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Abstract—State-of-the-art object detectors need to be trained
with a wide variety of data in order to perform well in real-
world problems. Training-data-diversity is very important to
achieve good generalization. However, there are scenarios where
we have training data with certain limitations. One such scenario
is when the objects of the testing set have a different size
(discrepancy) from the objects used during training. Another
scenario is when we have high-resolution images with a dimension
that is not supported by the model. To address these problems,
we propose a novel pipeline that is able to handle high-resolution
images by cropping the original image into sub-images and put
them back in the end. Also, in the case of the discrepancy
of object sizes, we propose two different techniques based on
scaling the image up and down in order to have an acceptable
performance. In addition, we also use the information from
the Feature Pyramid Network to remove false-positives. Our
proposed methods overcome state-of-the-art data augmentation
policies and our models can generalize to different object sizes
even though limited data is provided.

Index Terms—data augmentation, object detection, drone
imaging, feature pyramid network

I. INTRODUCTION

Training data diversity is extremely important when training

an object detection model to be able to generalize better.

However, in some specific cases, this could be limited due

to the number and quality of the annotated samples or related

to the diversity of the data. This problem is usually tackled

using data augmentation techniques. Recent work on object

detection [1], [2], [3], [4], [5] uses benchmark-datasets such

as COCO [6] or PASCAL VOC [7] to show the effectiveness

of data augmentation. However, what happens in cases when

COCO and PASCAL are not useful? What if the standard data

augmentation techniques do not help in generalization? What

if the resolution of the image is not supported by the deep

learning model? In this work, we address these questions with

datasets that have these limitations.

This type of problem arises frequently in the agriculture

industry - which is a key aspect for the economy of many

countries [8], [9]. Usually, unmanned aerial vehicles (UAVs) -

drones - are used to take images of the fields, which allow

companies to analyze their crops. One important piece of

information which can be gained is the number of plants in

the field. For example, when harvest time comes, the number
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Fig. 1: Drone images at different heights will give us objects at

different scales. We address a common problem where there is

just one dataset of images at a specific height and we have to

be able to generalize to objects at different scales. We propose

to scale the images up and down based on the drone height.

of plants that were first planted may vary due to a variety of

factors such as human error during plantation, wild animals

eating the plants, and plant diseases that cause plant loss.

This variation of the number of plants can cause an important

problem for the companies when trying to create a forecast

about the number of products they can sell [10]. For example,

Upala Agricola1 must close deals nine months before the

harvest, so, accurate forecasting is extremely important for

them. In this context, a tool for counting plants is important.

In this research, we used object detection in order to detect

all the plant instances and thus be able to accurately predict

the number of plants in one plantation.

We can summarize the contributions of this paper as follows.

First, we propose a method to crop images for training,

and in the end, we put them back together solving any

conflict. Then, during training, we can perform two meth-

ods related to scaling transformation in order to improve

the performance of the network when applying cross-testing

1The largest pineapple company of the world and from which we obtained
the datasets we used.
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(testing objects of different sizes as the ones we used dur-

ing training). In the results section, we show how our pro-

posed pipeline outperforms current state-of-the-art techniques

when using deep learning. Our code is publicly available at

https://github.com/ManfredGonzalez/scaling-augmentation.

A. Related Work

As indicated by Zhao et al. [5], Object Detection has been

an important research topic over the last 20 years. Although

early approaches relied on human-engineered features (i.e His-

tograms of Oriented Gradients [11]), current methods mostly

rely on Deep learning (DL). DL techniques can be divided into

two main categories: two-stage models such as Faster R-CNN

[4] and Mask R-CNN [2], and one stage models such as YOLO

[1] and EfficientDet [3], to mention just a few examples.

There have been specific agricultural DL methods that have

been developed in recent years. Zhang and Wu [12] and

Muresan and Oltean [13] focus on fruit classification. Their

experiments were applied in controlled environments (indoors)

without noisy backgrounds. Rahnemoonfar and Sheppard [14]

use an interesting approach, training their models (Inception-

ResNet [15]) by using only synthetic data (but no aerial

images).

