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Abstract—Reinforcement Learning has been widely applied to
play classic games where the agents learn the rules by playing
the game by themselves. Recent works in general Reinforcement
Learning use many improvements such as memory replay to
boost the results and training time but we have not found research
that focuses on the impact of memory replay in agents that
play simple classic video games. In this research, we present an
analysis of the impact of three different techniques of memory
replay in the performance of a Deep Q-Learning model using
different levels of difficulty of the Pacman video game. Also, we
propose a multi-channel image - a novel way to create input
tensors for training the model - inspired by one-hot encoding,
and we show in the experiment section that the performance is
improved by using this idea. We find that our model is able to
learn faster than previous work and is even able to learn how
to consistently win on the mediumClassic board after only 3,000
training episodes, previously thought to take much longer.

Index Terms—Q-Learning, memory replay, deep learning,
reinforcement learning

I. INTRODUCTION

One of the most important milestones in Reinforcement
Learning (RL) was achieved when Mnih et al. [1] could imple-
ment the Deep Q-Learning idea in order to automatically play
Atari games. After this, tons of research has been developed
using the ideas of Deep Q-Learning and this led RL to be a hot
topic along with Deep Learning models [2]–[4]. Video games
- and especially classic videos games - offer a whole new
opportunity to test RL models as a preliminary stage before
moving to more complex problems [5]–[12]. Video games
offer controlled environments at a very cheap-easy-low-cost
to first try RL models. Then the algorithms can be applied to
a wide variety of real-world problems. Video games offer a
great opportunity of having well-defined environments with a
great diversity of complexity.

On the one hand, the main advantage of RL is that it only
needs feedback from the environment to learn. On the other
hand, the training time has been always the main disadvantage
of RL algorithms. To alleviate the training time, memory
replay has been proposed [13] as a solution to have a faster
convergence of the model. Unfortunately, we have not found
a formal comparison of the different techniques of memory
replay and video games environments. So, in this research,
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Fig. 1: The main idea of our approach. We have the memory
replay as the intermediate buffer from where the agent takes
samples for training.

we compared different memory replay techniques and measure
their performance using Deep Q-Learning. Figure 1 shows
the idea of our experiments where memory replay works as
a buffer where the interaction between the agent and the
environment generates a lot of future states and the training
works by sampling from this buffer. We used three different
settings for the memory replay as defined by Liu and Zou
[14]. Also, we explored the impact of two different input
data, one input is a regular RGB image and the other has
n channels where every channel represents one component of
the environment.

In this work, we use one of the most popular games of all
time: Pacman. We use a popular Pacman environment imple-
mentation supplied by The University of California, Berkeley
(UC Berkeley) [15]. We modified their environment to allow
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(a) Small grid.

(b) Medidum grid.

(c) Large grid also known as medium grid
classic.

Fig. 2: Example of images from the simulator we used for this
research.

us to add our own agents, models, and replay memory. Figure
2 shows an example of the different environment size we used.
Also, it is important to mention that we also experiment using
two different input data, first we implemented experiments
using regular RGB images and using the component-per-
channel approach as shown in Figure 3.

In our work, we added a few key improvements that we
did not come across in any previous work. For example, all
of the previous work used basic memory replay as suggested
by Mnih et al. [1] but to the best of our knowledge, no one

has implemented prioritized replay when using Pacman with
either of the open-source available environments (Gym and UC
Berkeley). We implemented prioritized replay memory using
both variants presented by Schaul et al. [13], proportional and
rank based.

A. Previous Work

Relevant work related to Pacman was done by Mnih et
al. [16] from DeepMind1, where they present the first deep
learning model as a function approximation. However, the
experiments are applied to only a few games and the ideas
presented in the paper are no longer the standard for new RL
research. For example, the authors use a semi-gradient method
with a single neural network.

