
TopKConv: Increased Adversarial Robustness
Through Deeper Interpretability

Henry Eigen
Department of EECS

University of Tennessee, Knoxville
Knoxville, TN

heigen@vols.utk.edu

Amir Sadovnik
Department of EECS

University of Tennessee, Knoxville
Knoxville, TN

asadovnik@utk.edu

Abstract—Vulnerability to adversarial inputs remains an issue
for deep neural networks. Attackers can slightly modify inputs
in order to cause adverse behavior in otherwise highly accurate
networks. In addition to making these networks less secure for
real world applications, this also emphasizes a misalignment
between the features the network uses to make decisions and
the ones humans use. In this work we propose that more
interpretable networks should yield more robust ones since
they are able to rely on features that are more understand-
able to humans. More specifically, we take inspiration from
interpretability based approaches to adversarial robustness, and
propose a sparsity based defense to counter the impact of
overparameterization on adversarial vulnerability. Building off
of the work of the Dynamic-K algorithm, which introduces
dynamic routing to fully connected layers in order to encourage
sparse, interpretable predictions, we propose TopKConv, a novel
method of reducing the number of activation channels used to
construct each convolutional feature map. The incorporation of
TopKConv alongside Dynamic-k results in a significant increase
in adversarial accuracy at no cost to benign accuracy. Further,
this is achieved with no fine tuning of or adversarial training.

Index Terms—Adversarial defense, sparse training, dynamic
routing

I. INTRODUCTION

It has been well established that vulnerability to adversarial

inputs–inputs slightly modified to maximize the loss of a

network and cause misclassification–is a natural consequence

of the algorithms we currently use to train neural networks

[1].

In an attempt to combat this vulnerability, significant effort

has been dedicated to exploring methods which can reduce

the fragility of neural networks. Adversarial training [2], the

most successful method to date, still falls short insofar as

it fails to bring adversarial accuracy to the level of benign

accuracy. Additionally, some argue that this method inevitably

forces a trade-off between these two accuracies, with increased

robustness effectively compromising benign accuracy [3] [4].

Various other approaches have been explored, either motivated

by the significant computational cost of adversarial training,

or by its shortcomings in producing robust models.

Another relatively successful line of work explores the use

of pruning to create sparser models which have been shown to

have superior performance against adversarial attacks. These

methods remove certain connections from the network, hope-

fully leaving the highly predictive ones and thus creating a

more robust network. However, as these networks are not

trained in a fashion which enforces sparsity, they require fine

tuning or adversarial training, and the results are still far from

optimal.

In this work we focus mainly on the tie between inter-

pretability and robustness. The fact that small perturbations,

which are imperceptible to humans, cause large shifts in the

classifiers output reveal a misalignment between the features

the network uses to make decisions and the features a human

would expect it to use. Since a common definition of a

model’s interpretability is the degree to which its decisions

are understandable to human observers [5], this means that

networks which are susceptible to adversarial attacks are not

only less secure for real world applications, but are also less

trustworthy and less interpretable since they make predictions

which a human cannot understand. Following from this, it is

clear that interpretability and adversarial fragility are at odds

with one another. With this in mind, we draw inspiration from

works concerning interpretable models in order to develop

methods to train more robust models.

More specifically, in this work we present a novel modi-

fication of the traditional convolutional layer, which extends

the ideas of the the Dynamic-K algorithm [6], an expecta-

tion maximization based dynamic routing schema for fully

connected layers. As this method has been shown to increase

interpretability in fully connected layers, we formulate a way

to use in convolutional layers as well in order to train models

which make predictions based on fewer, more meaningful

features.

We demonstrate that, without any exposure to adversarial

examples, which is necessary for adversarial training, models

trained using these dynamic routing methods can outperform

those achieved by pruning both in terms of increasing ad-

versarial accuracy, and in minimizing decreases in benign

accuracy.