Specific to pineapple counting, Rahutomo et al. [16] use

RetinaNet [17] to detect pineapples. However, they use same-

scale images, and the lack of crop details makes it hard to

adapt to our problem. Also, Sa et al. [18] use a Faster R-

CNN [4] model and include a Near-infrared (NIR) channel

into the RGB image to improve performance. However, their

experiments were done in controlled environments (using a

camera with a NIR channel) and they do not use aerial images.

Finally, Singh et al. [19] created SNIP which is a training

scheme to include scaling during training in a two-stage detec-

tor. They apply a scaling augmentation and then a filtering step

to keep only bounding boxes which corresponds to specific

sizes. In a way, this method tries to balance the number of

bounding boxes of different sizes. Our scaling methods differ

in a way that we analyze the Feature Pyramid Network (with

the Pyramid Mask) and use that along with metadata to decide

the scaling factor.

1) High-resolution vs. Deep Learning: High-resolution im-

ages are usually difficult to process for Deep Learning because

the memory requirements grow as the size of an image

increases [20]. Recently, Lee et al. [21] showed how we can

manipulate high-resolution images with general-purpose DL

models. However, when performing object detection the task

is still challenging because we have to consider the size of the

bounding boxes. Figure 2 shows that the size of the bounding

boxes is larger when using just a section of the original

image. Although it is possible to deal with high-resolution

images using multiple GPU’s [22], [20] these methods remain

unstable.

The best object detectors that are available right now, use

resolutions of 800, 1024, or 2048 pixels, and if the images

are larger, the detector performs a resize step to fit their

input constraints [23] as most of the deep learning models

Cropped 
image

High-resolution 
image

Fig. 2: One example of the images we use in our experiments

with a resolution of 4056 × 2280. On the left, we have the

original high-resolution image and on the right is the image

we used to train our object detector.

do. We proposed a method to crop the original image into 8
different sub-figures with a resolution of 1014 × 1140 each,

and we use these splits for training. Figure 2 shows the idea

we implemented where we crop the original high-resolution

image into smaller sub-images.

2) Scaling: Sometimes drone images of the crops are taken

at different heights (such as 4, 10, or even 25 meters) during

the year, producing images with objects of different sizes.

Although farmers prefer to take images at 4 meters because

the visibility of the pineapples is better, sometimes they need

images at 15 meters to analyze the health of the crop at

a certain section. Farmers may have labeled images from a

limited number of flights. This might mean that we have a

dataset of images taken at one height for training, and we

need a model that can generalize to images taken at a different

height, we refer to this problem as cross-testing.

We use EfficientDet [1] which has a Feature Pyramid

Network [24] that deals with different object sizes. We use

the metadata related to the images -basically, the height of the

images- in order to do the following tasks: (i) to use a scaling

technique as a pre-processing step, or (ii) to apply a scaling in

the data-augmentation framework to improve the performance

of the model. Figure 1 shows images taken at different heights

and the idea of scale augmentation. Our proposed methods

improve the performance of the model and also show that we

beat the policies [25], [26] proposed by the state-of-the-art

research related to data-augmentation in Object Detection.

B. Datasets

We used drone images taken from real pineapple crops

located in the tropics, especifically, we used the images taken

from Upala Agricola2 which is the largest producer company

of pineapples in the world, located in Costa Rica. Although

2https://upalagricola.com/
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they have a large number of drone images of their crops, the

quality itself varies greatly because of the resolution of the

camera, weather conditions, and speed of the drone. To test

our methods for the cross-testing problem, we have 6 sets of

drone images taken from different heights (4m, 8m, 15m) and

at different times of the year (first harvest, second harvest)

annotated with bounding boxes. We have two datasets at 4m

(88 and 115 images each), two at 8m (215 and 205 images

each), and two at 15m of height (135 and 146 images each).

II. METHODS

Figure 3 shows our main pipeline. First, we use the cropping

module in order to slice the image. We have images with a

resolution of 4056 × 2280, we slice them into 8 sub-images

with a resolution of 1014× 1140. Then, we train EfficientDet

using the (i) pre-processing or the (ii) scale-augment method.

Finally, we resemble the original image to solve conflicts -

where the same object is present partially in two sub-images

- to have an accurate counting. As seen in this figure, there is

an optional module called Pyramid Mask which helps to filter

out false-positive detections from the model.

