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I. Introduction 
Power Electronics is the study of the design, construction, and use of circuits to convert or condition energy. 
The use of power electronics is prolific in modern society. Laptop chargers, computer power supplies, solar 
photovoltaic systems, electric vehicle powertrains, audio amplifiers, and cardiac pacemakers are just a few 
examples of applications requiring high performance power electronics. 

Power converters designed for these functions may convert between various types and magnitudes of 
voltages or currents between their input and output.  Some of the most common power converters are dc-
dc step-down converters such as the Buck converter which convert a high voltage at their input to a well-
regulated low-voltage output.  Any electronic device today, such as cell phones, laptops, tablets, or 
televisions will contain dozens of dc-dc step-down converters to produce the small and tightly-regulated 
voltages required by digital processors from higher voltages produce by batteries or grid-connected power 
supplies. 

In this experiment, we will investigate the design of a dc-dc step down converter as a means to apply 
knowledge related to Fourier, Laplace, and Frequency Response. 

The goals of this experiment are 

 Applying Fourier Transform to analytical and measured signals 
 Examining Frequency Response of a circuit 
 Observing resonance in second-order filters 
 Measuring power in wide-bandwidth circuits 
 Investigating design techniques in power converters 

II. Background 
The complete analysis and design of power converter circuits is covered in ECE 481, building upon 
knowledge of semiconductors from ECE 335 and energy components from ECE 325.  As such, power 
converter design is out-of-scope for our course.  The section below covers some basics to establish how the 
experiment relates to these future application areas 

a. Fundamentals of dc-dc voltage conversion 
Consider the design of a voltage supply for a modern processor in a computer, as shown in Fig. 1.  The 
function of this supply is to convert the input voltage, commonly 5V or 12V, to a precisely regulated 1.5V 
supply required by the processor. 
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Figure 1: PC Motherboard with CPU voltage regulator power electronics highlighted 

From a circuit perspective, this application is shown in Fig. 2.  Vg is a 12V input supply, and the load 
resistance models the CPU itself.  In a certain operating condition, the processor consumes 15W of power 
at 1.5V, so we can model its behavior as a resistance of value Req, where 

 15𝑊 (1) 

Therefore, Req = 0.15 Ω.   

 

Figure 2: Circuit for designing dc-dc converter 

The job of the dc-dc converter (in the grey dashed box) is to transfer power from the 12V supply to the 
CPU, while keeping Vout = 1.5V and, ideally, wasting as little energy as possible in the process.  One simple 
way to generate the 1.5 V output voltage is a voltage divider, as shown in Fig. 3. 

 

Figure 3: Voltage divider circuit used to generate 1.5 V 

We know that  

 𝑉 𝑉  (2) 

so therefore, to get 1.5V output voltage, R is selected to be 

 𝑅 1 𝑅  (3) 

For the case previously detailed, where the processor is modeled by Req = 0.15 Ω, this gives R = 1.05 Ω.  In 
isolation, this design works.  The output voltage is Vout = 1.5 V.  However, this approach has two major 
flaws: control and efficiency.   

If the power consumption of the CPU changes, as commonly occurs when the computational load of the 
computer changes, the circuit of Fig. 3 cannot maintain a regulated output voltage.  From (1), Req is 
determined by how much power the processor is consuming, and will vary depending on the computational 
load.  Because R depends on Req, as shown in (3), the series resistance will need to change in order to keep 
the output voltage constant, otherwise Vout will vary.  As an example, if the power consumption of the CPU 
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changes from 15W to 7.5W, but R remains 1.05 Ω, the output voltage will increase to 6.75 V, high enough 
to damage the processor. 

Additionally, if we examine the power consumption of the circuit in Fig. 3, we find 

 𝑃 𝐼 𝑅  105 W  

 𝑃 𝐼 𝑅  15 W  

 𝑃 𝐼 𝑉  120 W 

Thus, this circuit requires 120 W of power at the input to deliver just 15 W of power to the CPU.  The 
remaining PR = 105 W is dissipated in the series resistance R.  This would cause many issues, among them 
the resistor heating up and melting, higher electricity bill, and wasteful use of energy.   