Another paper from DeepMind [1] was an important work
to create a robust solution where they used memory replay
and two networks in order to tackle the semi-gradient issue.
They showed how their ideas are better at generalizing across
a broad variety of Atari games. This work focuses on imple-
menting the ideas from their paper such as memory replay and
a Deep Q-Learning Network (DQN).

It is important to indicate that this project is based on a
popular template that is freely available and used as a project
for an RL class [15]. We want to make note that there are many
available repositories on the internet with various solutions to
this problem. We chose to use PyTorch for two main reasons.
The first is that many of those solutions are created using
TensorFlow2,3 and we do not want to be seen as replicating
already established work. The second is because PyTorch is
much more transparent in what each operation does and we
find it is easier to understand from a glance as would a reader
studying the implementation.

Domı́nguez-Estévez et al. [17] implemented a solution using
DQN but they used the game “Ms. Pacman vs. Ghosts” from
Gym4 which is similar to the UC Berkeley environment but
one provided by Gym does not offer an option to have a small
environment like the one shown in Figure 2.

Gnanasekaran et al. [18] show interesting results using
memory replay, DQN, and Double DQN. We use some of
their ideas in our work, such as using the same model across
different sized boards and implementing their model to test
against ours.

B. Input methods

The main problem we are dealing with is related to train
an agent to play Pacman on different board sizes. The rules
of Pacman are simple: eat all of the food and capsules while
dodging the ghosts. The goal is then to do this as quickly as
possible.

The state-space of Pacman can be formulated as a Markov
Decision Process (MDP) in multiple ways. There are six

1https://deepmind.com
2https://github.com/advaypakhale/Berkeley-AI-Pacman-Projects
3https://github.com/jasonwu0731/AI-Pacman
4https://gym.openai.com
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Fig. 3: Two different architectures we used. On top uses the traditional RGB single image (we call it Single-state Image) with
an architecture proposed in one state-of-the-art papers [19]. The bottom model is our proposed model which uses n-channels
to represent the image as a tensor (every channel has a component of the environment).

primary components that constitute the state of the game
whose location needs to be kept track of.

1) Pacman: Where Pacman is currently at on the board.
2) Ghost: Where the ghosts are currently at on the board.
3) Capsules: The locations of the “large” dots. When

Pacman eats a capsule, all of the ghosts become scared
and edible.

4) Food: The location of the “small” dots.
5) Walls: The static positions of each wall on the board.
6) Scared Ghosts: The location of ghosts that are scared

and edible.

From these, we create two ways to concatenate the state so
that the model can learn from it.

a) Single-state image: The first is by converting the
Pacman board and state into an image (n × m × 3 tensor).
We assign colors to each of the six different parts of the state,
as done by Gnanasekaran et al. [19]. This approach can be
seen in Figure 3 on top.

b) Multi-channel image: The second is to create an n×
m × 6 tensor where each channel corresponds to one of the
different components of the state we care about. For instance,
the first channel only contains the position of Pacman, while
the second contains the location of walls, and so on. This
approach can be seen in Figure 3 at the bottom. We came out
with this idea that is closer to the one-hot implementation.

As for the action space, like [19] and [15], we allow the
cardinal directions and stopping to be valid actions. We use
the rewards supplied by our simulator (adapted from [15]) as
the rewards sent to our agent. To expand, the rewards were set
with inspiration from the classic maze escape problem where
the default is to give -1 point at all time steps, -500 if eaten by

a ghost (losing), +10 for eating food, +200 for eating a scared
ghost, and +500 for eating the last food capsule (winning).

II. METHODS

Since our problem is fairly complicated, we think that using
hand-crafted features and a large state, action array would
be time-consuming and unfruitful. Instead, we opted to ex-
plore Deep Q-Learning and its potential to solve complicated
problems. Deep Q-Learning - introduced by [1] - suggests
using two networks, target and policy networks, to perform
Q-Learning using CNNs.

