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Abstract—With the popularity of image sensors in various
mobile devices, image blurring caused by hand shaking or out of
focus becomes ubiquitous, which deteriorates image quality and
poses challenges for vision tasks, including object detection, image
classification and image segmentation. Designing an efficient blur
detection algorithm which can automatically detect and locate
blurred regions becomes necessary. In this letter, we design
an end-to-end convolution neural network called heterogeneous
attention nested U-shaped network (HANUN) for blur detection.
We introduce pyramid pooling into encoders to enhance the
feature extraction at different scales and reduce the gradual
information loss. Inspired by the nested network design, small U-
shaped networks are embedded into our decoders to increase the
network depth and promote feature fusion with different recep-
tive field scales. In addition, we incorporate a channel attention
mechanism in the proposed network to highlight the informative
features for detecting the blurry regions. Experimental results
show that HANUN outperforms other state-of-the-art algorithms
for blur detection tasks on public datasets and real-world images.

Index Terms—Blur detection, convolution neural network,
heterogeneous design, nested structure, semantic information

I. INTRODUCTION

OWADAYS, with the widespread using of mobile de-

vices, image blurring becomes ubiquitous. Image blur-
ring can degrade the quality of images, which poses challenges
for the subsequent image processing, especially in computer
vision applications. Before the emergence of deep learning,
blur detection was mainly achieved by using traditional ma-
chine learning algorithms [1]-[8]. Since the features contained
in the blurred regions vs. the sharp regions are different, most
of the traditional methods begin by comparing or distinguish-
ing the features of different image regions in special domains,
such as the frequency domain. For example, Tang et al. [5]
find that the spectrum amplitude can be affected by defocusing
blur at edges, and they conduct blur detection through estab-
lishing the relationship between blurred regions and the image
spectrum. Shi e al. [6] construct a blur detection algorithm
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which combines several image characteristics, including image
gradients, frequency-domain spectrum and local filters.

Although traditional methods provide preliminary solutions
to blur detection tasks, it is still a challenge to separate
sharp regions from blurry ones due to the fixed hand-crafted
features, which may not be ideal and the lack of high-level
semantic feature extraction [9]. In recent years, we have
witnessed the great success of convolutional neural networks
(CNNSs) in many fields [10]-[18], including blur detection
[19], [20]. Furthermore, inspired by image segmentation, some
segmentation networks [21]-[23] and design ideas, such as
auto encoding [24]-[26] as well as the extraction of high-level
semantic information [9], are applied to blur detection [27],
[28].

As the U-shaped architecture is widely utilized in segmenta-
tion networks [21], [23], it also demonstrates a great advantage
for blur detection [28], [29]. In particular, U?-Net firstly
utilize the nested structure, which inspires our work. However,
since most existing U-shaped networks utilize homogeneous
architecture, i.e., the symmetric encoder-decoder structures,
their encoding and decoding ability is greatly constrained. In
addition, the features generated by the encoder and decoder
are directly combined by a skip connection, which is not
reasonable enough because the differences in the information
contained in the encoded and decoded features, and the
proportion of the contribution of the different features to the
prediction results are not taken into account.

In this letter, we propose an end-to-end CNN called het-
erogeneous attention nested U-shaped network (HANUN) for
blur detection. We nest pyramid poolings into encoders to
effectively extract and fuse features at different scales. Instead
of using a series of convolutions, we utilize pyramid poolings
because it can reduce the general information loss in cascade
layer design. We nest U-shaped networks into decoders to
increase the depth, which improves the network robustness
and generalization capability without significantly increasing
the number of parameters [23]. We also introduce an attention
mechanism to augment the informative features. Our nested
and heterogeneous designs enable HANUN to show high
performance on public datasets and real-world images.

The rest of this letter is organized as follows. Section II in-
troduces our network design. Section III tests the performance
of the proposed network on public datasets and our real-world
dataset. Section IV performs ablation studies to explore the
effect of each design to the network’s performance. Section V
summarizes the letter with the conclusion.
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II. PROPOSED NETWORK

In this section, we propose our blur detection network called
heterogeneous attention nested U-shaped network (HANUN)
shown in Figure 1. We nest a pyramid pooling module [22]
in the encoder which we call pyramid pooling encoder (PP
encoder), and we nest an attention block as well as a nested
U-shaped network in the decoder which we call attention
nested U-Net decoder (ANU decoder). The heterogeneous
design (i.e. asymmetric design of the network encoding and
decoding sides) alleviates the difficulty of achieving optimal
performance of both encoders and decoders in homogeneous
design. It enables semantic and contextual information at more
scales to be extracted and fused, which further improves the
performance of the proposed network HANUN. In this work,
HANUN contains five encoders and six decoders in total.
Based on the positions in the network, we categorize the
encoders and decoders into shallow and deep ones, and we
employ different designs to each category.

; -
! PP ANU
| | Encoderl Decoder6 |}
Input Image : Prediction
1 K H
I

1

1

1

1

1

1
Shallow 1
Encoders / Decoders |
1

|

1

1

1

1

!

