

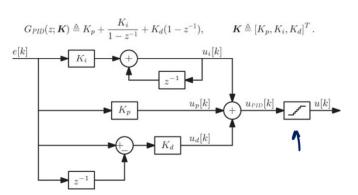


Figure 6.2 Parallel realization of a digital PID compensator.

5
$$G_{PID}(z; \boldsymbol{b}) \triangleq \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - z^{-1}}, \qquad \boldsymbol{b} \triangleq [b_0, b_1, b_2]^T.$$

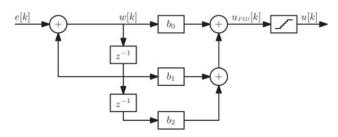


Figure 6.3 Direct realization of a digital PID compensator.

$$G_{PID}(z; c) \triangleq rac{K}{1 - z^{-1}} \left(1 + c_{z_1} z^{-1} \right) \left(1 + c_{z_2} z^{-1} \right), \qquad c \triangleq [K, c_{z_1}, c_{z_2}]^T,$$
 6

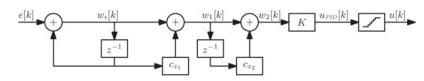


Figure 6.4 Cascade realization of a digital PID compensator.

Parallel Realization

$$\begin{split} u_p[k] &= K_p e[k], \\ u_i[k] &= u_i[k-1] + K_i e[k], \\ u_d[k] &= K_d(e[k] - e[k-1]), \\ u[k] &= u_p[k] + u_i[k] + u_d[k]. \end{split}$$

The compensator coefficients K_p , K_i , and K_d are the proportional, integral, and derivative gains, respectively.

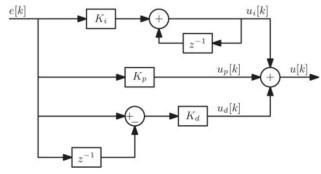
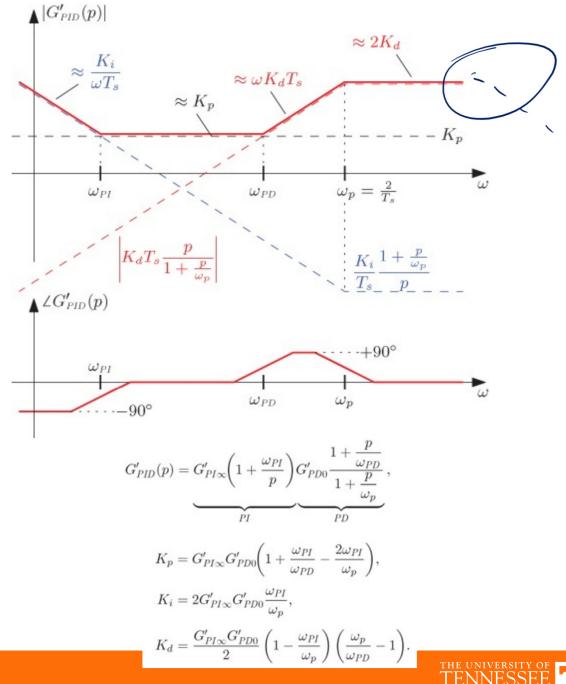


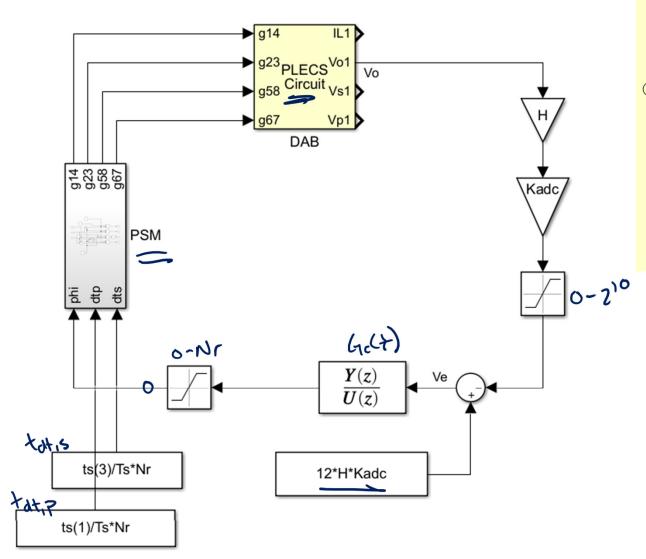
Figure 4.3 Block diagram of a digital PID compensator in the parallel form.