A. Q-Learning models

We created two Deep Q-Learning networks with different
goals in mind, to compare how well each is able to solve
our problem. Figure 3 shows the two architectures we used in
our experiments. The first one shown on top was suggested by
Gnanasekaran et al. [19] with three convolutional layers (8, 16,
and 32 filters respectively) and a fully connected layer with
256 neurons. The second model, shown at the bottom, was
created by us with two convolutional layers (32 and 64 filters,
respectively), and a fully connected layer with 512 neurons.
We iterated towards this model by wanting to create a simpler
model in terms of feature extraction (hence two layers instead
of three), and with more parameters to be able to learn the
correct actions for more states. In both models, each layer is
followed by a ReLU activation layer.

B. Memory replay

Because Deep Q-Learning relies on replaying past experi-
ences to learn, we wanted to see if different types of replay
functions could aid in solving the problem more quickly. Our

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 17:00:53 UTC from IEEE Xplore.  Restrictions apply. 



base, a basic replay function, stores new experiences in a large
deque that gets rid of old experiences once it starts to overfill,
and when we perform training steps, it randomly samples 32
previous time-steps. There are two more methods of picking
which previous time-steps to sample suggested by [13] called
Prioritized Experience Replay, and here we need to associate
every experience with additional information (priority). The
idea is to use the error of every sample and use that as the
priority. In simple terms, the higher the error the higher the
priority. First we take a sample batch from the memory replay
and then we update the priority of this batch by using the
error we got. Schaul et al. [13] propose two ways of getting
priorities as follows:

• Proportional: pi = |δi| + ε, here the ε is a small value
just to ensure that no sample will have zero probability,
that way all the samples will have a chance to be picked.

• Rank-based: pi = 1/rank(i) sorts the priorities accord-
ing to |δ| to get the rank.

where δ is the error on that particular sample. It is also
important to indicate that α and β are two hyper-parameters
related to priority replay. As explained by Schaul et al. [13], α
helps us to determine the level of prioritization. So, we have
that

P (i) =
pαi∑
k p

α
i

(1)

The β hyper-parameter is a weighting value that indicates
how much we want to update the weights of the model. So,
incorporating β we have the formula:

wi =

(
1

N
· 1

P (i))

)β
(2)

β controls how much prioritization to apply to the current
batch.

The suggested loss function for most reinforcement prob-
lems, to our knowledge, is Huber Loss. However, while we
were initially creating these models and trying to get them to
work, we noticed that sometimes using Mean Squared Error
Loss would let the model converge more quickly. So for the
purposes of our experiments, we run trials with both losses.
Overall, we have described a large number of parameters to
tweak. One more parameter that we seek to analyze is the
different board sizes supplied by our Pacman environment
(small grid, medium grid, and large grid, shown in Figure
2).

Table I summarizes the options for each of these parameters.
We experiment with 36 combinations. We tested all three grid
sizes provided by the UC Berkeley environment. We tested
the Stanford model as defined in Gnanasekaran et al. [19],
and our model (see Figure 3). To strictly follow the approach
of Gnanasekaran et al. [19], we used images representing the
states during training with their model while using a one-
hot encoded binary structure for training with our model.
Regarding the memory replay, we test three approaches: basic

Grid Size Model Experience Replay Loss

Small Grid Stanford Basic MSE
Medium Grid Ours Proportional Huber
Large Grid (medium classic) Rank-based

TABLE I: Different factors we analyzed in this research. We
tested three different scenarios, two models, two losses, and
the experience replay memory which turns out to be the most
important factor we wanted to test.

memory replay as explained by Mnih et al. [1], and propor-
tional and rank-based prioritized memory replay as explained
by Schaul et al. [13]. And finally, we tried the two losses we
previously described, Mean Squared Error (MS)E and Huber.

C. Agents

We perform Deep Q-Learning as describe before. Some of
the most relevant features of our agents are as follows.

• Actions: Selects an action randomly or from the model,
depending on the current ε value. Stores state-action data
to the selected replay.