1

ﬁ Convolution
ﬁ Up-sample

(® concatenation

Deep 1
Encoders / Decoders |

Fig. 1: The architecture of the heterogeneous attention nested
U-shaped network (HANUN).

A. Pyramid Pooling Encoder

The PP encoder consists of pyramid pooling and some
subsequent operations, while the former is the core of our
encoder. A pyramid pooling layer contains multiple pooling
layers with different pyramid pooling scales. As shown in
Figure 2, pooling layers with different scales are drawn in
different colors. Each pooling layer will generate a sub-feature,
hence the receptive field scales of the sub-features are all
different. Compared with a series of convolutions, pyramid
pooling uses a parallel layer structure instead of cascade,
and all pooling operations are performed on the input feature
directly. Therefore, there is less original information loss in
the high-level features with large receptive fields. Moreover,
an encoder using pyramid poolings has fewer parameters than
using convolutions, which is verified in Section IV.

Afterward, each sub-feature goes through a bottleneck layer
to change its dimension. Then the features are up-sampled to
their original size (their size before pooling), and concatenated
with the input feature. Through these connections on the
channel dimension and subsequent convolutions, the semantic
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Fig. 2: The structure of pyramid pooling encoder (PP encoder).
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Fig. 3: The structure of the attention nested U-Net decoder
(ANU decoder).
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and contextual information contained in the different sub-
features are fused.

B. Attention Nested U-Net Decoder

In order to solve the problem of the difference in the feature
information and the contribution to the result in the concatena-
tion process, we introduce attention mechanism by exploiting
an SE-block [30] (shown in Figure 3) after feature combination
into the ANU decoder. The SE-block can model the spatial
dependence of features and realize channel attention through
recalibrating the channel-wise feature responses. Accordingly,
by using the attention block in HANUN, the importance of
different features are distinguished through training, and the
informative features for prediction can be augmented.

From the perspective of feature sizes, since they are quite
different in each decoding stage, we present different feature
processing designs to shallow and deep decoders. In deep
decoders shown in the lower right corner of Figure 3, the
middle parts are a series of dilated convolutions with different
dilation rates. In our design, the feature sizes after each dilated
convolution layer are all the same. Given that the feature
size is relatively small in the deep decoders, this design can
effectively reduce the loss of useful information due to further
shrinking the feature size.

Shallow decoders are shown in the upper right corner of
Figure 3. Since the sizes of features are relatively large in
them compared with the aforementioned deep decoders, we
nest a normal U-shaped convolutional network (U-Net) with
down-samplings to expand the receptive fields and extract
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TABLE I: Quantitative comparisons on the CUHK dataset [6].

Metric | DBDF [6] JNB [7] BTBNet [27] LBP [4] CENet [31] UZ2-Net [23] HANUN
F 53 0.6438 0.7669  0.8491 (0.867)  0.8688 (0.864)  0.8757 (0.906) 0.9247 0.9701
MEA 0.3402 0.3537  0.0820 (0.107) 0.2618 0.0593 (0.059) 0.0980 0.0364
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Fig. 4: Comparison on testing results with other state-of-the-
art networks.
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Fig. 5: Result examples on the real-world image dataset using
the different networks.
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high-level features. However, in each decoding stage, while
the features reach the middle layers of the U-Net, their sizes
are continuously reduced due to down-samplings. Hence, in
order to prevent the intermediate features from being too
small, which may also lead to the loss of potential informative
features, we restrict the number of layers (represented as N in
the figure) in each shallow decoder by hierarchically reducing
it. In this work, the values of N are set to 8, 10, 12 and 14 from
decoder 3 to decoder 6, respectively. This design effectively
avoids the occurrence of the too-small intermediate feature,
enabling HANUN to adapt to small-scale input images.

III. EXPERIMENTS

In this section and Section IV, two public datasets: CUHK
[6] and DUT [27] are used to evaluate the performance of
HANUN. CUHK dataset contains 1000 blurred images in total,

TABLE II: Quantitative comparisons on the real-world image
dataset.

Metric | CENet UZ2-Net HANUN
F 55 | 06804 07236 0.8288
MEA | 0.1340  0.1680 0.0811

including 296 motion-blurred images and 704 defocus-blurred
images. DUT dataset contains 500 defocus-blurred images. On
public datasets, we compared HANUN with other state-of-the-
art blur detection algorithms, including BTBNet [27], CENet
[31], DBDF [6], INB [7], LBP [4] and U?-Net [23]. All the
comparisons in our letter are based on released code or the
results shown in the original papers.