A. Cropping Module

We pre-processed the original high-resolution images with

a resolution of 4056 × 2280 into 8 sub-images of size

1014 × 1140 in the first module. 1024 × 1024 corresponds

to the default resize applied to the input image of EfficientDet

in the D4 architecture. For this to be accurate, the sizes of

the sub-images should be as close as possible to this new

resolution applied by the detector model of objects. Here the

order of the split matters since we have to reintegrate them

into the original image afterward. Therefore, in this module,

we also generate metadata that will allow the reintegration in

the conflict-solving module.

B. Scaling methods

In order to figure out the correct scaling needed for both

of our methods we use the metadata provided by the drone

(drone height), and then use the linear magnification equation.

Equation 1 shows the underlying idea of this equation.

M =
di
do

= − hi

ho
(1)

where M is the magnification factor, d is the distance from

the camera, h is the height of the object, and subscripts i, o
refer to the image plane and object respectively.

Assuming that we are using the same drone (that is di
is constant) and attempting to detect the same object (ho

is constant), we can derive the scaling factor needed when

changing the drone height. That is:

scaling factor =
hi1

hi2

=
hodi
do1

/
hodi
do2

=
do2
do1

(2)

where subscripts 1 and 2 simply refer to images taken from

different heights. Since we can assume that the distance to

the camera is equal to the height of the drone, we can simply

use the ratio between the heights as our scaling factor. For

example, if we have images taken at a height of 4m and want

to scale those images to 8m - by using equation 2 - we can

re-scale the image by a factor of 0.5.

We use the calculated scaling factors in two different ways:

(i) Given that we have trained our network at a specific

height, we re-scale/re-size the images of our testing set

to fit the size of the pineapples we used during training.

(ii) A data augmentation step for our training set. We take

the single height images we receive and apply data

augmentation using the scaling factor in order to have

a model that can recognize objects at a different scale.

Our resulting methods need the current height from which

the training set images were taken and a list of goal heights.

We apply either task (i) or (ii) by using the scaling factors

obtained from the goal heights and show that we outperform

standard methods of data augmentation [25], [27], [26].

C. Conflict-solving Module

As indicated in the previous section, when the image is rein-

tegrated (one image is composed of 8 sub-images) there are

many duplicated detections and thus this introduces an extra

error when trying to predict the real number of pineapples. In

order to solve, this we propose a conflict-solving algorithm

(Algorithm 1).

Algorithm 1 Conflict-solving algorithm to indicate if two

detections belong to the same object.

Require: image is the reintegration of the 8 sub-images.

1: function CONFLICTS SOLVING(image)

2: pairs← all pairs with IoU > 50%from image
3: for bbox1, bbox2 in pairs do
4: new image← bbox1 + bbox2
5: number ← EfficientDet(new image)
6: if number == 1 then
7: merge(bbox1, bbox2)
8: image← update(image)
9: end if

10: end for
11: return image
12: end function

Our method first reintegrates the 8 different sub-images into

a single image. Then, line 2 of algorithm 1, we match all

the bounding boxes that lie over the boundaries of the sub-

images with those bounding boxes that are close enough to be

considered for conflict solving. Our criteria for close enough is

as follows, the bounding boxes in a border with an Intersection

over union (IoU) greater than 50% by using one of the axis,

either X-axis or Y-axis (see figure 4). With 50% of IoU over

1D, we allowed the algorithm to find half of the pineapples that

need to be matched. For example, in figure 4 the blue bounding

boxes that are on the left (labeled as 1) of the figure, have an

IoU of almost 100% considering the X-axis, so, this conflict
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Fig. 3: The pipeline of our proposed method. First, we pre-process all the original high-resolution drone images to create the

splits. Then, we train an EfficientDet model using these splits with either method, (i) pre-processing or (ii) scale-augment.

Finally, the conflict-solving module solves all the conflicts to generate the counting results from our model.

(a) Calculation of the Intersection over Union (IoU). This is the
same IoU used by most Object Detectors but we modified it to
be able to use it for only one dimension.

(b) Examples of IoU over 1D as we proposed in this research.
(1) has a 1.0 IoU. (2) has a 0.31 IoU. (3) has a 0.44 IoU. (4)
has a 0.55 IoU.

Fig. 4: Intersection over Union in the conflict-solving module.

It is the ratio between the intersection of the overlapping and

the union of the overlapping in the X-axis or the Y-axis.

will be analyzed to see if the bounding boxes in conflict have

two different pineapples or only one pineapple.

