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Abstract—Inversions occur when sections of a chromosome
(DNA molecule) are completely reversed end-to-end. Large in-
versions (multiple megabases in length) can be detected, localized,
and genotyped using principal component analysis (PCA) of
single nucleotide polymorphisms (SNPs). However, detection and
localization tasks are performed and interpreted manually. We
propose a novel pipeline for the detection and localization tasks
in an automated manner. We compare our results with manual
analysis for localization and show that our algorithm can achieve
a similarity score of 0.95 on average. For the classification
task, we achieve an accuracy of 0.88 as compared to manual
classification. Our results suggest that our proposed methods are
fast and accurate for these tasks and can be used as tools for
detection and localization.

Index Terms—chromosome, inversion, pca

I. INTRODUCTION

Inversions occur when a segment of a chromosome is
reversed end-to-end. Since large inversions contribute to the
population structure and adaptation of some species, the de-
tection of inversions is an important task in understanding how
different species are formed and maintained [1], [2]. Figure 1
shows an example of a small inversion.

Anopheles mosquitoes are the primary vector that transmits
the parasites that cause malaria [3]. Malaria presents a signif-
icant risk to worldwide health. In 2017 alone, malaria caused
435, 000 deaths [4]. Analysis of inversions in these mosquito
species is an important step in the process of determining
which populations carry insecticide-resistance mutations and
to help predict the spread of insecticide resistance. Most
known inversions in An. gambiae occur on chromosome 2 and
may have many inversions (see Figure 2).

There are three distinct inversion analysis tasks: detection
(determine if there is an inversion in the data), localization
(indicate the boundaries of inversions), and, determining the
combinations of orientations that form the genotype of the
sample (mosquitoes are diploid, meaning that they have two
copies of each chromosome, each of which will have its own
orientation of the inversion). We focus on the first two tasks.

Because inversions suppress recombination during meiosis,
variants (Single Nucleotide Polymorphisms or SNPs) that
occur on one orientation of an inversion are not shared
with the other orientation. Correlation of the SNP genotypes
with the inversion genotypes allows inversions to be detected
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Fig. 1: A visual explanation of an inversion.

through Principal Component Analysis (PCA) of the SNPs.
Traditionally, plots are created for a human expert to visually
indicate the location of the inversion (if there is one).

The number of SNPs in a dataset can easily number in
the millions, making it important to choose computationally-
efficient approaches. For example, one of our datasets has 81
mosquito samples with 45 million SNPs of position. One way
to visualize the location of potential inversion is by testing
each SNP with respect to each PCA component that captures
an inversion genotype [6]. Testing the SNPs for association
with each principal component requires evaluating 45 million
separate statistical tests. When the p-values of the SNPs are
plotted along a chromosome, the inverted sections “stand out
due to the presence of a step-function-like pattern” [7].

Association Test (AT) based on Logistic Regression has
proved to be useful when there is missing data [6]. The
models were fit with stochastic gradient descent, which is
computationally inefficient for low dimensional data. We pro-
pose (section II-A) and demonstrate that a standard statistical
test works equally well, allowing the use of substantially
faster implementations for association testing. In the next
step, we propose a new method (section II-B) that automates
the location of potential inversions, which both reduces hu-
man error and offers a significant improvement in accuracy
and usability over previous methods. Finally, we propose a
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Fig. 2: Approximate diagrammatic representation of common polymorphic inversions on chromosome 2 of An. gambiae. The
left and right boundaries of the inversions are represented by brackets. A single chromosome may have many different inversions
that can complicate analysis. This specific diagram is based on inversions described in [5].

method (section II-C) that determines if a principal component
represents an inversion or not. All our code is available at:
https://github.com/nowling-lab/asaph.

A. Previous Work

Ma and Amos [8] use PCA to detect and characterize
inversions based on SNPs. A sliding window was applied to
SNP data to uncover a “three stripe” pattern and reveal inverted
genomic intervals. These three clusters correspond to ho-
mozygous inverted, homozygous standard, and heterozygous
segments. The first principal component on the entire variant
dataset was sufficient to uncover inversion-associated SNPs
[6]; however, they did not explore the location of inversions.