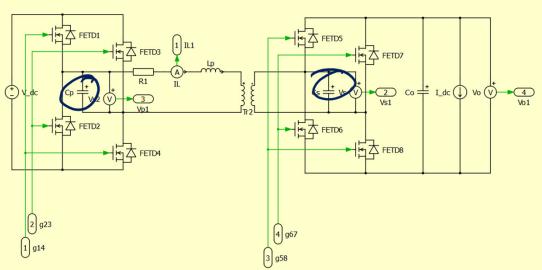
$$G_{PID}(z) = K_p + \frac{K_i}{1 - z^{-1}} + K_d(1 - z^{-1}).$$

$$G'_{PID}(p) = K_p + \underbrace{\frac{K_i}{T_s} \frac{1 + \frac{p}{\omega_p}}{p}}_{Proportional\ term} + \underbrace{\frac{K_i}{T_s} \frac{1 + \frac{p}{\omega_p}}{p}}_{Derivative\ term},$$

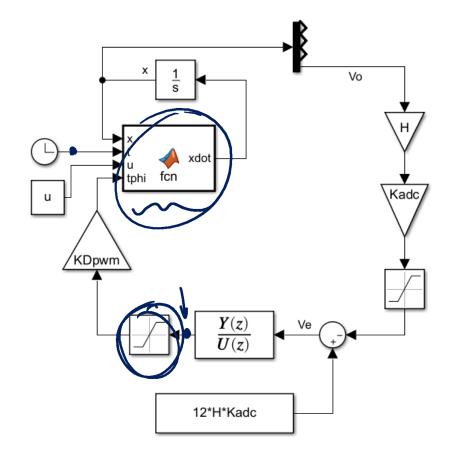


Simulation (Large Signal)





Alternative Simulation (Large Signal)

