Impedance

Phasor Circuit Analysis

Goal: Analyze a LTI circuit to find steady-state solution with only single-frequency sinusoidal source(s)

- 1. Transform all sources & signals into their phasor equivalents
- 2. Transform all passives into impedances
- 3. Solve the circuit
 - Use 201 techniques for DC resistor-only circuits
- 4. Transform solution back into the time domain

Resonance Example

Find $v_o(t)$ for $v_{in}(t) = 10\sin(\omega t)$ and $\omega = 2\pi 100$ kHz, $R = 10 \Omega$, $L = 10 \mu$ H, and C = 253 nF

Reactance and Resonance

Phasor Superposition

Find $v_o(t)$ for $v_{in}(t) = 10\cos(\omega t) + \frac{10\cos(2\omega t) + 10\cos(0.5\omega t)}{10\cos(0.5\omega t)}$ and $\omega = 2\pi 100$ kHz, $R = 10 \Omega$, $L = 10 \mu$ H, and C = 253 nF