Rather than the circuit of Fig. 3, dc-dc converters for this application are often designed using the circuit 
shown in Fig. 4, also known as the Buck converter. Notice that this converter uses only an ideal switch, and 
inductor, and a capacitor.  There are no resistors (apart from the load resistance modeling the CPU), and 
therefore no real (average) power consumed by the circuit in the ideal case.  The circuit is also controllable 
to that the output voltage can be adjusted in real time to stay constant even as the load varies. 

 

Figure 4: Basic Buck converter for dc-dc step-down conversion. 

The ideal switch is controlled to periodically switch back and forth between the connections labeled “1” 
and “2”.  The result is a voltage vs(t) as shown in Fig. 5.  The voltage vs(t) is equal to the input Vg when the 
switch is in position 1, and is equal to zero when the switch is in position 2.   

 

Figure 5: waveform of vs(t) with parameters labeled. 
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The switch commutates back and forth with period Ts and frequency fs = 1/Ts. The “Duty Cycle” D is the 
ratio of the time the switch is in position 1 to the overall period, 0 ≤ D ≤ 1.  The ideal switch is implemented 
with semiconductor elements (transistor(s) and diode) allowing switching frequencies fs in the hundreds of 
kilohertz up to a few megahertz. 

Note that the average value of the waveform in Fig. 5 is  

 𝑉 , 𝑣 𝑡 𝑑𝑡 𝐷𝑇 𝑉 𝐷𝑉    (4) 

With 0 ≤ D ≤ 1, this means that 0 ≤ Vs,avg ≤ Vg, i.e. the average value of this voltage can be anywhere 
between zero and the input voltage.  The remainder of the circuit, comprised of L and C, is used to “pick 
off” this average value using a low-pass filter characteristic.   

To understand how this works, we need to examine vs(t) and the behavior of the filter through the frequency 
domain. 

b. Fourier Series 
Many periodic waveforms, such as vs(t) in Fig. 5, can be represented as an infinite sum of sinusoids of the 
following form, known as a Fourier Series 

 𝑓 𝑡 𝑎 ∑ 𝑎 cos 𝑘𝜔 𝑡 𝑏 sin 𝑘𝜔 𝑡  (5) 

where 𝜔 2𝜋𝑓 2𝜋 𝑇⁄  is the frequency about which the original signal is periodic and a0, ak, and bk are 
real, constant coefficients.  Not every periodic function can be represented as a Fourier series, but most 
functions that are relevant to circuit analysis can.  The conditions for the Fourier series to exist for a given 
function are 

1. f(t) must be single-valued 

2. |𝑓 𝑡 |𝑑𝑡 must exist and be finite for all values of t0 

3. f(t) must have a finite number of discontinuities and maximum/minimums per period 

The Fourier series represents a periodic function with an infinite sum of sinusoids.  Given what we have 
already studied in phasor analysis, we know that sinusoidal signals have some convenient properties in 
circuit analysis that can make solving circuits easier, and superposition can extend those properties to 
multiple different-frequency sinusoids.   

The coefficient a0 is the portion of f(t) which is not oscillating about any frequency, and is thus the average 
value of the function,  

 𝑎 𝑓 𝑡 𝑑𝑡 (6) 

and the remaining coefficients are found by multiplying f(t) by a sinusoid at the same frequency, then taking 
the average value 

 𝑎 𝑓 𝑡 cos 𝑘𝜔 𝑡 𝑑𝑡 (7) 

 𝑏 𝑓 𝑡 sin 𝑘𝜔 𝑡 𝑑𝑡 (8) 

Alternate, equivalent forms of the Fourier series include the magnitude-phase form, 
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 𝑓 𝑡 𝑎 ∑ 𝐴 cos 𝑘𝜔 𝑡 𝜑 ,      where    
𝐴 𝑎 𝑏

𝜑 tan
 (9) 

and the complex form 

 𝑓 𝑡 ∑ 𝑐 𝑒 ,      where      

𝑐 𝑎 𝑗𝑏

𝑐 𝑎 𝑗𝑏
𝑐 𝑎

 (10) 

alternately, the coefficients ck can be found directly by 

 𝑐 𝑓 𝑡 𝑒 𝑑𝑡 (11) 

and noting that ck = c‒k*, i.e. the complex conjugate. 