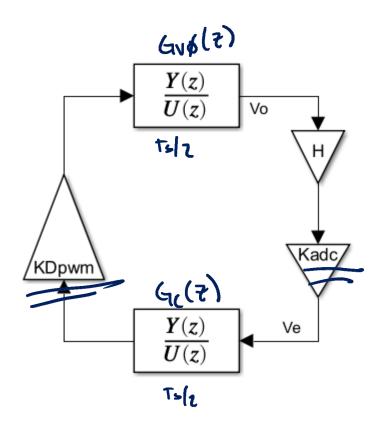


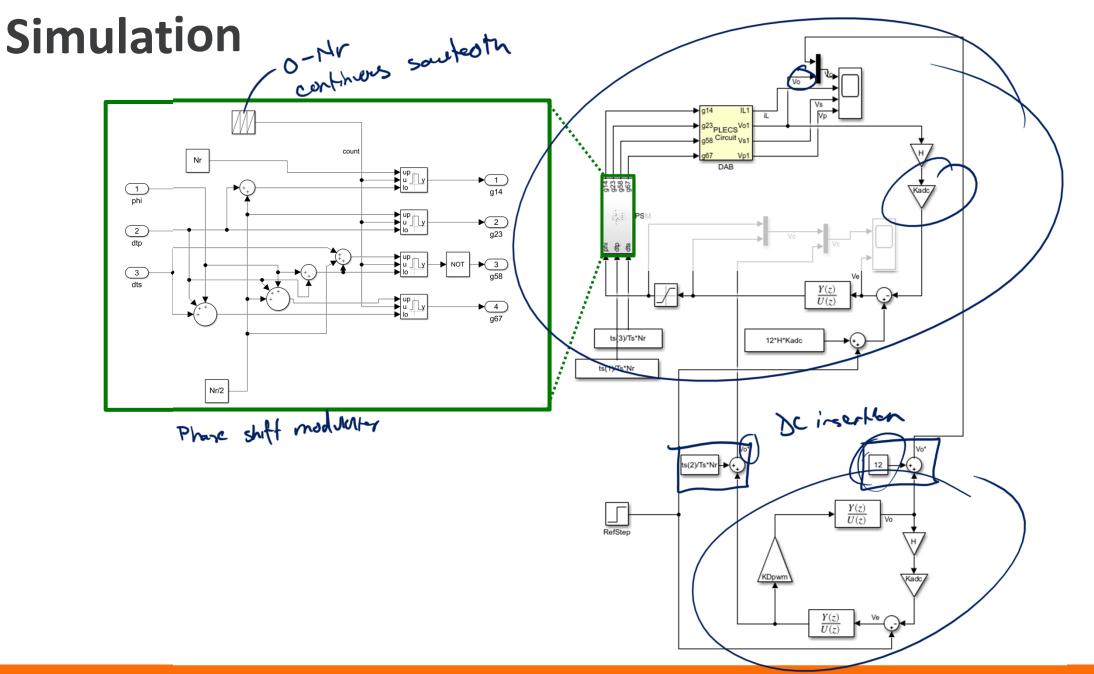
```
function xdot = fcn(x, t,
    u,tphi, A1, A2, B1, B2, Ts)

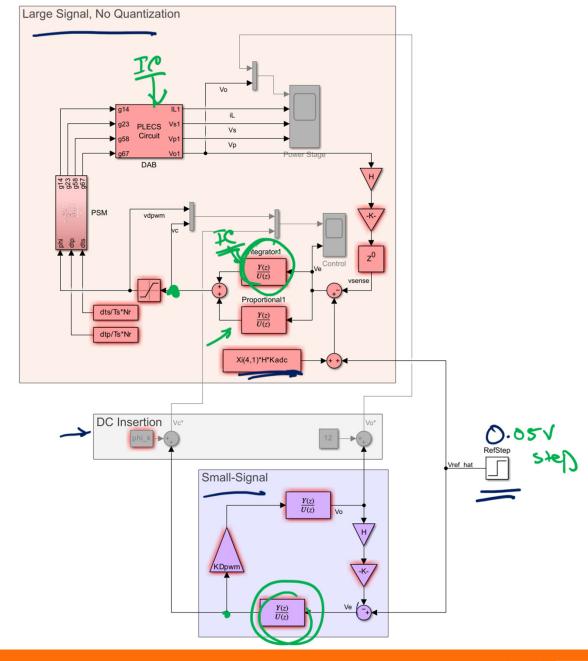
tp = mod(t,Ts);

if (tp>tphi)
    xdot = A1*x + B1*u;
else
    xdot = A2*x+B2*u;
end
```

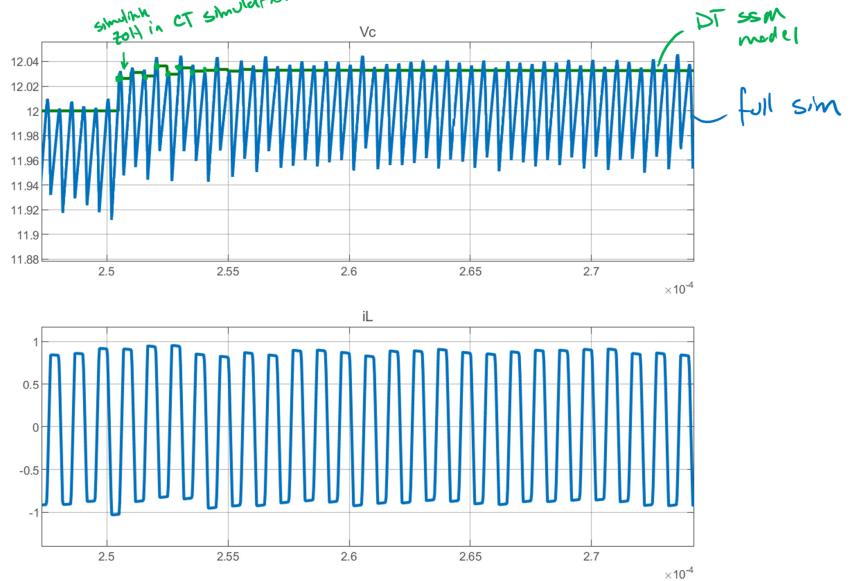
Simulation (Small Signal)