II. PREVIOUS WORK

A. Adversarial attacks

The first adversarial attack demonstrating the fragility of

state of the art networks was the Fast Gradient Sign Method

(FGSM) attack [1]. It is a single step of gradient ascent, taking

15

2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-6654-4337-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICMLA52953.2021.00011

20
21

 2
0t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ac

hi
ne

 L
ea

rn
in

g
an

d
A

pp
lic

at
io

ns
 (I

C
M

LA
) |

 9
78

-1
-6

65
4-

43
37

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

M
LA

52
95

3.
20

21
.0

00
11

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

a step in the direction of the gradient of the loss with respect

to input, thereby increasing loss.

x = x+ εsgn(∇xL(θ, x, y)) (1)

Where x is the input image, y is the ground truth label,

θ are the network parameters, ε is the size of the step, and

L() is the loss function. While FGSM is a relatively weak

attack, and one that can be largely defended against through

adversarial training, a slight modification to it will yield the

Projected Gradient Descent (PGD) attack, a multi-step variant

of FGSM which is much more difficult to defend against.

xt+1 = Πx+S(x
t + αsgn(∇xL(θ, x, y))) (2)

Where Π is a clipping operator which subjects xt+1 to

‖xt+1 − x‖ ≤ S. Because it is a multi-step attack, α acts as

the step size.

Although a number of stronger attacks have since been

created which minimize the perturbation required to fool the

network, for the purposes of this paper, we mainly consider

robustness against these two attacks.

B. Adversarial defenses

Adversarial training (AT) is arguably the most successful

defense against adversarial attacks to date. AT consists of

augmenting the dataset used to train a network, typically by

include adversarial images [7] [1] [2].

Attacks like FGSM and PGD (referred to as ”white box”

attacks) rely on a gradient which can be used to ascend the

loss curve; without a useful gradient, these attacks would be

unable to cause adverse behavior in networks. As a result of

this fact, methods of obscuring or obfuscating gradients have

been proposed as a means of reducing the efficacy of such

attacks. Either by employing non-differentiable operations, or

by introducing randomness into the backpropagation, the ulti-

mate result is gradients which are unstable, incorrect, or non-

existent [8]. While variations of these defenses outperformed

other methods at the time, they proved ineffective against

subsequently developed ”Black Box” attacks, those which do

not rely on knowledge of a network’s weights or its gradient

[9].

There have been several attempts to use dynamic routing as

as a defense against adversarial robustness, most notably SAP

(Stochastic Activation Pruning) [10]. SAP seeks to introduce

randomness into the model’s routing in order to reduce the

effectiveness of adversarial noise by making predictions with

a different set of weights than were used to generate the

attack gradient. Activations are sampled with replacement

from a distribution with a likelihood corresponding to their

magnitude. The resulting set of activations is then scaled to

closely resemble the expected value of the initial set. This

is performed exclusively in the testing stage, and the goal

is to maximize the number of activations removed while

minimizing the change in expected value of the output.

Several works have suggested a relationship between spar-

sity and robustness, citing overparameterization as a primary

cause of adversarial vulnerability [11] [12]. These and other

similar works have shown that sparsity, either achieved by

pruning or weight regularization, can lead to greater robustness

against adversarial attacks.

III. METHODS

A. Dynamic-K

The Dynamic-k algorithm [6] was designed with model in-

terpretability in mind. The authors show that its incorporation

into a model’s final fully connected layer leads to a simplified

learned representation by restricting the number of features

at the model’s disposal. Further, the authors found that the

increase in a model’s interpretability as a result of Dynamic-k

does not come at the cost of accuracy.

The Dynamic-k algorithm modifies a fully connected layer

by constraining the number of activations used to calculate

each class probability. This is accomplished by setting each

the output of each class to the max-k-sum of its activations,

the max-k-sum being the sum of the k largest numbers in a

set. Specifically, the max-k-sum is found by applying a binary

mask to each channel’s activations, setting those included

in the top-k set to 1, and the rest to 0. Summing along

the masked activations then yields the max-k-sum of each

output channel (Algorithm 1). In terms of a channel’s output,

this is equivalent to setting the weights responsible for those

activations to zero. Because the top-k set is determined by

the layer’s activations, however, that set, and by extension the

set of weights used by the layer, varies with the input. This

dynamic routing mechanism also impacts backpropagation, as

loss is only attributed to the weights used to make a given

prediction. Because Dynamic-k is applied during training, the

network learns a set of weights which maximizes these output

channels.