Once we have filtered all the bounding boxes on the edges

to keep the potential conflicts, we take every pair and create an

image with only the two bounding boxes which are in conflict,

and the rest of the image is filled with zero paddings as if

this was a mask. Figure 4b shows an example of this idea,

but, instead of taking all the conflicts at once -as the figure

suggests- we take one pair with zero paddings. This is then

passed to the EfficientDet model again. If the model detects

one pineapple, this means that the conflict was correct and

then we merge the two bounding boxes into a single one.

If the model predicts two bounding boxes we just keep both

bounding boxes for the final count.

D. Pyramid Mask

We utilize the fact that we expect all bounding boxes to be

approximately the same size for this task. The relation between

bounding boxes sizes and the pyramid levels is very important

when using a Feature Pyramid Network because every level

handles bounding boxes at a specific size [24]. We can derive

a pyramid mask from the training data which indicates what

levels were used/activated during training.

Level Stand/img sc(i) Aug sc(ii) STAC

P7

P6

P5

P4

P3

4 8 15
x x x
x x x
1 x x
1 1 x
1 1 1

4 8 15
x x x
x x x
1 1 1
1 1 1
1 1 1

4 8 15
x x x
x x x
1 x x
1 1 1
1 1 1

TABLE I: Pyramid masks examples at the three heights (4m,

8m, and 15m).

The method works as follows. After training, we perform

object detection on our training set and observe which levels

of the pyramid were used to make these detections. The level

with the most detections is considered the main level. We

then create a binary mask that includes the main level and all

other neighboring levels which have enough detections (above

a certain threshold).

Table I shows example of masks. In column ‘Stand/

img sc(i)’ (no-augmentation) we show that when we train
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using images at 4m, the active levels are P3, P4, and P5

because at 4m we have the largest bounding boxes (we can

see this in figure 1-left image). For level names we used

the notation of EfficientDet [1] (from P3 to P7). At 8m the

activation occurs with only P3 and P4 because of the smaller

bounding boxes, and finally, 15m activates only P3 as at this

height the bounding boxes are the smallest. Note that P3

represents the lowest level of the pyramid, that is, the feature

map at the largest resolution, and, in terms of objects, the

smallest bounding boxes.

We use this mask to filter false-positive bounding boxes

during the test phase. Each detected bounding box is marked

with the pyramid level it was detected on. If the level is not in

the mask we got from the training we remove that detection.

This helps to remove detections of significantly different sizes

and to ensure that our test detections come from the same

levels.

E. F1 score over mAP

The use of mean average precision (mAP) is almost ubiq-

uitous when it comes to Object Detection, and this metric

is great when comparing models in terms of Intersection

over Union (IoU) percentages, bounding boxes sizes, and

confidence thresholds, to mention a few. However, we realized

that for counting problems it makes more sense to use the

F1 score. The reason is simple: mAP hurts the metric when

depending on the confidence threshold of the bounding box,

that is, for one mistake mAP will penalize heavily if the

confidence was high. For counting, however, we really do not

care if the confidence was high or low, the mistake with high

or low confidence should penalize the model equally - the

same for a success detection -, so, we found that F1 (equation

3) score is more suitable for counting problems. The F1 score

formula is defined as

F1 = 2× precision · recall
precision+ recall

(3)

Sa et al. [18] also use F1 score when detecting fruits, but

they do not provide any insights of the reasons.

III. EXPERIMENTS AND RESULTS

An important aspect of EfficientDet is to select the appro-

priate compound coefficient. Then, we started our experiments

by looking if the cropping module was successful. Finally, we

focused on the cross-testing experiments.

A. Compound Coefficient Selection

Given that we are using EfficientDet it is important to

choose the optimal architecture size of the model. Efficient-

Det has an extra parameter known as the compound scaling

coefficient [1] to control the scale of the model. Xie et al. [28]

scale just the backbone of the object detector, but what makes

EfficientDet different is the fact that the compound scaling

value, increases not only the backbone but also the feature

pyramid network (FPN), the resolution of the input, and the

number of channels in the layers. As shown by Zagoruyko and

Komodakis [29], the scaling factor of the network impacts the

performance greatly, table II compares the results for different

compound scaling values.