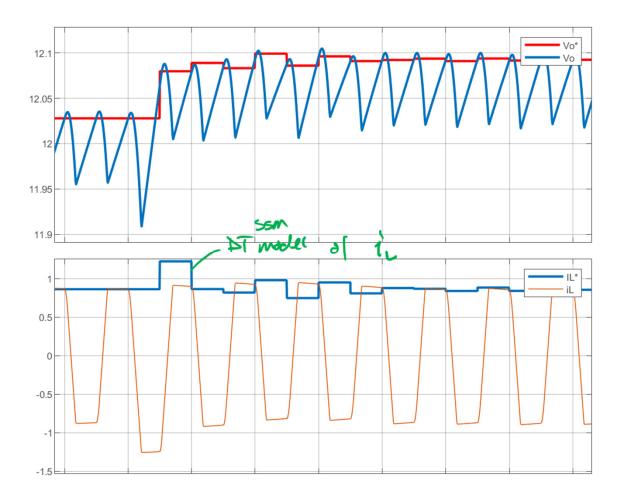




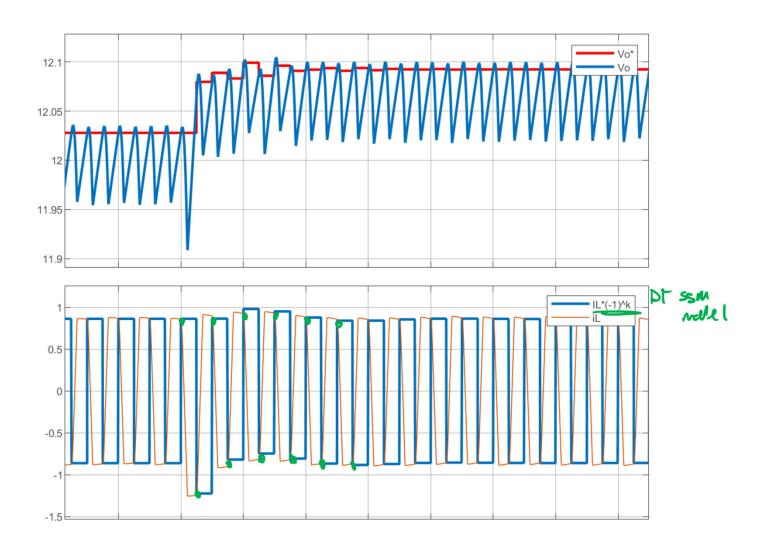
Simulation Results



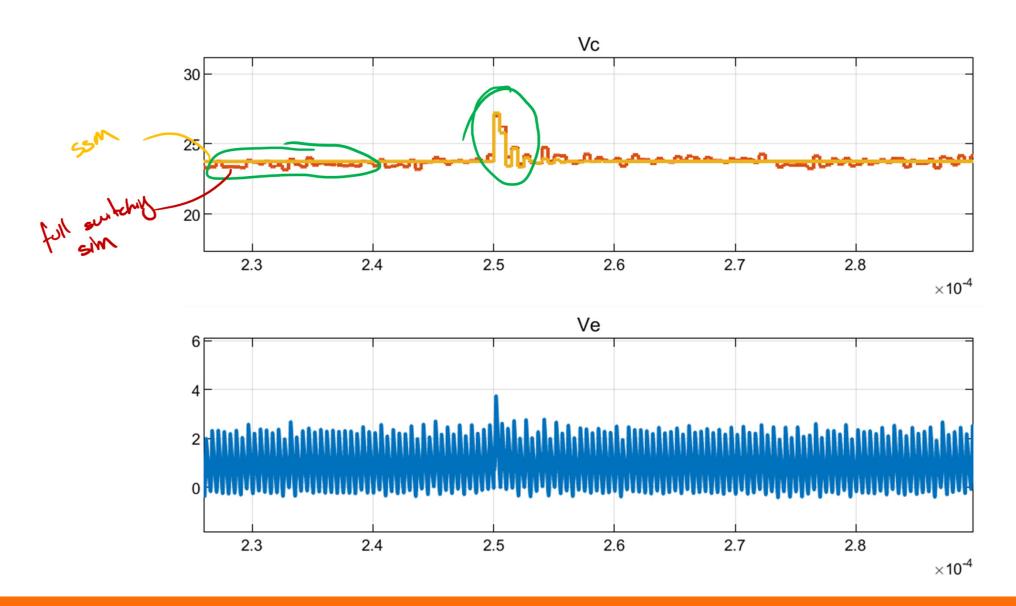