Analysis of Anopheline mosquitoes, however, is compli-
cated by missing data and confounding (e.g., non-inversion
related) signals because of their complex evolutionary histories
(Fontaine et al. [9]). Nowling et al. [6] (Asaph version 1) used
AT to localize inverted and other relevant sections even in the
presence of missing data. However, visual inspection needed
to be performed by an expert.

Love et al. [3] combined the original approach of [8] with
prior biological knowledge about mosquito populations and
their inversions. However, in their work, they did not focus on
the localization task, which is one of our main concerns.

Finally, inveRsion [10] is an R package that “identifies
changes in linkage disequilibrium along the chromosome arm
from SNP data to find inversion breakpoints” [7]. Although
this work attempts to perform a similar task to ours, we had
difficulty running this R package on large files. In addition,
their package does not find the exact location of the inversion
as our proposed work does.

B. Data

We use single nucleotide polymorphism (SNP) data from
two closely related malaria mosquito species available from
the Malaria Genomic Epidemiology Network (accessible from
https://www.malariagen.net). This resource provides Variant
Call Format (VCF) data for individual mosquitoes from multi-
ple African countries encoded as either a 0 (the same allele as
a reference mosquito genome) or 1 (alternative allele relative
to a reference genome). This VCF data has been previously
filtered such that all alleles are biallelic because mosquitoes
are diploids (two alleles per individual). A small section
is visualized in Figure 3. Figure 2 shows that in a single
chromosome we can have one, multiple, or no inversions.

Originally, rows are SNPs (alleles) and columns are indi-
vidual mosquitoes. We transpose the matrix to apply PCA
so that every row is a mosquito sample and every col-
umn is an SNP position in the data (see Figure 3). The
VCF files we use were filtered to remove variants with low
QUAL (quality) scores. Details are given in the supplemen-
tal material of Miles et al. [11]. We use data from the
Anopheles 1000 Genomes consortium [11], the 16 Anophe-
les Genomes [9] consortium, and the Drosophila Genetics
Reference Panel [12], [13]. Access to all these benchmarks
(and datasets) can be found at https://github.com/nowling-
lab/asaph/tree/main/inversion-benchmark, where we describe
the datasets and cite the references from where we obtained
the data. These benchmarks have negatives (no inversions),
and single or multiple positives (one or multiple inversions).

II. METHODS

Figure 4 shows our proposed approach which has three
methods. Our first method uses an alternative statistical test
when performing the association tests, which is much more
computationally efficient. Our second method performs the
potential boundary location of the inversion by using a novel
idea of convolution in 1D. Finally, our third method performs
density analysis to indicate if the component can be linked to
an inversion (or not). These methods are explained in detail
in the following sections.

We do not anticipate that polyploidy will be a problem. We
primarily use bi-allelic SNPs, meaning that they only have 2
possible alleles at each site. Even if an organism had 4 copies
of each chromosome, we could encode the genotype as the
number of copies of the reference allele (e.g., 0, 1, 2, or 3).
Our correlation-based approach would still be effective in this
situation.

A. A Faster Implementation of Association Tests

We first apply PCA to the transposed SNP variant matrix
to obtain a matrix of components. As explained in section
I, if our SNP variant matrix has a dimensionality of N ×M ,
our matrix of components will have a dimensionality of N×6
(assuming we want only the first 6 components). Then, we take
every component alone to statistically compare it against every
SNP position. This comparison is known as Association Tests
(AT). So, for every component, we end up with a vector of
size M . Algorithm 1 shows the pseudo-code of this algorithm
(on line 7, we apply our version of association tests).



Fig. 3: Visualization of raw SNP data within a subset of the 2La inversion of An. gambiae. Color description: 0/1 (one reference
and one alternate allele) is red, 1/1 (two alternative alleles) is green, and 0/0 (two reference alleles) is blue. Rows: 81 mosquito
samples. Columns: positions in the chromosome that usually are in tens of millions.
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Fig. 4: Our proposed pipeline - with the three methods - for
inversion analysis.