Algorithm 1: TopKDense

for c = 1, 2, ... O do
Yc = maxRc

∑m
i=1 R

c
iW

c
i Xi s.t.|Rc| ≤ k

end

B. Dynamic-K Conv

The original Dynamic-k paper was primarily interested in

demonstrating how applying this dynamic routing scheme to a

network’s final fully connected layers improved interpretabil-

ity. In addition, the authors do suggest that by treating a

convolutional layer with a 1× 1 kernel as a type of fully con-

nected layer, a pixelwise top-k sum could be added between

existing convolutional layers earlier in the network. However,

the effect of using this in those layers is not investigated,

and it is limited to a 1 × 1 since it is not clear how this

technique would be applied to larger kernels. In this work

we propose a novel way to apply channel-wise Dynamic-k

routing to convolutional kernels which we call TopKConv. We

16

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

hypothesize that there is no inherent reason why the ideas

of dynamic routing cannot be applied to earlier convolutional

layers, and we should expect that this would yield even more

robust networks since the convolutional layers will also be able

to learn more interpretable features. Our novel method allows

us to apply Dynamic-k routing to convolutional kernels of any

size at any layer.

There are several features of the convolutional layer which

prevent the Dynamic-k algorithm from being directly applied.

Unlike the fully connected layers considered by Dynamic-k,

weights and activations do not have a one-to-one relationship.

As discussed above, Dynamic-k works because setting activa-

tions outside of the top-k to zero is equivalent to setting that

activation’s weights to zero in terms of both the feed forward

and backpropagation stages. When a single weight yields

multiple activations, as is the case in convolutional layers

(see Figure 1), the weight is treated as non-zero during back-

propagation if any of its activations are non-zero. This would

violate the constraints on the number of weights updated at

any given time, therefore undermining the effectiveness of

Dynamic-k. In order to avoid this issue of shared weights, we

use depthwise convolution as the basis for our method [13].

In depthwise convolution, each filter in a kernel is convolved

along a single corresponding input channel. The resulting

channels are then stacked and returned. This is typically

followed by a 1x1 convolution which reduces the stack to a

single output channel. When used in concert, the combination

is called a depthwise separable convolution. What we are

interested in, however, is the depthwise convolution’s one-to-

one relationship between kernel filters and stack channels. We

do without the 1x1 convolution, instead treating the stacked

output as our activations and perform a top-k-sum to reduce

them to a single output channel. This allows us to avoid the

issue of shared weights.

Fig. 1. In the standard convolutional layer shown above, a single weight
will yield multiple activations, as the input at each position of the sliding
convolution window is independently multiplied by a kernel and summed. In
the image above, the top-k activation sets of both Ac

1 and Ac
2 will impact the

gradient w.r.t. W c ultimately allowing more than k filters to be updated. This
is incompatible with the orinigal idea of Dynamic-k.

The depthwise convolution approach introduces a new

problem. Since the activations of depthwise convolution have

height and width dimensions, the max-k-sum of activations

cannot be directly solved, meaning that the process for se-

lecting the top-k channels must be modified to accommodate

this. We propose using channels’ max as the criteria for top-k

selection (Figure 2). Our reasons for using the max, as opposed

to other dimensionality reduction operations, is discussed in

next section.

We implement our proposed TopKConv layer as the compo-

sition of two function. The first function, f , is the depthwise

convolution function. Letting W be the layer’s weights:

f : X
(h×w×n)

, W
(h×w×n×o)

→ A
(h×w×n×o)

Where h and w are height and width respectively, n is

the number of input channels, and o is the number of output

channels. Because we will be summing along the n axis of

A to find the layer’s output, we consider the output of f to

be our activations. The second function, Mk, finds performs

a top-k summation on the activations.

Mk : A
(h×w×n×o)

→ Y
(h×w×o)

In particular, for each output channel c, Mk finds and ap-

plies applies a binary mask Rc which maximizes the sum along

A’s n axis. This process is explicitly defined in Algorithm 2.

Algorithm 2: TopKConv: Mk

for c = 1, 2, ... O do
Rc ← argmaxRc

∑n
i=1 R

c
i max(Ac

i) s.t.|Rc| ≤ k

Yc ←
∑n

i=1 R
c
iA

c
i

end

Note that absent the mask R, Mk is simply a summation

of A. In this case, Y is equivalent to the output of a standard

convolutional layer given the same X and W .