ac Waveform Comparison



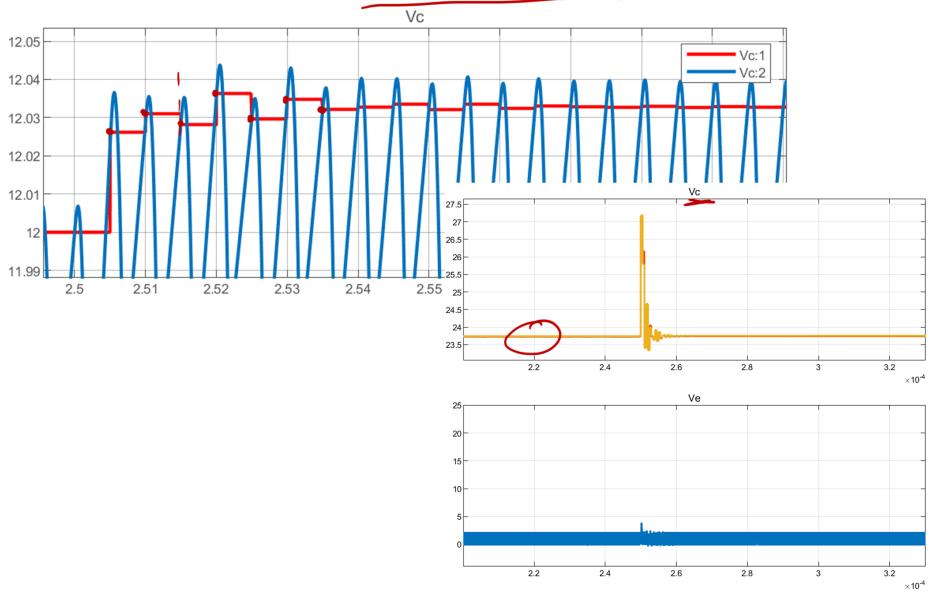
Inverting ac waveform

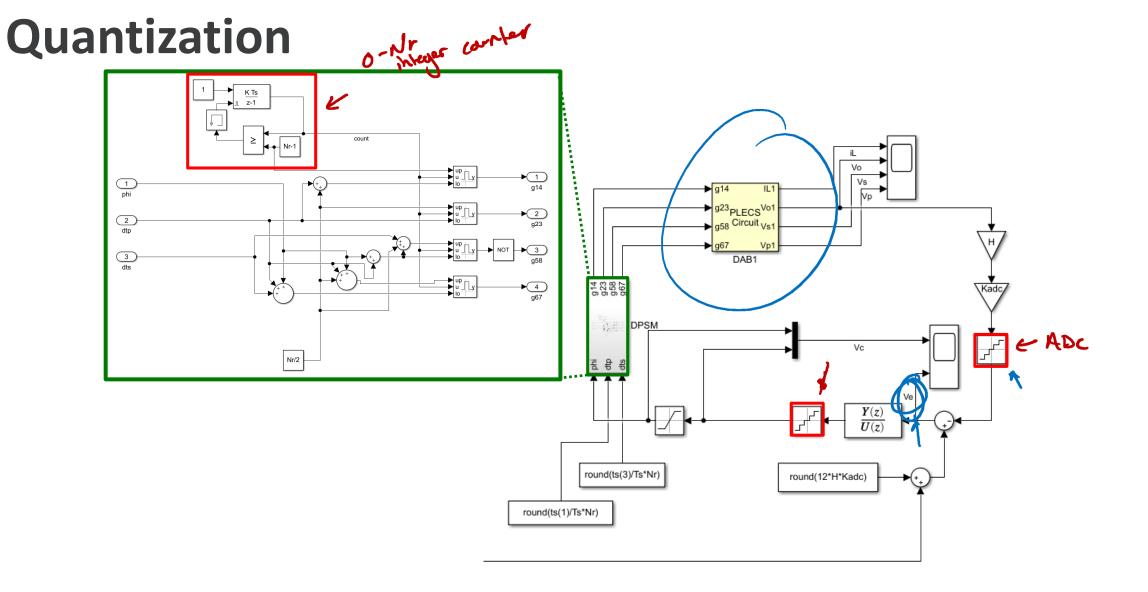