Nowling et al. [6] implemented logistic regression (LR) to
perform AT. According to Xiao [14], the complexity of LR is
given by O(nd), where n is the number of training examples
and d is the number of dimensions of the data. If we use
multiple components that explain most of the variation in the
SNP data, it requires O(nd×M) where M is the number of
SNPs. For example, in our initial 2La experiments the LR-
based framework required an execution time of ∼ 40 hours.

To lower the complexity, we sought an alternative method
that could generate similar results and found that the Pear-
son Correlation Coefficient (PCC) was a good fit. It has a
complexity of O(n) where n is the number of samples. The
only modification in the algorithm was to use PCC as the AT
function (Algorithm 1, line 7). 2La data requires 0.4 hours on
average, which is 17.5X faster than using LR-based association
(see results in section III-A).

B. Localization

Prior work has relied on visual inspection of the results to
detect boundaries [3], [6]. We propose a two-stage method to
locate the potential location of inversions. The first stage finds
a horizontal threshold, and the second stage finds the exact
vertical boundaries of the inversion. Although our method
finds these boundaries, it is possible that the component does
not have an inversion, therefore this method finds potential
boundaries because the final method of our pipeline (density
analysis) will indicate if there is an inversion or not.

1) Horizontal Threshold Detection: Since the p-values are
contiguous, a feasible option to find the boundary was to use

Algorithm 1 Performing association tests with a SNP matrix

1: function GET PVALUES(matrix)
2: components← apply PCA over rows(matrix)
3: pvalue results← empty set
4:
5: for comp in components do
6: for snp in matrix do
7: res val← asso tests(comp, snp)
8: pvalue results.append(res val)
9: end for

10:
11: save results into file(pvalue results, comp)
12: pvalue results← empty set
13: end for
14:
15: end function

clustering to clearly define a decision boundary. Our method
relies on finding a horizontal threshold using k-means to
locate two centroids over the p-values. An important finding
is that most of the p-values—more than 95%—are close to
0 (see Figure 5). Based on this observation we apply k-
means clustering with only 2 classes, which correspond to
either inverted or non-inverted positions. Consequently, the
threshold acts like a decision boundary where samples above
the threshold are inverted SNPs and the ones that are below
it are non-inverted SNPs. The first time that k-means runs,
it sets the threshold close to the Y-value of 0.4 (Figure 5)
which clearly is not accurate. This happens because of the
distance of the cluster centers, so, to solve this inaccuracy of
the threshold we apply k-means again over only the densest
class, that is, the class that has more SNPs, which happens
to be the class that has many p-values close to zero. Now,
we have a better threshold. We keep iterating until there are
acceptable values in the densities of what is below and above
the threshold. Figure 5 shows the final decision boundary with
dark-blue and light-blue p-values for every SNP position.

2) Boundary Detection: Figure 5 shows that it is simple
to visually determine the approximate breakpoints of the
inversion. We want to numerically estimate the location of
an inversion, so, we use the horizontal threshold found in the
previous section. First, we create windows using all the p-
values and use these windows as bins to count the frequency
of points that are above the horizontal threshold. The size



Fig. 5: Results using the first component with 2La. SNPs
with no-inversion (low p-values) are represented by the dark-
blue points whereas SNPs with inversion (high p-values) are
represented by the light-blue and the top-lighter-blue. The
threshold is seen as the horizontal boundary between inversion
and no-inversion SNPs.

of the windows corresponds to 0.1% of the total number of
SNPs. The basic idea is to count p-values that are above the
horizontal threshold to have a bin frequency vector.

Then, we utilize an idea inspired by the principle of 1D
convolution: using the Sobel operator [15], [16], [17] to detect
“edges” in the bin frequency vector. The idea is to travel from
left to right to detect (by using a filter with values of the
Sobel operator) the leftmost boundary (or breakpoint) of the
inversion and then stop when a signal is found. Then, we
go from right to left and stop when we detect the rightmost
boundary of the inversion. The difference with respect to 1D
convolution is that we stop as soon as we find the first “edge”.
If no edge is found, it means that the given component does
not have an inversion. If the two boundaries were found, we
still need to perform the next method in the pipeline to know
for sure if the component has an inversion or not.