Coefficient Detected F1 Score

D1 3190 0.57
D2 4875 0.77
D3 5918 0.85
D4 6637 0.88
D5 6674 0.879
D6 6827 0.77
D7 7039 0.72

TABLE II: Results of EfficientDet for models D1 to D7. Using

a mixed dataset of 487 images at 3 different heights.

Padilla et al. [30] provide a useful implementation to

calculate mean average precision (among other metrics). We

modified its code to calculate precision and recall and conse-

quently, the F1 score. Table II shows which compound scaling

coefficient has the best f1 score as the EfficientDet model

was trained and tested from D1 to D7 compound scaling

coefficient. As shown, in that table, D4 turns out to be the

best coefficient for this dataset and we used D4 for all our

experiments.

B. High-resolution Images

First, we perform an experiment using EfficientDet with the

original images with no cropping. We split our datasets into

training, validation, and testing sets (60/20/20). Table III shows

these results (column ‘Original’), as compared to the results

using our proposed method (column ‘Our method’). Column

“Case” indicates the images used during training (labeled with

‘T’) and the images used for testing (labeled with ‘H’). As

seen, the best results are obtained when the dataset has more

diversity of heights in the training set.

When we use the original images the results are close to

zero in most cases. This can be explained due to the fact that

EfficientDet cannot handle the original resolution of 4056 ×
2280 pixels and it performs a resize of the images to 1024×
1024. Also, the bounding boxes are resized and this directly

impacts the performance.

When we use the compound scaling coefficient for D4, the

maximum size of the images is 1024× 1024. Now, the most

important factor here is the minimum size of bounding boxes

that EfficientDet can detect. According to Tan et al. [1], the

level P3 - of the FPN - is the level that detects the smallest

objects in an image. When analyzing the levels of the FPN,

the pyramid has nine different sizes of bounding boxes that

can be detected. The smallest three sizes of the anchor boxes

(in pixels) are:

• Anchor 1: [width: 32, height: 32]

• Anchor 2: [width: 45, height: 23]

• Anchor 3: [width: 23, height: 45]

Then, we analyzed the bounding boxes obtained by Effi-

cientDet after the automatic image resizing and found that the

on average the bounding boxes have the following sizes:
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Case (T = training, H = testing) Ground Truth Objects Detections - Original Detections - Our method Original Our method

T:5,8,15 / H:5 1627 6 1666 0.0 0.94
T:5,8,15 / H:8 1452 106 1414 0.13 0.93
T:5,8,15 / H:15 5532 0 5417 0.0 0.96
T:5 / H:5 1627 0 1614 0.0 0.87
T:5 / H:8 1452 1 1245 0.0 0.83
T:5 / H:15 5532 0 1333 0.0 0.35
T:8 / H:5 1627 9 1055 0.0 0.71
T:8 / H:8 1452 232 1301 0.28 0.87
T:8 / H:15 5532 3 2736 0.0 0.64
T:15 / H:5 1627 0 1466 0.0 0.47
T:15 / H:8 1452 8 1843 0.0 0.14
T:15 / H:15 5532 18 5763 0.0 0.91

TABLE III: This table shows the results of the EfficientDet model trained with high-resolution images and with our proposed

pipeline. Column ‘Case’ indicates the images used during training (T) and the images used during testing (H). We wanted to see

the results of cross-height so, sometimes we trained with some images at different heights from the images used during testing.

We show the ground truth objects (i.e. number of pineapples), the number of detections using the original high-resolution

images, the number of detections using our pipeline, and the last two columns show the resulting f1 scores.

• Images at 15 mts: [width: 12, height: 12]

• Images at 8 mts: [width: 25, height: 25]

• Images at 5 mts: [width: 30, height: 30]

Consequently, EfficientDet is not able to perform well

because the bounding boxes are smaller than the minimum

size that it can detect, and this explains the terrible results

achieved by using the original resolution. This reinforces

the idea that when dealing with high-resolution images, our

proposed method provides a good solution to this problem.

By looking table III we can see that the results in the column

“Our method” are very good. When using the three heights

during training the results are above 0.9 in the f1 score and

tend to decrease when experimenting with cross-height, that is,

using weights trained with one height and test using images

at another height. The cross-height is not as good as when

using all heights during training, so, this is an indicator that

data-augmentation may help for these cases.