Y ←Mk(f(X,W)) =
n∑

i=1

f(X,W)hwio

It is as a result of this fact that we are able to represent our

top-k convolutional layer as the top-k summation of depthwise

convolution. The entire TopKConv pipeline is shown in Fig.

2.

C. top-k criteria

Because the activation channels are multidimensional, a

reduction operation must be used to rank them in order

to find a top-k-sum. Although choosing the top-k-sum by

summing across each channel would be truest to Dynamic-

K’s EM design, we chose to select channels based on each

17

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Our proposed TopKConv method starts with depthwise convolution, as it allows us to examine each feature map independently to select the ones
with the highest activation. The Ac stack in the figure above, which has the same number of channels as the input, represents the output of the depthwise
convolution, or what we consider to be our feature activations. Because this convolution output results in two dimensional activations for each feature, a top-k
mask (R as shown in Algorithm 1) cannot be directly derived. Instead, we create the top-k binary mask, Rc, by first performing global max pooling so that
we can have a single value for each feature. Finally, this map is multiplied by each corresponding channel to yield the final convolution result.

channel’s max. This decision was motivated by intuition, and

is supported by empirical results (as shown in Table III).

If we are considering channel’s to be representative of

features, sum maximization doesn’t make sense as a goal.

Applying reduce-sum to channels means channels with large

areas of activation are selected in the top-k-sum. While large

areas of activation makes sense for certain types of features

like texture, many high level features, like an ear, should only

activate the specific regions in which they occur. Because a

max-reduce is more receptive to channels with areas of high

activation, rather than broad activation, it makes for a better

reduction operation.

Additionally, since top-k routing is used during training,

the model learns features which will be selected in the top-k

sum. This means that max-reduce encourages the model not to

learn features which highly activate in specific circumstances

(Figure 3). Moreover, selecting based on the maximum value

seems to encourage a more diverse selection of weights. While

small variations in an activation with a large sum are unlikely

to have a meaningful impact on its sum, the presence of a

feature in a small region of an image will have great impact

on a channel’s relative max ranking.

Our tests show that a model trained with the sum-reduce

top-k slightly under-performs a model trained using max-

reduce in terms of accuracy on clean images. In the case of

adversarial accuracy, it not only under-performs, but actually

worsens baseline accuracy.

D. Synapses vs. Neurons

Any references or comparisons to pruning up to this point

have been in reference to synapse pruning, that is, pruning

the connections between weights. Although synapse pruning

is by far the most common approach, there is an alternative:

neuron pruning. These two classifications of pruning methods,

synapse and neuron pruning, refer to which values are removed

from calculation. To prune synapses, or the connections be-

tween weights, is to remove values from the activations prior to

summation, affecting the value of an output channel. Pruning

neurons refers to removing a neuron, or kernel in this context,

entirely, resulting in an output channel value of zero.

Dynamic-k, as well as our proposed TopKConv method,

carry out a form of dynamic synapse pruning. We also

consider the possibility of adapting our TopKConv method to

a neuron pruning framework. TKC-neuron, as we’ll refer to

this method, is considerably simpler than it’s synapse pruning

counterpart. Just as in TopKConv, routing decisions must be

a function of activations, as weights are static across inputs.

Instead of selecting individual activations to preserve, TKC-

neuron selects the top-k sums of activations, each of which

represent the output of a single kernel. This then has the

effect of dynamically pruning entire kernels responsible for

low channels. Here too, we use channels’ max as the criteria

for top-k selection. Note that this is not a top-k summation

as has been the case in previous methods. Our desire to

adapt a neuron pruning approach is primarily motivated by

computational cost considerations, as the top-k selection takes

place only a single time on the layer’s output, rather than once

per output channel.

IV. EXPERIMENTS AND ANALYSIS

A. Setup

Since our work aims to highlight the benefits of updating

only a small number of parameters in a given training step,

we wish to use a large network, as overparameterization

becomes more of a concern with more features. In addition,

small images like ones from the cifar [14] database which are

32 × 32 result in feature maps reduced to only a few pixels

wide in the later convolutional layers, which make the use of

top-k selection less meaningful. Therefore, we use a dataset

with large images which would justify a larger network.