C. Classification of Inversion

Finally, we classify the sample using the threshold and the
two boundaries/limits (left and right) of the inversion. For
this, we considered techniques such as Jensen-Shannon and
Kullback-Leibler (KL) divergence but the results were not
successful because most samples have p-values close to zero
(more than 95%) and these metrics are not intended for such
skewed data.

We implement a simple but effective alternative method
for classification. By using the potential boundaries of the
inversion, we can split our samples into two sets, the set of
samples inside the inversion and the set of samples outside
the inversion. For each set, separately, we calculate the ratio
between the number of samples that are above and below the

horizontal threshold, and with these two ratios, we calculate
the density ratio. Equation 1 shows the formula.

density ratio =
outabove/outbelow
inabove/inbelow

(1)

where outabove and outbelow represent points outside of the
boundaries (red and green lines in Figure 6), and inabove and
inbelow represent points inside the inversion. As seen in Figure
5, the left boundary has two red lines, the section in between
these red lines represents a section whose SNPs values were
ignored when calculating the density ratio because the borders
have outliers in terms of inverted vs. non-inverted, so, by
ignoring these small sections we improved our results.

If the density ratio is less or equal than 0.01 then we
classify the component as having an inversion and if the result
is greater as not having an inversion. We chose the value 0.01
based on all the experiments we performed. Figure 6 shows
an example of this method where on the left the density ratio
is 0.008 and thus the result is valid for an inversion. On the
right, the result is 0.075 which indicates the component does
not have an inversion.

III. EXPERIMENTS AND ANALYSIS

In this section, we discuss the efficacy of our (i) faster
method for association tests, (ii) boundary detection method,
and (iii) classifier of components method.

A. Speedup Calculations

First, we show how our proposed PCC method for the
association tests speeds up the execution time with respect to
LR. Table I compares the execution time of LR against PCC.
These experiments show that our alternative statistical method
works 17.5 times faster than using LR. The results of large
datasets can be analyzed with less computation and thus, less
execution time.

Dataset Asaph V1 [6] using LR Our new method - PCC
2La 39.4 2.2
2Rbcd 19.8 1.2
2Rb 32.3 1.8

TABLE I: Running time in hours of three experiments. PCC
is substantially faster in all three when compared to LR.

B. Boundary Detection

Love et al. [3] report the localization of inversions for just
a few datasets. They used biological tests (experimentally-
mapped) to obtain these locations, and we compared their
results with our method for localization (see Table II). We
use the Jaccard index [18] or Intersection over Union (IoU) to
compare the results. This index gives us the similarity between
samples by using the size of the intersection divided by the
size of the union of the samples.

As we mentioned in the description of the data, we filtered
to remove variants with low QUAL (quality) scores. It is true
that variants with little support could cause some error in the
inversion boundaries. However, the boundary errors are likely
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Fig. 6: Density analysis: the ratio of the non-inverted divided by the ratio of the inverted section. (a) Non-inverted is 1/10 = 0.1,
inverted is 12/1 = 12, so, the density ratio is 0.1/12 = 0.008. (b) Non-inverted is 9/10 = 0.9, inverted is 12/1 = 12, so, the
density ratio is 0.9/12 = 0.075. Density threshold = 0.01, so (a) is classified as an inversion (< 0.01) and (b) is not (> 0.01).