• epsilon: Determines the current ε value for the ε-greedy
policy in

• train action: Performs a step of training. That entails:
asking the replay for a batch of data, calculating the
expected state action values, and performing one back-
propagation step.

We have two agents that were implemented for experiments.
The first is the one used with the Stanford model [19], called
ImageDQNAgent.

• It creates a target and policy network using the Stanford
model.

• Also, it converts the state given by the UC Berkeley
environment (the simulator) to an RGB image like in [19].

The second agent is the one we proposed, called Chan-
nelDQNAgent.

• It creates a target and policy network using our model
• Also, it converts the state given by the UC Berkeley

environment to a 6 channel tensor.

III. RESULTS ANALYSIS

As indicated in Table I, we ran 36 experiments where
we combined the grid size (the size of the Pacman maze),
the model (Stanford or our model), the three approaches
for the memory replay (basic, prioritized-proportional, and
prioritized-rank-based), and the loss function (Huber and
MSE). Figure 4 shows the behavior during training, whereas
Figure 5 shows the testing results.

A. Hyperparameters

There are a number of hyperparameters that can be tweaked
across runs that we needed to determine how to set. An
important thing is to replicate results from previous work, in
this case, our benchmark was related to the results reported by
Gnanasekaran et al. [19], consequently, we first started with
the settings recommended in this paper. Unfortunately, using
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(a) Huber loss and our model on the smallGrid layout. (b) Huber loss and the Stanford model on the smallGrid layout.

(c) MSE loss and our model on the smallGrid layout. (d) MSE loss and the Stanford model on the smallGrid layout.

Fig. 4: Loss plots during training with the three different approach of replay: basic, proportional, and rank-based.

their settings with the models we had did not produce results
that were optimal. Instead of 1500-2500 episodes needed for a
100% win rate, we had to increase all of our models to 3,000
training episodes.

The learning rate they suggested, 2.5×10−4 worked for that
many training episodes. We also found that linearly decreasing
ε from 1 to 0.1 as training progressed worked well. We used
these hyperparameter settings across all of our models and
for all of the grids. While we might be able to get better
results using different hyperparameters in certain scenarios and
parameter combinations, we wanted to give a fair comparison
to all models across all of our parameter combinations so we
kept them static across runs.

B. Loss Analysis and Training

First, we want to discuss the behavior of the training related
to our experiments. Figure 4 shows the results of the loss
during training of the smallGrid by comparing the behavior of
the three approaches we used for memory replay. Regarding
the Huber loss, Figure 4a shows that rank-based replay exhibits
a slow convergence rate while basic and proportional replay

has a more linearly decreasing behavior. In the intermediate
episodes, proportional seems to converge faster and in the last
episodes (2800-3000) proportional improves with a sudden fall
to beat basic replay. Figure 4b shows the case where basic
replay has the worst behavior and rank-based has the best
performance. An important aspect is to realize the size of the
scale (the y-axis) between Figures 4a and 4b, where our model
(Figure 4a) has better results (smaller losses) during training.

Figures 4c and 4d show the behavior using MSE as the
loss function. As seen, the three approaches of memory replay
have similar behavior, for example, it is hard to distinguish a
real “winner”in the last episode (3000), since the results are
overlapping - as in the case of Figure 4c, or pretty close to
each other - as in the case of Figure 4d. However, by looking
at the small differences we can say that rank-based has the
best performance since it shows a linearly decaying value in
the average loss.

C. Testing results

Figure 5 shows the testing results for all three grids using
our model, the Stanford model, and the three versions of
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(a) smallGrid scores using Huber loss. (b) smallGrid scores using MSE loss.

(c) mediumGrid scores using Huber loss. (d) mediumGrid scores using MSE loss.

(e) mediumClassic grid scores using Huber loss. (f) mediumClassic grid scores using MSE loss.