C. Conflict-solving Module

Since cropping the image is extremely important, we per-

form an experiment to test the importance of our conflict-

solving module. Within our pipeline, we used the crops but

we turn on and off the conflict-solving module to see if our

proposed module was improving the results. Table IV shows

the results for this experiment.

For this experiment, we trained using images at different

heights, as usually is performed, but also we used cross-

height testing. An example of cross-height is shown in row

5 where we trained using images at 5m and tested using

images at 8m. Usually, cross-height does not have as good

results as when using the full dataset for training, but it does

show how flexible the model is using different heights for

training. We show precision instead of the f1 score because the

improvement is almost imperceptible using the f1 score and

the recall stays approximately the same for all cases, also, we

show the number of pineapples to see the number of conflicts

solved.

Case CS deactivated CS activated
Precision Counting Precision Counting

T:5,8,15 / H:5 0.92 1686 0.93 1666
T:5,8,15 / H:8 0.92 1444 0.94 1414

T:5,8,15 / H:15 0.96 5441 0.97 5417
T:5 / H:5 0.87 1639 0.88 1614
T:5 / H:8 0.88 1268 0.9 1245

T:5 / H:15 0.89 1334 0.89 1333
T:8 / H:5 0.9 1062 0.9 1055
T:8 / H:8 0.91 1321 0.92 1301

T:8 / H:15 0.97 2742 0.97 2736
T:15 / H:5 0.5 1470 0.5 1466
T:15 / H:8 0.13 1847 0.13 1843
T:15 / H:15 0.89 5778 0.9 5763

TABLE IV: The effectiveness of the Conflict-solving (CS)

module. As predicted, when the module is activated the

precision is improved in several cases. Furthermore, we show

that the counting result (the number of detected pineapples)

decreases in all cases when the module is activated.

Table IV rows 1-2 show the improvement in precision

when the conflict-solving module is activated. This result is

meaningful since we want to increase the precision of the

counting. As seen, we go from 1686 detections to 1666, so,

here we could solve 20 conflicts, showing that our method

approaches the ground truth of 1627.

Also, in cross-height testing, there is always an improve-

ment when training height (T) is the same as testing height (H)

indicating a good influence of the conflict solving approach

when the model is tested on equal terms. An important

aspect is shown in the rows where the precision keeps the

same because the number of detections is always decreasing

(i.e. approaching the ground truth), however, the number of

conflicts solved is small and that is why the precision keeps

the same. This experiment shows that the conflict-solving

module helps to increase the accuracy of the results and this

is important in order to have a better estimation of objects.
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Methods H: 4 / T: 8 H: 4 / T:15 H: 8 / T: 4 H: 8 / T: 15 H: 15 / T: 4 H: 15 / T: 8

Standard† [1] 0.35± 0.29 0.09± 0.1 0.53± 0.21 0.43± 0.04 0.14± 0.16 0.44± 0.04
STAC [25] 0.38± 0.29 0.07± 0.07 0.52± 0.17 0.42± 0.03 0.09± 0.11 0.48± 0.09

Ours (i) pre-processing† 0.49± 0.21 0.52± 0.13 0.77± 0.06 0.73± 0.09 0.74 ± 0.08 0.60± 0.07
Ours (ii) scale-augment 0.72 ± 0.05 0.77 ± 0.02 0.79 ± 0.02 0.80 ± 0.03 0.47± 0.06 0.60 ± 0.06

TABLE V: Comparison of F1 scores for different methods on the cross-testing. We report the f1 score mean and standard

deviation for the four replicas of our experiment. Every column indicates the height of the testing images (H) and the height

of the images used during training (T). Methods with † do not have any data augmentation.

D. Cross-testing

Given that we have a single object class with fixed object

sizes, it is difficult to find a proper benchmark to compare

to. Consequently, we tested our methods against the policy

proposed by STAC [25] for object detection and a standard

EfficientDet model which does not have any augmentation or

pre-processing. Also, we note that our goal is to train on one

dataset taken at a specific height and to test on a dataset taken

at a different height, as done by Tzanetis [31].

We conduct an experiment where we train using the four

methods as independent runs. We perform four replicas to

ensure statistical significance and for these experiments, we

used the conflict-solving module, otherwise, the results are

zero.