18

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Feature maps output by TopKConv layers using different top-k criteria.
Feature maps on the left were output by a layer using channel-max based
selections. Feature maps on the right were output by a layer using channel-
sum based selections. As can be seen, when using max criteria, TopKConv
has greater success in both learning particular features and locating them with
accuracy.

More specifically, we use the Cinic-10 dataset [15]. Cinic-

10 contains the same classes as the Cifar-10 dataset, however

it draws the images themselves from the Imagenet dataset.

This yields a 10 class dataset of images with size 224x224,

which allows us to use large images while reducing the training

and testing as compared to using the 1000 classes in the

Imagenet dataset. For our network we used a slight variant

of VGG16 [16]: given our 10 class dataset, we used only two

fully connected layers (512 neurons and 10 neurons). Because

of the size of our network and the number of experiments,

we sped up training by initializing the weights of networks to

those of a pretrained network.

We primarily consider robustness against the FGSM and

PGD attacks when evaluating robustness. These attacks pro-

vide a good point of comparison as they are frequently used to

evaluate methods in other papers. Additionally, the defenses

we are comparing against are vulnerable enough to these

relatively ”weak” attacks, that stronger attacks aren’t necessary

to demonstrate improved performance. For both the FGSM and

PGD attacks, we use an L∞ ε = 8. This means that a given

pixel can be changed by a value of up to 8. The PGD is a

multistep attack, so it has the additional parameters, iterations

= 16 and step-size = 0.75. Note that iterations * step-size >
ε. Should the change in a pixel exceed ε, PGD projects the

attack noise to the nearest point on the L∞ ball.

B. Baselines

As we focus in this work on learning more robust features

without the need for adversarial training, we wish to compare

how Dynamic-k’s performed in relation to other defenses

which were not exposed to adversarial data. In addition to

comparing to regularly trained networks, we also examined the

performance of other sparsity based approaches to robustness.

More specifically, we selected LWM [17] as the pruning

method against which to compare. This is motivated by

LWM’s frequent appearance as a baseline in works proposing

new pruning methods. Specifically, we used a polynomial

decay pruning schedule [18] which gradually increases the

sparsity up to a set value over the course of several epochs of

fine tuning.

We also compare against SAP, using SAP-80, which per-

forms best according to the original paper. As mentioned in the

Previous Works section, SAP samples activations randomly.

While both Dynamic-k and SAP perform dynamic activation

pruning, they fundamentally differ in several ways. For one,

SAP is not used in training, only in testing. This means that

it does not benefit from the altered backpropagation. Because

Dynamic-k is incorporated into the training loop, it ultimately

learns to produce a different set of activations from which to

choose. A model, in theory, has the ability to learn more robust

features as a result of Dynamic-k modified gradients, and as

we show in our results there is evidence to suggest it does.

SAP, on the other hand, only modifies how the model makes

predictions in the testing phase, and as a result, is limited as

a defense to moderate gradient masking. A similar point is

made about pruning in the Discussion section.

C. Dynamic-k Performance

We first test the robustness of our algorithm when using

the Dynamic-k routing algorithm in fully connected layers,

as was discussed in the original paper. Although this is the

same method as the one used in that original paper, it was

not tested there for adversarial robustness, and therefore we

present our results here. Our penultimate Dynamic-k layer has

k = 250 with an input dimension of (25088 x 1), meaning

1% of activations were kept. Our final Dynamic-k layer has

k = 10 with an input dimension of (512 x 1) meaning 2%

of activations were kept. A hyperparameter search determined

these to be the best k values.

Our results are shown in Table I and clearly show that using

Dynamic-k outperforms the baselines. It is interesting to note

that the increase in robustness as the result of the inclusion

of Dynamic-k did not come at the cost of the model’s benign

accuracy. Dynamic-k’s ability to impose sparsity constraints

without hurting the model’s performance is a point emphasized

by its authors. It is even more notable in this context, as many

adversarial defenses create a trade-off between benign and

adversarial accuracy.