Conceptually, in any form, the Fourier series coefficient tell us how much of every frequency of sinusoid 
is inside the signal f(t).  These coefficients comprise an alternate way of describing the function.  Originally, 
f(t) is the time-domain description of the function.  In the time domain, the function has a specified value 
at any time, t.  Now, ak and bk are a frequency-domain description of the function.  The function instead has 
a specified value at every index k, corresponding to a frequency kω0.   In this way, calculating ak and bk 

from (7) and (8) is a transformation from time-domain to frequency-domain, and recombining them using 
(5) is a transformation from frequency-domain to time-domain.  Fig. 6 diagrams the relationship between 
these two descriptions. 

 

Figure 6: Relationship between time and frequency-domain descriptions of a function 

c. Fourier Transform 
The Fourier Transform extends the Fourier series to cover non-periodic signals.  The Fourier transform is 
derived from (10) and (11) by taking the limit as the period T approaches infinity.  The result is the 
transformation 

 𝐹 𝜔 𝑓 𝑡 𝑒 𝑑𝑡 (12) 

and inverse transformation 

 𝑓 𝑡 𝐹 𝜔 𝑒 𝑑𝜔 (13) 
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Unlike the Fourier series, the Fourier Transform can cover both periodic and nonperiodic functions.  
Sufficient (but not necessary) conditions for the Fourier Transform to exist are 

1. f(t) is single-valued 

2. |𝑓 𝑡 |𝑑𝑡 exists and is finite 

3. f(t) has a finite number of discontinuities and maximum/minimums over any finite interval 

In most cases, the types of signals that we want to occur in real-world circuits have a Fourier transform that 
exists.  However, certain signals that are common in circuit analysis and design do not have a Fourier 
transform; for example, f(t)= 𝑒  violates the second condition, above.   

In the Fourier series, a periodic signal is decomposed into sinusoids at an infinite number of discrete 
frequencies kω0.  In the Fourier transform, the signal is decomposed into an infinite number of sinusoids at 
all frequencies.   

d. Laplace Transform 
The Laplace transform modifies the Fourier transform by pre-multiplying the signal f(t) by a real-valued 
exponential.  For example, the Fourier transform in (12) becomes 

 𝐹 𝜎,𝜔 𝑒 𝑓 𝑡 𝑒 𝑑𝑡 (14) 

where the insertion of 𝑒  is the only change from the Fourier transform.  Recall that the Fourier transform 
of f(t)= 𝑒  does not exist due to violation of the second existence condition.  Using the Laplace transform, 

as long as σ ≥ 1, the integral |𝑒 𝑓 𝑡 |𝑑𝑡 exists and is finite, allowing the Laplace transform to exist 

within the region of convergence σ ≥ 1.   

The usual form of the Laplace transform simplifies (14) by combining the two exponentials and replacing 
𝑠 𝜎 𝑗𝜔, 

 𝐹 𝑠 𝑓 𝑡 𝑒 𝑑𝑡 (15) 

and inverse Laplace transformation 

 𝑓 𝑡 ℒ 𝐹 𝑠 𝐹 𝑠 𝑒 𝑑𝑠 (16) 

where 𝜎  is any value within the region of convergence.  In general, the region of convergence is the region 
with 𝜎 greater than the real part of all poles of F(s); however, we will rarely, if ever, apply (16) and instead 
use tables for the inverse Laplace transformation.  Because a transformation table already gives 
transformation pairs within the region of convergence, this detail is handled inherently. 