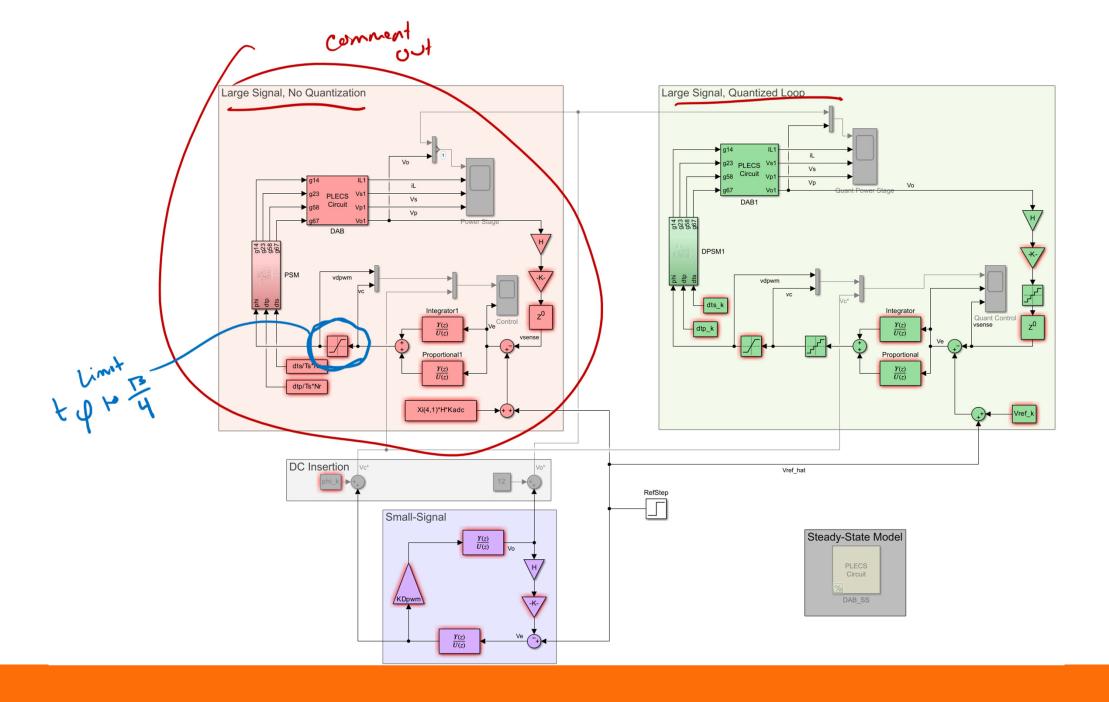
Simulation Results (cont)



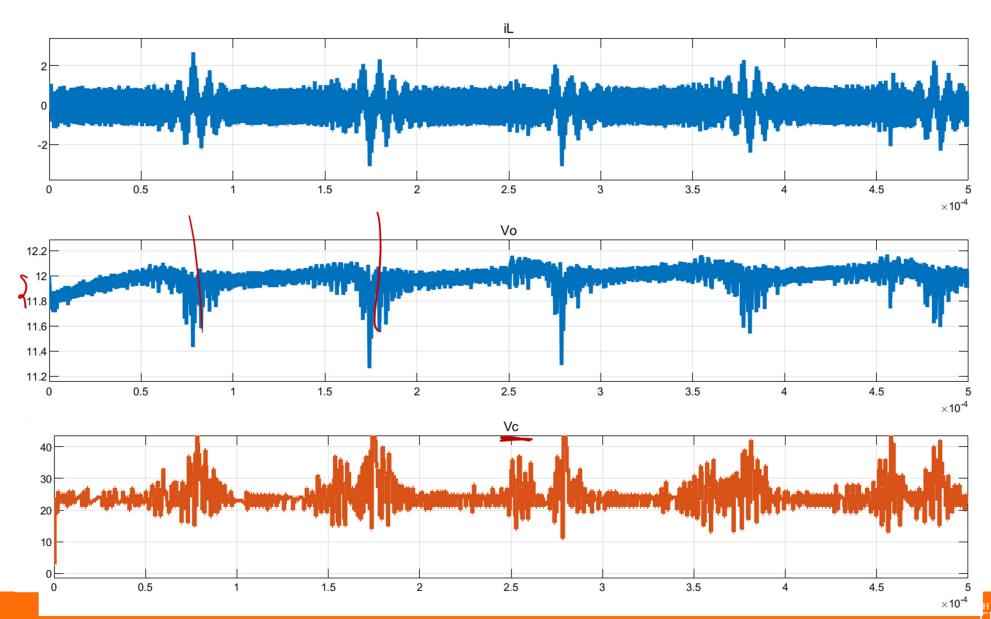
Simulation Results (max step 10ps)