Fig. 5: Results of the scores during testing. In every case, we compared the three different memory replay approaches and the
two models we used.
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memory replay. Figure 5a and 5b show the results using the
smallGrid. Interestingly, the smallGrid behaves better when
using MSE during training, as seen in Figure 5b where 3
out of 6 experiments show high/positive scores in the last
episodes. However, using the Huber loss, just one model has
an acceptable result (Figure 5a). Also, the three successful
experiments in Figure 5b were using our model, and it can be
seen that our proposed model surpasses the Stanford model
in the smallGrid experiments using all three different replay
memory approaches.

Figure 5c shows that in the case of using Huber loss, the
Stanford model and ours have the best results when using
prioritized proportional memory replay. Our model also has
good behavior when using the basic memory replay, and the
rest of the combinations show erratic, unsuccessful behavior.
In this case, it could be possible that more episodes would
help to have more consistent and successful results. When
using MSE (see Figure 5d) the behavior changes drastically
where the Stanford model and our model show the worst
performance when using proportional replay. Furthermore, 4
out of 6 experiments have good results when using MSE, and
it seems that the combination here of MSE and basic and rank-
based replay have the best results, and our model (with basic
replay and rank-based) is more consistent in converging.

Finally, we have the mediumClassic grid experiments in
Figures 5e and 5f. The first one, using Huber, shows a trend
to increase their scoring results. However, only our model
using rank-based and basic replay is able to converge and
consistently win on the mediumClassic board. That is not the
case of Figure 5f, where none of the models using MSE are
able to converge. Of all the experiments we performed, this is
the only one where no positive scores were achieved.

IV. CONCLUSIONS

From the previous section, we can say that MSE has better
results in the smallGrid and mediumGrid with our initial
configuration of 3000 episodes. By using the smallGrid we
found that only the proportional replay memory showed good
results regardless of the loss function used. In the case of the
mediumGrid, Huber loss performs better even though MSE
also has good results. However, when using the mediumClassic
grid which is the most complicated scenario, Huber has the
best results over MSE which does not achieve any positive
scoring. Consequently, with simple scenarios, MSE is an
acceptable option whereas Huber needs a lot of episodes to
converge, but for generalization purposes, Huber seems to be
the right choice in the Pacman game, and most real Pacman
levels are more similar to the mediumClassic experiment than
to the smallGrid and mediumGrid ones.

Regarding the memory replay we found that in some cases
the basic replay is good enough in some cases, this can be
explained by the fact that the Pacman is not a complicated
game -in terms of the goals to achieve- so, having the basic
replay memory is an acceptable choice. The real advantages
of rank-based and proportional memory replay are in specific

scenarios, for example, proportional seems to be better in sim-
ple scenarios (smallGrid and mediumGrid) while rank-based
seems to work better in more complex ones (mediumClassic).
In any case, our model along with basic memory replay always
shows promising results and it is the most consistent of all the
different experiments.

Finally, we see throughout all the experiments that our
proposed model performs better than the Stanford model. Our
model has more filters and a larger dense layer, so, in this case,
having more weights equates to better performance when using
the Pacman video game.

These sets of experiments were performed using PacMan
as a platform to show that memory replay in backpropagation
can increase the efficiency of the model significantly. Instead
of backpropagation every result of the feed-forward network,
using memory replay the algorithm selectively picks a subset
of results to backpropagate. This approach can be easily ex-
tended to other image-based reinforcement systems to increase
efficiency.

V. FUTURE WORK

We realize that choosing the model is extremely important
in this problem, so an interesting path for future experimen-
tation would be to apply a parameter search to find the best
architecture for the model.

Also, we found that using our novel idea of the multi-
channel image - inspired by the one-hot encoding principle -
we got much better results, having more challenging scenarios
can give more confidence in order to generalize this finding.
Definitely, this idea is worth to be used instead of the regular
RGB image when the problem setting allows using this idea.

And finally, due to time constraints, we did not implement
double Deep Q-Networks (DDQN). It will be interesting to
observe if DDQN can achieve comparable or better results
than what we have achieved in the same or fewer episodes
given that we needed to use 3000 episodes on average.
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