Commonly, the “unilateral” or “single-ended” Laplace transform is used for signal and systems which have 
are zero-valued prior to t =0, 

 𝐹 𝑠 ℒ 𝑓 𝑡 𝑓 𝑡 𝑒 𝑑𝑡 (17) 

Useful transformation pairs and properties are given in Tables 14.1 and 14.2 in the course textbook.  Of 
particular note is the derivative property, 

 ℒ 𝑒 𝑑𝑡 𝑓 𝑡 𝑒 | 𝑓 𝑡 𝑠 𝑒 𝑑𝑡 (18) 
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 ℒ 𝑠𝐹 𝑠 𝑓 0  (19) 

where (18) applies integration by parts (commonly useful in solving Laplace transform integrals) and 
evaluates it in (19).  This result tells us that a derivative in the time domain becomes a multiplication by s 
in the s-domain, along with a subtraction of the initial condition. 

e. Transfer Functions  
Like the phasor transformation, the Laplace transformation is linear, and basic circuit elements can be 
transformed into s-domain impedances using the derivative property of the Laplace transformation, as 
shown in Table I.  Unlike the phasor transformation, the Laplace transform is not limited to steady-state 
analysis, so the initial conditions of the circuit are incorporated into the transformation as additional sources.   

Table I: Basic Circuit Elements in the Time and Laplace Domains 

Element 
Time-Domain 

Symbol 
Time-Domain 
Equation(s) 

Laplace-Domain 
Symbol 

Laplace -Domain Equation 

Resistor 

 

v(t) = i(t)R 

 

𝑉 𝑠  = RI 𝑠  

Inductor 

 

𝑣 𝑡 𝐿
𝑑𝑖 𝑡
𝑑𝑡

 

 

𝑉 𝑠 𝑠𝐿𝐼 𝑠 𝐿𝑖 0  

Capacitor 

 

𝑖 𝑡 𝐶
𝑑𝑣 𝑡
𝑑𝑡

 

 

𝑉 𝑠
1
𝑠𝐶

𝐼 𝑠
1
𝑠
𝑣 0  

 

Note that initial conditions are transformed into independent sources, and thus can be treated as a separate 
input and incorporated into the circuit solution using superposition.  After transforming all sources and 
signals into the s-domain, the circuit can be solved for signals of interest using standard circuit analysis 
techniques, with the defining equations for inductors and capacitors now being Ohm’s Law-like algebraic 
equations rather than differential equations.  Therefore, all impedances can be treated like resistors, in the 
time-domain.  Generally, neglecting initial conditions (via the above), for an input voltage vi(t) and output 
voltage vo(t), the circuit solution will be of the form 

 𝐻 𝑠  (20) 

where H(s) is known as a “transfer function”.  When initial conditions are included, they will have their 
own transfer function, all of which can be combined by superposition.  Additional details of the form of the 
transfer function can be ascertained from its time-domain derivation.  Consider an arbitrary time-domain 
circuit described by 
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 𝑏 𝑣 𝑡 ⋯ 𝑏 𝑣 𝑡 𝑏 𝑣 𝑡        𝑎 𝑣 𝑡 ⋯ 𝑎 𝑣 𝑡 𝑎 𝑣 𝑡  (21) 

 ∑ 𝑏 𝑣 𝑡           ∑ 𝑎 𝑣 𝑡  (22) 

where all the ai and bi coefficients are functions of the passive elements in the circuits.  Taking the Laplace 
transform of (22), using the derivative property from (19) gives 

𝑏 𝑠 𝑉 𝑠           𝑎 𝑠 𝑉 𝑠  

or, rearranging 

         𝐻 𝑠          
∑

∑
 (23) 

which confirms the form of (20), but also tells us information about the form of the transfer function, i.e. 
that we expect the transfer function to be a ratio of polynomials of s.  For causal systems (circuits which 
cannot predict the future) the order of the numerator must be equal or lower than the denominator, M ≤ N.  
Knowing this, we can simplify the form of H(s) in two steps, first factoring the numerator and denominator 
to get into factored (or pole-zero form),  

  
∑

∑
    𝐴

⋯

⋯
   (24) 

In factored form, the roots of the numerator and denominator are shown explicitly.  The roots of the 
numerator, zi, are called “zeros” and the roots of the denominator, pi, are called “poles”.  Both are constant 
and may be real or complex.  For real signals and systems (things that could actually be built and measured), 
anytime a pole is complex, its conjugate must also be a pole, i.e. complex poles always show up in conjugate 
pairs.  The same is true of zeros. 