We found that by applying Dynamic-k to the penultimate

layer in addition to the final layer, we were able to further

improve the performance. As results from the pruning defense

suggested that the application of Dynamic-k even further back

could be beneficial (see Table II), and since our model

had only two fully connected layers, Dynamic-k’s restriction

to fully connected layers motivated the development of our

TopKConv method.

19

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

Attack Baseline SAP Dropout Pruning Pruning +

LogitAug

Dynamic-

k

None 0.895 0.896 0.858 0.884 0.884 0.921

FGSM 0.192 0.207 0.233 0.340 0.369 0.388

PGD 0.084 – 0.108 0.223 0.245 0.324
TABLE I

DYNAMIC-K COMFORTABLY OUTPERFORMS OTHER METHODS IN TERMS OF ADVERSARIAL ROBUSTNESS. IT IS INTERESTING TO NOTE ACCURACY

AGAINST CLEAN IMAGES IN THE ”NONE” ROW. WHILE OTHER METHODS SAW SIMILAR OR SLIGHTLY DECREASED ACCURACY IN THIS CONTEXT,
DYNAMIC-K ACTUALLY PERFORMED BETTER THAN THE BASELINE NETWORK WHICH EMPLOYED NO ADVERSARIAL DEFENSE. THIS IS CONSISTENT

WITH RESULTS PUBLISHED BY DYNAMIC-K’S AUTHORS WHO NOTED THAT IT HAS A TENDENCY TO CONVERGE MORE QUICKLY, OFTEN OUTPERFORMING

THE BASELINE. ALSO INTERESTING IS THE RELATIVELY SMALL DIFFERENCE IN DYNAMIC-K’S PERFORMANCE AGAINST FGSM AND PGD, COMPARED

TO THE DROP SEEN BY OTHER METHODS. PGD PERFORMANCE IS PERHAPS THE MORE IMPORTANT METRIC HERE, AS ROBUSTNESS AGAINST PGD IS

MORE INDICATIVE OF GENERAL ROBUSTNESS ACROSS ALL ATTACKS.

Method Layers Affected Adv Acc

Pruning Final layer only 15.2

Final two layers 16.1

All layers 19.8

Dynamic-K Final layer only 27.8

Final two layers 31.1

TABLE II

D. Top-k-Conv Performance

In evaluating the performance of our TopKConv method,

we are primarily interested to see the degree to which it can

enhance the Dynamic-k defense, and so we use the Dynamic-k

network (as described in Sec. IV-C as the baseline.

We show results for implementations of TopKConv using

both max and sum as top-k selection criteria, denoted TKC-

max and TKC-sum respectively. We also consider the neuron

pruning adaptation, TKC-neuron. In all experiments, variations

of the TopKConv are used in addition to Dynamic-k.

In all cases shown in Table 2, TopKConv was used in

place of the standard convolutional layer in the two layers

immediately preceding the fully connected layers, and had

k values corresponding to 10% of activations. While much

stricter sparsity constraints could be applied to the final FC

layers, we found that values lower than 10% in the convo-

lutional layers created difficulty in training. Additionally, we

found that the use of TopKConv layers in earlier convolutional

blocks could prevent the model from converging altogether.

It is interesting to note that the addition of TKC-sum layers

actually lowered accuracy against PGD attacks. This is inline

with our intuition concerning top-k criteria.

V. DISCUSSION

A. Comparison to pruning

A key difference in a top-k trained model and a pruned

model is the top-k model’s incorporation of the sparsity

constraints into the training loop. Generally speaking, pruning

occurs after the model has converged, and it takes the form

of a two step iterative process of removing weights and fine

tuning the resulting network. During fine tuning, the values of

convolutional layers’ kernels are frozen, and only the model’s

final fully connected layers are updated. Because pruning

doesn’t take place until a model has converged, the model’s

weights prior to pruning are ideal. The goal of pruning is then

to find the subset of weights whose behavior most closely

resembles that of the full set.

In a top-k network, the activation pruning takes place during

training, meaning that the model learns features which work

well given the constraints. When dynamic routing is applied

to a model trained without it, the model’s accuracy is compro-

mised considerably. Similarly, a model trained using dynamic

routing performs poorly when it is removed during the test

phase. By restricting the model to the use of a small number

of features at a given layer, the model will learn fewer, more

predictive features. Pruning yields a sparse approximation of a

model’s non-sparse representation, while top-k training yields

a sparse representation to begin with.