The F-measure and mean absolute error (MAE) are utilized
for quantitative evaluations. The F-measure is the weighted
harmonic mean of precision and recall. It is defined as:

(1 + B2) x precision x recall

Fs = (1)

B X precision + recall

where 3 is usually set to 1/0.3 in blur detection tasks. A higher
F-measure reflects a better performance of a network. MAE
is an indicator used to describe the error between predicted
values and true values. It is defined as:

HE:E]Sxy G(z

rz=1y=1

MAE = L @
where W and H are the height and width of an image,
respectively. S represents the segmentation result and G rep-
resents the ground truth (GT). A smaller MAE reflects a better
performance of the network.

Figure 4 presents some detection examples of HANUN and
the other networks. The results show that, compared with
other networks, the targets segmented by HANUN are more
complete, and the edges are clearer and sharper. The results
of HANUN are the closest to the ground truth (GT).

PR curves are displayed in Figure 6. Figure 6(a) shows
the testing result on the CUHK dataset. Figure 6(b) and
Figure 6(c) show the testing results on motion-blurred images
and defocusing-blurred images, respectively. Since BTBNet,
CENet and JNB do not provide their code or their testing
results divided to the two blur types, they are not shown in
Figure 6(b) and Figure 6(c). From Figure 6 we can see that
HANUN achieves superior results as compared with the other
state-of-the-art networks, especially on motion-blurred images.

The quantitative evaluation results are shown in Table I. The
data in parentheses are the results provided in the cited papers
while the others are the best we are able to achieve in our
experiments. We can see that our network achieves significant
improvement on the blur detection performance.
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Fig. 6: Precision-recall curves of the different networks on the CUHK dataset.

TABLE III: Results of ablation study on different components and network depth.

Network PP Module Nested U  SE-block CUHK [6] DUT [27] Parameters
F /3 MAE | F s MAE

HANUN 0.9701 0.0364 | 0.9205 0.1072 | 29.75 M
HANUN-5 v v v 0.9347 0.0498 | 09115 0.1191 8.17 M
HANUN-7 0.9723  0.0358 | 0.9211 0.1086 | 52.04 M
HANUN-allPP v x v 09125 0.1895 | 09327 0.1738 | 2558 M
HANUN-noSE v v x 0.8726  0.1315 | 0.9096 0.1198 | 2944 M
U2 -Net x v x 0.9247  0.0980 | 0.9328 0.0941 | 44.01 M

In order to show that our model can generalize to images
taken by mobile-phones as opposed to only images from public
datasets, we make a small real-world dataset, including 60
motion-blurred images and 40 defocus-blurred images. All
images are shot by an iPhonel2 Pro Max with a Sony IMX603
camera sensor. We choose U?2-Net [23] trained on CUHK,
and CENet [31] trained on DUT (officially provided) for
performance comparison, because they show top performance
in the aforementioned evaluations.

We select several images in various scenes and show them
in Figure 5. It is clear that the results of HANUN have the
sharpest edges and the most complete objects, and are the
closest to the ground truth (GT). The quantitative comparison
results are illustrated in Table II where we see that HANUN
has the best performance. The experiment on the real-world
image dataset demonstrates that HANUN has high robustness
and can generalize well.

IV. ABLATION STUDIES

We build a new network called HANUN-allPP and use U?-
Net [23] for comparison to verify the effectiveness of the
heterogeneous structure. HANUN-allPP replaces the nested
U-Net in each decoder with pyramid pooling in the same
manner as it is done in the same-depth encoder. In the U?2-
Net, all encoders and decoders are based on convolutional
layers. Therefore, both U 2_Net and HANUN-alIPP are homo-
geneous networks. Experimental results in Table III shows that
HANUN has the best performance on the CUHK and DUT
datasets. Especially on motion-blurred images, HANUN shows
the great advantage. These results demonstrate the superiority
of our heterogeneous structure.

In order to verify the importance of the SE-block used to
provide channel attention, we build HANUN-noSE without
SE-blocks in the decoders. Table III shows that removing the
SE-block causes significant performance deterioration for the
network. However, compared with on the CUHK dataset, the
performance reduction on the DUT dataset is not as obvious.
This hints that the SE-block is one of the reasons that HANUN
significantly outperforms other methods when dealing with
motion-blurred images.

For exploring the optimal depth, we constructed HANUN-5
and HANUN-7 with the depth 5 and 7, respectively. Table
IIT shows that increasing the network depth can improve
the network performance. However, compared with the slight
performance improvement, the number of parameters dramatic
increases. As a result, taking into account both the perfor-
mance limitations of the operating device itself and blur de-
tection performance, HANUN with depth 6 (i.e., the network
proposed in this letter) appears the most cost-effective.

V. CONCLUSION

This letter presents an end-to-end convolution neural net-
work for blur detection. The novelty of our network is the
heterogeneous and nested design. Pyramid pooling is incor-
porated in the encoder to maximize semantic and contextual
information extraction. Our decoder decodes the features from
different scales using a nested U-shaped network, which
significantly enhances the robustness of the proposed model.
A channel attention mechanism is also introduced into our
network to augment the informative intermediate features.
Experimental results show that our network outperforms other
state-of-the-art networks in the blur detection tasks on public
datasets and our real-world dataset.
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