From this form, using partial fraction expansion puts the transfer function into the form of the same name. 

  
∑

∑
    𝐴

⋯

⋯
    ⋯  (25) 

where ki are called “residues” and are constants that may be real or complex.  Like poles and zeros, residues 
that are complex will always show up in conjugate pairs for real signals and systems. If any repeated poles 
exist, their partial fraction expansion takes a slightly different form 

    𝐴
⋯

⋯ ⋯
    ⋯  ⋯ ⋯  (26) 

In the partial fractions form, the expression is split into a sum of simple terms.  Then, because the Laplace 
transform is linear, the inverse transformation of the overall expression is found by taking the inverse 
transform of each term 

 ℒ
∑

∑

  
  ℒ ℒ ⋯ ℒ     (27) 

Note the significance of the poles in (27).  The poles directly determine the terms in the time-domain, while 
the zeros determine the constants that multiply them, ki.  Thus, by only looking at the poles of the system, 
we can determine whether a signal will have oscillations, or whether it will be unbounded.  Analysis of 
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system poles is fundamental to examining stability of control systems.  Fig. 7 shows a variety of pole 
locations in the s-plane (complex plane) and the time-domain response that they will cause.  Note that poles 
in the open left half-plane (LHP) result in time-domain responses that converge to zero as time progresses.  
Poles in the open right half-plane (RHP) result in time-domain responses that explode to ±∞ as time 
progresses.  Poles directly on the imaginary axis may result in signals that oscillate indefinitely without 
growing or shrinking in magnitude, or signals that still grow unbounded when repeated poles occur (e.g. 
1 𝑠⁄ ⇔ 𝑡𝑢 𝑡 ). 

 

Figure 7: Example poles and their resulting time-domain response.1  

Rearranging (23), we see that the poles in any output signal that we want to examine are the union of the 
poles from the transfer function and the poles from the input source 

 𝑉 𝑠    𝐻 𝑠 𝑉 𝑠   
∑

∑

∑

∑
  𝐴

⋯

⋯

⋯

⋯
 (28) 

If there are non-zero initial conditions, they can each be treated as a separate independent source and 
incorporated into the output by superposition.  Then, the above will have multiple terms of the same form. 

Referring back to the definition of the inverse Laplace transform in (16), and our original motivation in 
extending the Fourier Transform, signals in the RHP that grow unbounded need to be pre-multiplied by a 
decaying exponential to make sure that the integral will converge.  In (16), we need to select σ0 greater than 
the real part of all poles to ensure that any unbounded signals are forced to converge.  If all poles are in the 
LHP, σ0=0 is a valid choice; eliminating the real part is equivalent to replacing 𝑠 𝑗𝜔, i.e., returning to the 
Fourier Transform. 

f. Frequency Response 
If all poles of a transfer function are in the open LHP, the system is called “Bounded Input, Bounded Output 
(BIBO) Stable”.  This means that, as long as the input signal is bounded, the output will also be bounded.   
Usually, we want any circuit that we might build to possess this property as the alternative could be 
catastrophic.   

 
1 From: <https://www.mathworks.com/matlabcentral/fileexchange/94635> 
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As stated at the end of the previous section, as long as all poles are in the open LHP, then σ0=0 is within 
the region of convergence of the Laplace Transform, and we can completely define the signal by looking 
solely at the values of H(s) on the imaginary axis.  The “frequency response” of a circuit is its transfer 
function evaluated on the line 𝑠 𝑗𝜔. 