Data Love et al. [3] Our method IoU
2La 20524058-42165532 ([19]) 20280463-42127572 0.987
2Rbc 19023925-31473100 ([20], [21]) 18994199-31302151 0.984
2Rd 31495381-42375004 ([22]) 31310099-42725018 0.953
2Ru 31473000-35505236 ([21]) 31414794-36121835 0.856

TABLE II: Results of our boundary detection method for the
localization task of the inversion.

to be very small relative to the size of the inversion. However,
our results show that the boundaries are similar to the state-
of-the-art for these four important inversions in Anopheles
mosquitoes. As seen, the IoU in every test is high for 2La,
2Rbc, and 2Rd, with an IoU higher than 0.95. 2Ru has an
acceptable result with an IoU of about 0.856. In the future,
as more biological analysis on inversions becomes available,
we will be able to compare more results. Meanwhile, with the
available data, our proposed method is therefore effective in
finding an approximate location of inversions.

C. Classification of components

We performed 72 runs of experiments to measure the per-
formance of classification. We classify if a specific component
has an inversion or not. Figure 7 shows two results of these
experiments. We use the 12 datasets described in section
I-B and for each dataset, we performed the association tests
using its first 6 components from the PCA. We compared the
performance of our algorithm vs. an expert classification of the
component, i.e., visual inspection of the plot (by an expert).

The precision is 0.94, showing that our method detects
inversions when they are actually present. The recall is 0.68,
which highlights false-negatives. To increase recall, it can be
used a dynamic value (treated as a hyperparameter) for the
density analysis vs. the fixed one we are currently using (the
fixed value of 0.01), which may help in increasing our recall.
That said, our final accuracy is 0.88. This can be considered
a high score because the results are compared to manual
classification which can be somewhat subjective.

Figure 7 shows the results from the 2Rbcd (2R with b, c,
and d inversions) dataset. We show that our methods work as
expected. For example, we can see that 7a accurately finds
the inversion, and 7b indicates that the component has no
inversion. As shown in this Figure, the first component finds

the location of the inversion and the classification result also
works as expected. Figure 7 shows just two components, but
we performed 6 components in every experiment.

IV. CONCLUSIONS AND FUTURE WORK

Comprehensive SNP-based inversion detection can be com-
putationally intensive because we have to run a statistical test
for every SNP position and only a small number of variants
show a high p-value in inverted regions. For example, as shown
in Figure 5 only 0.09% of the approximately 3.2 million SNPs
are strongly correlated with the inversion. This percentage
is even lower for the 2R datasets. This weak signal makes
this problem difficult for deep learning models that rely on
strong features to learn. We show that PCA and association
tests are still one of the best options to find inversions. Also,
a simple statistical test alternative—correlation—maintains
accuracy while being substantially faster than prior methods.

Further, finding the inversion breakpoints, i.e., where the
inversion starts and ends on a chromosome, has required labor-
intensive manual inspection of raw association data. In this pa-
per, we validate a new precise (quantitative) estimate of these
breakpoints, which opens the door for automatic annotation
and karyotyping of future genome sequencing samples.

We note that our new framework still relies on the large-
scale association of inversions to principal components derived
from available SNP data. It will not work well if the available
samples are unbalanced and do not have any “stripes” in a
PCA ordination. Future work could apply more supervised
learning-inspired methods that can predict inversions based
on known inverted samples independent of the underlying
inversion frequencies in the samples provided for analysis.

We also show that our density analysis provides a tool to
classify components with a final accuracy of 0.88 compared
to manual classification. This will allow a faster analysis of
components with high confidence in the results. To the best of
our knowledge, no prior method can classify components at
all. An interesting future improvement is related to adjusting
the density ratio to improve the performance without bench-
marking based on known inversions.

Finally, as future work, it will be interesting to use simulated
data that can help us to explore a wide range of impacts
on the accuracy of the models. For example, what if you



(a) Successful classification as inversion (density ratio
< 0.01) and localization (green and red lines).

(b) Successful classification as no-inversion (den-
sity ratio > 0.01). Even though, localization works, the
density ratio indicates that there is no-inversion.

Fig. 7: Successful results of two components (first and fourth) over 2Rbcd data.

have fewer SNPs or samples? What if the correlation between
the SNPs and inversions are less? What if the areas around
the inversion boundaries are noisy? This would allow us to
determine how robust the model is. Also, it will be important
to also evaluate this method on data from other organisms
(other than mosquitoes) to ensure that it generalizes well.
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