

Example Calculation

$$\boldsymbol{A}_{I} = \begin{bmatrix} -\frac{(r_{on} + R_{L})}{L} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$

State Transition Matrix

Properties of the Matrix Exponential

Derivative

$$rac{\mathrm{d}}{\mathrm{d}t}e^{\mathrm{A}t}=Ae^{\mathrm{A}t}$$

Nonvanishing Determinant

 $\det e^{\operatorname{A} t}
eq 0$

Commutative Product (1)

 $AB = BA \implies e^{At}B = Be^{At}$

Commutative Product (2) $AB = BA \implies e^{At}e^{Bt} = e^{(A+B)t}$

Same-Matrix Product

 $e^{\mathrm{A}t}e^{\mathrm{A}s}=e^{\mathrm{A}(t+s)}$

Inverse

$$\left(e^{\operatorname{A}t}
ight)^{-1}=e^{-\operatorname{A}t}$$

Series Expansion

$$e^{\mathrm{A}t} = \sum_{n=0}^{\infty} rac{t^n}{n!} \mathrm{A}^n$$

Decomposition $e^{\mathrm{PBP}^{-1}} = \mathrm{P}e^{\mathrm{B}\mathrm{P}^{-1}}$

Matrix Exponential

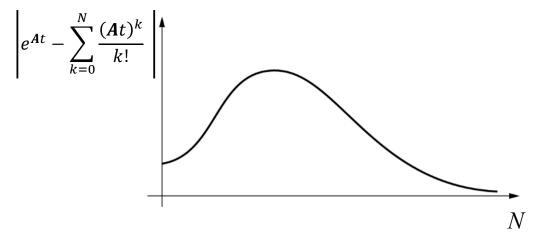
Matrix exponential defined by Taylor series expansion

$$e^{At} = I + At + \frac{(At)^2}{2!} + \dots + \frac{(At)^N}{N!} = \sum_{k=0}^N \frac{(At)^k}{k!}$$

Summation always converges and is invertible,

$$e^A e^{-A} = I$$

Well-known issue with convergence in many cases



In MATLAB, expm(·) calculates matrix exponential

- Using $exp(\cdot)$ will compute the element-by-element exponential

Time-Domain Derivation

Solution With DC Inputs