  𝐻 𝑠 | 𝐻 𝑗𝜔  (29) 

The significance of the frequency response is the same as it was in the Fourier domain: at any frequency 
ωx, if we apply an input to the system 𝑣 𝑡 Acos 𝜔𝑡 , the output will be  

 𝑣 𝑡 | 𝐻 𝑗𝜔 |𝐴cos 𝜔𝑡 ∡ 𝐻 𝑗𝜔  (30) 

i.e. 𝐻 𝑗𝜔  tells us the gain and phase of the system at all frequencies.    
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III. Prelab Exercises 
Complete the following exercises prior to coming to the lab.  Turn-in your prelab work on canvas prior to 
starting the Laboratory Exercises. 

The prelab will examine the signal and power performance of a few alternative circuit implementations 
attempting to convert a 5V input to a 1V output. 

PE1 Prelab Exercise 1: Resistor Divider Voltage Conversion  

First, we will examine using a resistor divide for our 5:1 voltage conversion, as shown in Fig. 8. 

 

Figure 8: Fixed resistor divider used as a dc-dc converter 

To begin, assume RL is very large and solve for the value of R2 that will result in Vo=1V.  In LTSpice, 
recreate the circuit setting R2 to the value you solve.  Sweep RL from 10 kΩ to 500 Ω, and turn in plots of 
both the output voltage vo(t) and the efficiency 𝜂 𝑃 𝑃⁄  as the load resistance is varied.  Comment on 
any issues with this design. 

PE2 Prelab Exercise 2: Linear Regulator Voltage Conversion 

Next, we will consider a linear regulator.  A full model of a linear regulator includes transistors, but a 
simplified functional model of the linear regulator is shown in Fig. 9.  The behavior of the linear regulator 
is that of a variable resistance Rvar which is controlled to be the correct value such that the output voltage 
remains 1V. 

 

Figure 9: Simplified equivalent model of a linear regulator. 

Solve the circuit for an expression Rvar = f(RL) for what value Rvar needs to take at any load resistance to 
keep Vo = 1V.  In LTSpice, recreate the circuit setting Rvar to the expression you solve.  Sweep RL from 
10 kΩ to 500 Ω, and turn in plots of both the output voltage vo(t) and the efficiency 𝜂 𝑃 𝑃⁄  as the 
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load resistance is varied.  Comment on any issues with this design, and any advantages over the resistor 
divider in PE1. 

PE3 Prelab Exercise 3: DC-DC Voltage Converter 

Now, we will model the full switching converter.  We’ll simplify the ideal switch by just modeling vs(t) as 
a squarewave source, as shown in Fig. 10 

   
 (a) (b) 

Figure 10: Simplified equivalent model of a Buck converter (a) and waveform of vs(t) (b) 

Use the starting values from Table II to build an LTSpice model of the circuit.   

Table II: Starting Values for System Design 

fs = 1/Ts L C 

100 kHz 100 mH 0.22 μF 

Solve, using (4) for the necessary duty cycle D = f(RL) to generate 1.2 V average value at the output (don’t 
forget about the 50 Ω resistor, and remember that you only care about average (DC) component).    

In LTSpice, recreate the circuit setting D to the expression you solve.  Set the rise and fall times of the 
squarewave source to 1ns.   Run transient simulations for 50ms or more to let the circuit reach steady-state 
but only save data for a few periods.  For example, saving the last five periods, your LTspice simulation 
command is 

.tran 0 50m {50m-5/100k} 

Sweep RL from 500 Ω to 10 kΩ and turn in plots of both the average output voltage Vo and the efficiency 
𝜂 𝑃 𝑃⁄  as the load resistance is varied.  Use .meas commands for the averages of 𝑉 , 𝑃 , and 𝑃  
and plotting from the spice error log to generate the plots.  Comment on any issues with this design, and 
any advantages over the resistor divider in PE1 and/or linear regulator in PE2. 

PE4 Prelab Exercise 4: Signal Frequency Content 

For the operating point where RL = 500 Ω, calculate (by hand) the Fourier Series coefficients of the input 
squarewave in Fig. 10(b) for the duty cycle you solved in the previous section.  In LTSpice, view the FFT 
of this voltage (from a waveform window View>FFT).  Turn in this plot. Compare the waveform generated 
by LTSpice to your calculation, noting any discrepancy. 