Simulation with Quantization



Quantization Impact

Could limb eyelow

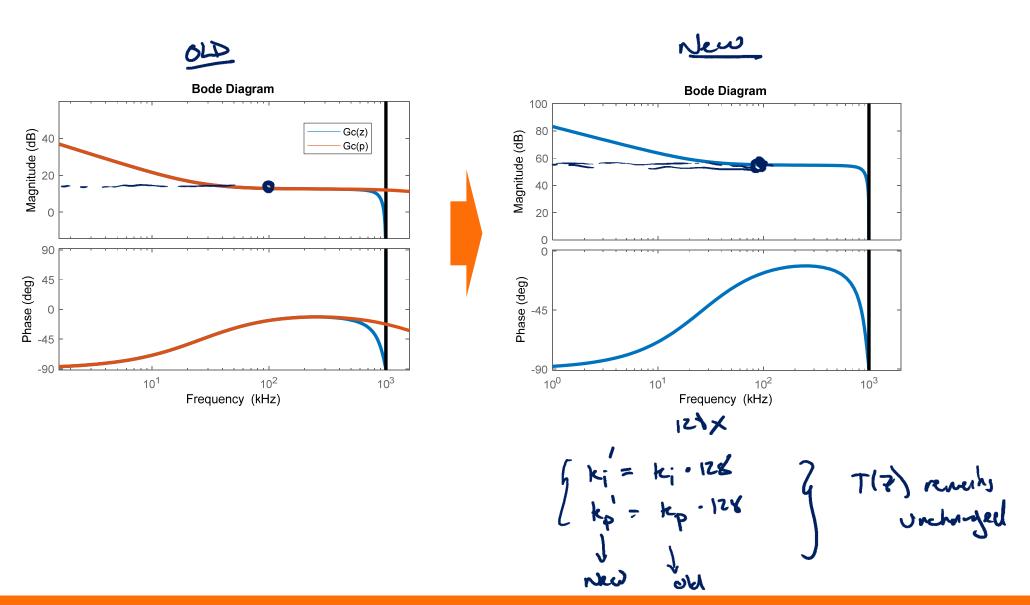
$$8^{NC} = \frac{1}{N_{\text{max}}} \frac{1}{H} = \frac{1}{2^{N_{\text{max}}}} \cdot 10 = \boxed{32_{\text{mV}}} \quad \text{of } 10^{-16.7} \quad \text{A.1D}$$

$$8^{NC} = \frac{1}{N_{\text{max}}} \frac{1}{H} = \frac{1}{2^{N_{\text{max}}}} \cdot 10 = \boxed{32_{\text{mV}}} \quad \text{of } 10^{-16.7} \quad \text{A.1D}$$

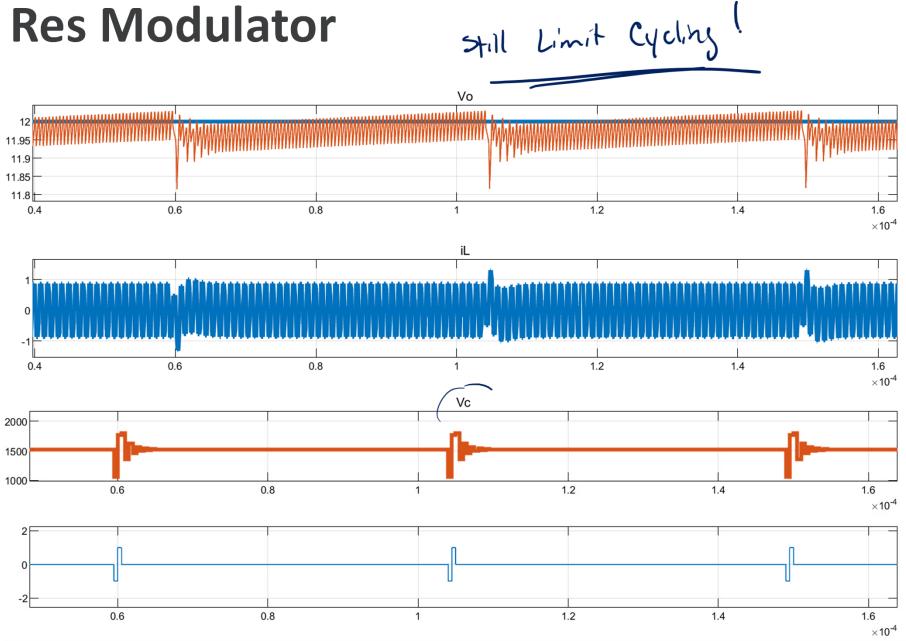
$$8^{NC} = \frac{1}{N_{\text{max}}} \frac{1}{H} = \frac{1}{2^{N_{\text{max}}}} \cdot 10 = \boxed{32_{\text{mV}}} \quad \text{of } 10^{-16.7} \quad \text{A.1D}$$

$$8^{NC} = \frac{1}{N_{\text{max}}} \cdot \frac{1}{10^{-16.7}} \cdot \frac{1}{10$$