Table V shows the performance of the methods we used.

Each column shows a different train/test split. For example,

the first column “H: 4 / T: 8” represents the case where we

use images taken at 4m for testing but the model was trained

over images taken at 8m (H stands for the height of the testing

images and T stands for the height of images used for training).

We can see that STAC does not work properly, and its results

are close to the standard method with almost no significant

difference. For example, in the first column STAC performs

better with 0.38, compared to the standard method with 0.35,

but both with a standard deviation of 0.29. These two methods

consistently have the lowest results. Surprisingly, sometimes it

seems that STAC augmentation produces worse results, as in

column “H: 15 / T: 4” that goes from 0.14 (standard method)

to 0.09 using STAC, showing that the augmentations proposed

by STAC do not apply in this problem. On the other hand,

our two proposed methods improve the results over STAC

and standard. The mean and standard deviation are better for

scaling-augmented.

We applied one-way ANOVA in order to have more solid

evidence. First, the Pr(>F) value gives us 99.9% confidence

that using different methods in our experiments is statistically

significant, as we can confirm by looking at table V. Second,

the Tuckey test, at 95% of confidence, consistently shows that

our two methods outperformed STAC and standard with a p-

adjusted value of ≈ 0.0. Finally, our (i) pre-processing and

(ii) scaling-augment method have a p-adjusted value of 0.78,

meaning that there is no statistical evidence that indicates one

method is better than the other. However, given that method

(i) only requires training once on the original data, and can

be used to detect objects from any height, it is preferable.

E. Cross-testing: Pyramid Mask

Lastly, we use the pyramid mask in order to filter out

false positives. Table VI shows some improvements over the

original results. Since we are getting rid of false-positives,

we are improving the precision and not the recall. Example

3, where the mask is equal to [1, 0, 0, 0, 0] (only P3 is

active), shows a meaningful improvement from 0.73 to 0.93.

Example 2 also shows a meaningful improvement, but, there

are examples where the improvement is very small like in 1

and 4. In the others not shown in the table, the improvement

is 0.0. Even though the results are not statistically significant

this feature is very important at a production level since every

detected object should be consistent in size.

Example Method Case Old-Prec New-Prec

1 Standard H:8 / T:4 0.49 0.51
2 STAC H: 5 / T:15 0.68 0.72
3 (i) img sc H:8 / T:15 0.73 0.93
4 (i) img sc H:8 / T:15 0.86 0.87

TABLE VI: Some results of using the pyramid mask to filter

out false-positive detections. We compare the old precision (no

filtering) and the new precision (with filtering) and omit recall

since it stays the same.

IV. CONCLUSIONS AND FUTURE WORK

Cropping high-resolution images into sub-images is crucial

when using object detectors. Here we show that training

EfficientDet using high-resolution images will not work as

expected due to limitations in the input size of the model.

We have shown that if we crop the image from 4056× 2280
pixel to get 8 different 1014 × 1140 images, we will be

closer to the input expected by the EfficientDet D4 setting

(which is 1024× 1024). In this case, the performance will be

better because our objects in the sub-images almost match the

expected object size by D4.

Scaling is very important when dealing with limited data

such as objects of a single scale. We showed that standard

object detection models and standard data augmentation tech-

niques are not enough for generalization in this case. Scaling

images - and as a result, the objects themselves - is a very

important task since the size of the objects during training

plays an important role in generalization. We proposed (i) a

pre-processing step to scale the input images to fit the trained

model and (ii) a data augmentation scaling to learn objects

at different sizes. Both methods use the linear magnification
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equation for scaling and we showed, with statistical evidence,

that they outperformed the standard methods. In addition, as

the objects’ size has strong implications when using a Feature

Pyramid Network, we showed that using a mask based on the

filter levels can lead to an additional improvement.
As the next steps, we consider using semi-supervised learn-

ing due to the difficulty of annotating images. We spent many

hours in labeling and when this task was assigned to other

people some annotations were of poor quality. In addition,

we want to study the impact of scaling in a semi-supervised

setting. Finally, we note that although we present a large

improvement, there is still more work to be done in order

to have results that can be used in the industry regarding

counting. We are close to an f1 score of 0.8 but believe that

we can improve these results by using hyperspectral images.
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