PE5 Prelab Exercise 5: Circuit Frequency Response 

Using AC analysis in LTSpice, examine the frequency response of the circuit, H(jω).  Turn a plot of H(jω) 
for load resistances of 10 kΩ, 1 kΩ, and 500 Ω (one curve each) Comment on how the frequency response 
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and the signal Fourier transform from the previous exercise combine to give the (approximate) behavior of 
a dc-dc converter.  
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IV. Laboratory Experiment 
The following experimental exercises require the ECE201/202 parts kit (one per group) and access to 
oscilloscope and waveform generator either through the on-campus lab or using an Analog Discovery 
Studio.  No additional components are needed beyond the content of the parts kit. 

Note: If using the Analog Discovery Studio, make sure to update the software through 
Help->Check for Update before beginning.  A recent update patched some errors in the 
Spectrum functionality. 

LE1 Lab Exercise 1: Squarewave Spectrum Measurement 

Using a waveform generator, produce a squarewave with 500 kHz frequency, 5 V maximum, 0 V minimum, 
and 20% duty cycle.  measure this waveform on the oscilloscope.  Using the FFT (“Spectrum”) function of 
the scope, measure the Fourier transform (Frequency content) of the signal.  Set the frequency range to “10 
MHz to 12.21 kHz”, frequency scale to “Logarithmic”, and on your measurement channel, set scaling to 
“Logarithmic” units to “Peak (V)”.  Turn in screen captures of the oscilloscope time-domain waveforms 
and the measured FFT.  Using the measurement command, take measurements of the fundamental (“FF”) 
through 10th harmonic and compare the spectrum to your predictions from the prelab. 

LE2 Lab Exercise 2: Converter Assembly and Testing 

Using the 100 mH, 0.22 μF capacitor (blue), and 1 kΩ potentiometer (blue) from your kit, assemble the 
converter of Fig. 10(a) on your breadboard.  Note that the 50 Ω resistor is internal to the function generator.  
Set the potentiometer to present RL = 500 Ω, and the duty cycle of the function generator to the value solved 
in PE3.  Measure the output voltage and turn in a screen capture of the oscilloscope showing both vo(t) and 
vs(t) at the same time. 

LE3 Lab Exercise 3: Discrete Frequency Response 

In this exercise, we will measure the frequency response of the circuit in one configuration by looking at 
individual frequencies one at a time.  Keeping RL = 500 Ω, change the input to a sinusoidal signal with zero 
offset.  For a range (at least 10) frequencies spanning 100 Hz to 100 kHz, alter the sinusoidal source to each 
frequency, then measure the gain and phase of the output voltage vo(t) relative to the input sinusoid at vs(t).  
Turn in a plot with, as two separate curves, the gain and phase of the circuit as measured by these points.  
Compare this measurement to the frequency response simulated in PE5. 

LE4 Lab Exercise 4: Continuous Frequency Response 

In this exercise, we will measure the frequency response of the circuit using the built-in network analyzer 
functionality of the Analog Discovery Studio.  Keeping scope 1 and wevegen 1 on vs(t) and scope 2 on vo(t), 
use the “Network” tool of the Analog Discovery Studio to measure the transfer function 𝐻 𝑗𝜔  of the 
circuit.  Measure from 100 Hz to 1 MHz, and include plots of the magnitude in units of “Gain (X)” and 
phase in units of degrees. Comment on how these plots correspond to both PE5 and LE3. 

Remove RL from the circuit and capture the new gain and phase plots.  Comment on the differences in the 
circuit without a load resistance to provide damping. 
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LE5 Lab Exercise 5: Frequency Sweep 

Place RL back into the circuit and return the waveform generator to a 5 V maximum squarewave with the 
same duty cycle from LE2.  Change the frequency of the squarwave to 10 kHz, 5 kHz, and 2 kHz.  For each 
of these frequencies, turn in a screen capture of the oscilloscope showing both vo(t) and vs(t) at the same 
time.  Comment on how they differ, and why this is happening. 

 

 

 