Additionally, dynamically pruning weights via their acti-

vations gives the routing more flexibility. When pruning, a

weight’s value to the model is a function of its performance

on the entire distribution of training data. Dynamically pruning

allows an equally small number of weights to be used in

prediction, while still allowing a larger set of features to be

available, by choosing the sparse set most useful to each input.

B. Why top-k routing works

Despite significant effort, adversarial vulnerability is still

poorly understood, leaving a variety of theories, some in

agreement and others in conflict. Although none have provided

a conclusive explanation, it helps to have some conceptual

framework for understanding adversarial vulnerability to guide

one’s approach to fixing it. Our intuition about what allows

for adversarial attacks, and why the methods presented above

can help thwart them, is largely shaped by the work of Ilyas

et al [19].

This work presents the issue of adversariality as funda-

mentally an issue of interpretability. They theorize that the

ability to change a model’s prediction through the addition

of adversarial noise considered meaningless to humans isn’t

evidence of a failure of the models to generalize to the training

data, but rather a disconnect in which features are meaningful

to humans as opposed to vision models.

They demonstrate that, not only do models learn a variety of

non-robust features, features which are statistically significant

but largely meaningless to a human, but that the non-robust

20

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

Attack Baseline Dynamic-k TKC-neuron TKC-max TKC-sum

None 0.895 0.921 0.912 0.903 0.895

FGSM 0.192 0.388 0.398 0.401 0.398

PGD 0.084 0.324 0.385 0.421 0.296
TABLE III

BOTH TKC-NEURON AND TKC-MAX CONTRIBUTED TO FURTHER INCREASES IN ROBUSTNESS WHEN USED IN ADDITION TO DYNAMIC-K. ALTHOUGH

TKC-NEURON’S PERFORMANCE FELL SHORT OF TKC-MAX’S, IT COULD BE FAVORABLE IN CERTAIN CIRCUMSTANCES GIVEN ITS CONSIDERABLY

FASTER RUNTIME.

features present in a dataset are sufficient as training data for

a model to achieve high accuracy on the full dataset.

Interpretability methods are useful insofar as they make

a model’s behavior interpretable to a human. As these non-

robust features are, by definition, meaningless to a human,

effective interpretability methods would ignore them, despite

their pronounced impact on the model’s ability to learn and

predict the dataset. Paradoxically, this means that current

interpretability methods don’t necessarily truly capture how

the model makes predictions, meaning that they are not as

good of methods as we expect them to be.

Learning a representation which is not reliant on non-robust

features is therefore a prerequisite for a truly interpretable

model. Their paper makes a this point and states, ”produc-

ing human-meaningful explanations that remain faithful to

underlying models cannot be pursued independently from the

training of the models themselves” (pg 2).

They suggest training such a model by constructing a dataset

free from the presence of non-robust features as shown in

the distribution below, where D is the original dataset, DR

is the robust dataset, F is the set of penultimate activations

corresponding to robust features.

E(x,y)∼DR
[f(x)· y] =

{
E(x,y)∼D[f(x)· y] iff ∈ Fc

0 otherwise

If it were the case that robust features were more likely to

activate highly in relation to non robust features, these top-k

methods could ultimately learn activations like those in DR

above. This would be accomplished without creating a new

dataset, however. Since only the weights corresponding to the

top-k activations are updated during backpropagation, only

features which result in the highest activations are learned.

In future works, we hope to attain a more rigorous under-

standing of how non-robust features are handled by these top-k

routing methods and draw a stronger comparison.

VI. CONCLUSION

In this paper, we propose TopKConv, a Dynamic-k inspired

convolutional layer. Additionally, we demonstrate that models

trained using top-k dynamic routing are able to learn more

robust representations without suffering a loss of benign

accuracy. Further, they are able to do so without any fine

tuning. In future works, we hope to better understand why

these sparsity constraints result in increased robustness.

