Singular A Matrix

if A; shapler

1) Make A; Non-singular

Charge circuit madel

chye Ai Non-singular Schuye Ai dreetly to make it more sleubble

| Calculate x(t) a different may a Augmented State Space

Application to Switching Converters

State Space Averaging

cets just average the two state spaces together

$$A_{av} = DA_1 + D'A_2$$

$$B_{av} = DB_1 + D'B_2$$

(x) = Aav(x) + Bav(u) ts

In steady-state
$$\langle \chi \rangle = \emptyset$$
so, in steady-state

$$\phi = A_{av} \langle x \rangle + B_{av} \langle x \rangle$$

$$\langle x \rangle = -A_{av} B_{av} \langle x \rangle$$

$$\langle x \rangle = -\left(\frac{1}{2}A_{i} + \frac{1}{1}A_{i} + \frac{1$$

Exact Solution

EXACT Solution

in
$$(I)$$
 $\times (DT_{5}) = e^{A_{1}DT_{5}} \times A + A_{1}^{-1} (e^{A_{1}DT_{5}} - I) B_{1} U$

then, in (I) $\times (T_{5}) = e^{A_{2}D^{T}_{5}} \times (DT_{5}) + A_{2}^{-1} (e^{A_{2}D^{T}_{5}} - I) B_{2} U$

then, combining both

 $(IT_{5}) = e^{A_{2}D^{T}_{5}} e^{A_{1}DT_{5}} \times A + A_{1}^{-1} (e^{A_{1}DT_{5}} - I) B_{1}U + A_{2}^{-1} (e^{A_{2}D^{T}_{5}} - I) B_{2}U$
 $(IT_{5}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times A + e^{A_{2}D^{T}_{5}} A_{1}^{-1} (e^{A_{1}DT_{5}} - I) B_{1}U + A_{2}^{-1} (e^{A_{2}D^{T}_{5}} - I) B_{2}U$

for E substitutes

 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times A + e^{A_{2}D^{T}_{5}} A_{1}^{-1} (e^{A_{1}DT_{5}} - I) B_{1}U + A_{2}^{-1} (e^{A_{2}D^{T}_{5}} - I) B_{2}U$
 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times A + e^{A_{2}D^{T}_{5}} A_{1}^{-1} (e^{A_{1}DT_{5}} - I) B_{1}U + A_{2}^{-1} (e^{A_{2}D^{T}_{5}} - I) B_{2}U$
 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times A + e^{A_{2}D^{T}_{5}} A_{1}^{-1} (e^{A_{1}DT_{5}} - I) B_{2}U$
 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times A \times I$
 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times A \times I$
 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{5} \times I$
 $(IT_{6}) = e^{A_{2}D^{T}_{5}} A_{1}DT_{$

Steady-State Solution

in steady-state
$$\chi(T_5) = \chi_0 = \chi_0$$

$$\chi_0 = \chi_0 = \chi_0 = \chi_0$$

$$\chi_0 = \chi_0 = \chi_0$$

Waveform Reconstruction

can reconstruct states at any time point by re-applying solution

Comparison to Averaging

If we let
$$e^{Aiti} \approx I + Aiti$$

Xs= (I-(X+A;t,+Aztz+...+ At,Atz+A;t,Astz+...))... · Z (it Aiti) Ai (Z+Aiti-Z) Biu

2 (in Aits) · BitiN