New Compensator



High Res Modulator



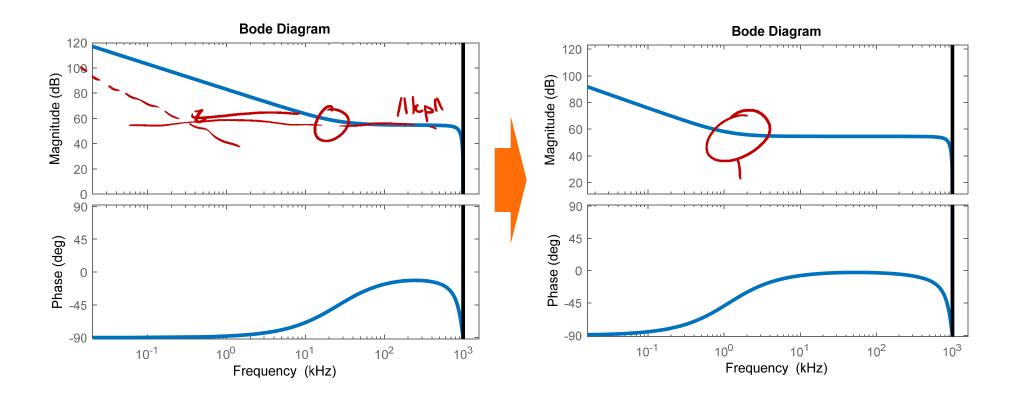
Integral Gain

Ki'- 22 tp= 435.5

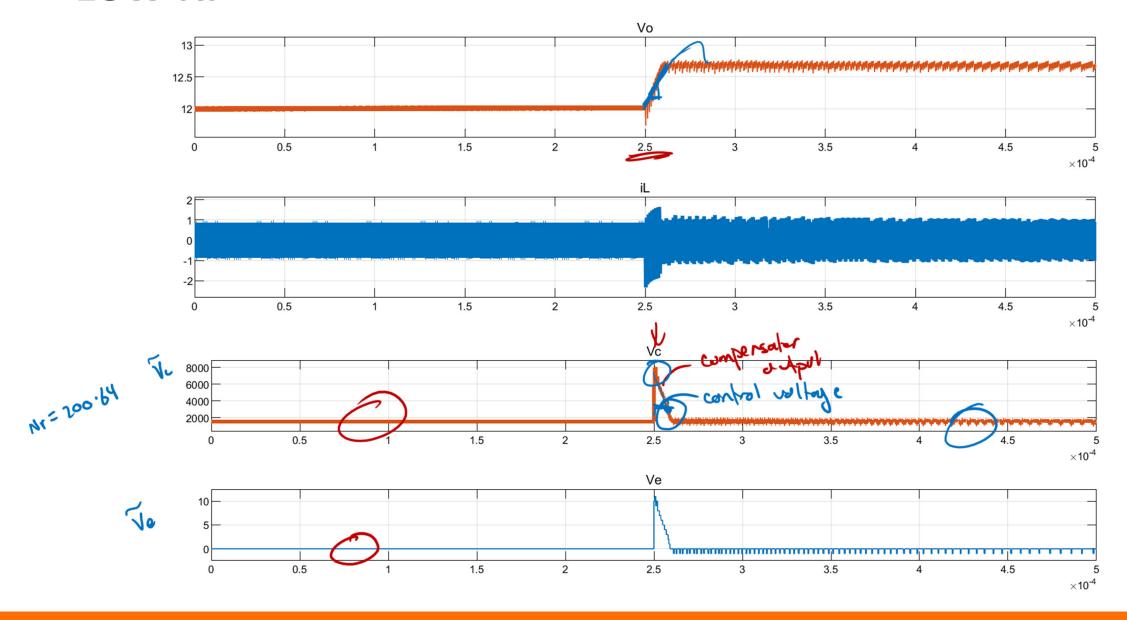
because $h' \ge 1$, we can only get steady state $\tilde{\varphi}$ values of 1.22

Can drop ki to I

New Compensator



Low Ki



Low Ki