Fig. 4. GradCams [20] for models’ predictions on adversarial images. Here we
show specifically the class activation maps for the correct class (airplane, frog)
where the network classified the adversarial image incorrectly. The center
column shows the regions of interest to a naturally trained model. The right
column shows the regions of interest to a model trained with Dynamic-k. Illyas
et al. demonstrated that a model will make predictions based on non-robust,
easily flipped features even in the presence of robust features. One possible
interpretation of these attention maps is that the baseline model has learned
non-robust features which can be simulated in the background by adversarial
noise, while the DK trained model has not learned non-robust features, and
will therefore make predictions based on the robust features present in subject
of the image.

REFERENCES

[1] J. Shlens I. Goodfellow and C. Szegedy, “Explaining and harnessing
adversarial examples,” International Conference on Learning Represen-
tations, 2015.

[2] L. Schmidt D. Tsipras A. Madry, A. Makelov and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” International
Conference on Learning Representations, 2018.

[3] J. Jiao E. Xing L. E. Ghaoui M. Jordan H. Zhang, Y. Yu, “Theoretically
principled trade-off between robustness and accuracy.,” vol. 97, pp.
7472–7482, 2019.

[4] L. Engstrom A. Turner A. Madry D. Tsipras, S. Santurkar, “Robustness
may be at odds with accuracy.,” 2019.

[5] C. Cotton O. Biran, “Explanation and justification in machine learning:
A survey,” Workshop on Explainable Artificial Intelligence, p. 8–13,
2017.

[6] S. Vikas S.Yiyou, R.Sathya, “Adaptive activation thresholding: Dynamic
routing type behavior for interpretability in convolutional neural net-
works,” ICCV.2019.00504, pp. 4937–4946, 2019.

[7] N. Papernot D. Boneh P. McDaniel F. Tramer, A. Kurakin, “Ensemble
adversarial training: Attacks and defenses,” In International Conference
on Learning Representations, 2018.

[8] Carlini N. Wagner D. Athalye, A., “Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples.,”
International Conference on Machine Learning, pp. 274–283, 2018.

[9] I. Goodfellow S. Jha Z. Celik A. Swami N. Papernot, P. McDaniel,
“Practical black-box attacks against machine learning.,” In Proceedings

21

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

of the 2017 ACM on Asia conference on computer and communications
security, pp. 506–519, 2017.

[10] J. D. Bernstein J. Kossaifi A. Khanna Z. C. Lipton G. S. Dhillon,
K. Azizzadenesheli and A. Anandkumar, “Stochastic activation pruning
for robust adversarial defense.,” In International Conference on Learning
Representations, 2018.

[11] H. Yang C. Yu Z. Wang J. Liu S. Gui, H. Wang, “Model compression
with adversarial robustness: A unified optimization framework,” 2019.

[12] C. Zhang Y. Chen Y. Guo, C. Zhang, “Sparse dnns with improved ad-
versarial robustness.,” Proceedings of the 32nd International Conference
on Neural Information Processing Systems, p. 240–249, 2018.

[13] F. Chollet, “Xception: Deep learning with depthwise separable con-
volutions,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1800–1807, 2017.

[14] G. Hinton A. Krizhevsky, V. Nair, “Cifar-10 (canadian institute for
advanced research),” .

[15] A. Antoniou A. Storkey L. Darlow, E. Crowley, “Cinic-10 is not
imagenet or cifar-10,” arXiv preprint, vol. arXiv:1810.03505, 2018.

[16] A. Zisserman K. Simonyan, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations, 2015.

[17] J. Tran S. Han, J. Pool and W. Dally., “Learning both weights and
connections for efficient neural networks.,” In Advances in neural
information processing systems, p. 1135–1143, 2015.

[18] Michael Zhu and Suyog Gupta, “To prune, or not to prune: exploring the
efficacy of pruning for model compression,” preprint arXiv:1710.01878,
2017.

[19] D. Tsipras L. Engstrom B. Tran A. Madry A. Ilyas, S. Santurkar,
“Adversarial examples are not bugs, they are features,” Advances in
Neural Information Processing Systems, pp. 125–136, 2019.

[20] A. Das R. Vedantam D. Parikh D. Batra R. Selvaraju, M. Cogswell,
“Grad-cam: Visual explanations from deep networks via gradient-based
localization,” International Journal of Computer Vision, 2019.

22

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2022 at 16:51:12 UTC from IEEE Xplore. Restrictions apply.

