
Developer Fluency: Achieving True
Mastery in Software Projects

Minghui Zhou, Audris Mockus
zhmh@pku.edu.cn, audris@avaya.com
Peking University, Avaya Research Labs,
Beijing, China NJ, USA

mailto:zhmh@pku.edu.cn�

Agenda

History
Motivation
Methodology
Results

History of developers’ competence

Time

Claim the issue
Individual differences among
project personnel accounts for the
largest source of variation in
project performance

Sackman et al, 1968, 28:1;
Curtis, 1981,23:1;
Boehm, 1981

“The initial attempt had failed
poorly…”

“Until the many sources of
variation among individuals
have been compared in the
same set of data, it will not be
possible to determine …the
most important predictor of
success…” -Curtis, 1984

Claim the methodology
“By using …source code change
history and problem reports we
quantify aspects of developer
participation, …, productivity...”

Mockus et al, 2000

Recent findings
How developers new to the project
learn

Von Krogh et al. looked at the
strategies and processes by which
newcomers join the existing OSS
community.. -2003

Dagenais et al listed obstacles facing
developers joining projects
through observing 18 IBM
developers -2010

……

Motivation
Offshoring/outsourcing

• "all (outsourcing) teams have similar experience levels, and all
have had an influx of graduates and are struggling to get them
up to speed“ – Outsourcing manager

How to speed up the project newcomers?

Organization strategy
Massive retirement of core developers in mature

legacy products started in the 90's
• ``Original developers probably understood how features

would work and what feature interactions worked, but
subsequent developers are not necessarily aware of the whole
context'‘ –Top developer

How should the newcomers learn about the
product?

“productive” ≠ “competent”

How long does it take for a developer
in your project to become productive?
Small-medium scale projects: 2-6 months
Large scale project: 12 months

What are the stages for a developer?
Small-medium scale projects : “it takes several

years to become competent in important tasks”
Large scale project : “we had attempted to

assign mentoring tasks to developers with only
two years of experience, but had unsatisfactory
results”

Research question

How long does it take for an
average developer to become
fluent in a software project?

Fluency: Complete project tasks
rapidly and accurately independent of
task difficulty or importance.

演示者
演示文稿备注
Do we have developers with sufficient skills to handle all types of tasks in a project?
How to adjust the project schedule when facing an influx of new developers?
How to use the experiences of the most productive developers to improve the training of new developers?

Methodology

Qualitative approach
 Clarifying the purpose,
 Designing questions and

subjects,
 Interviewing and

transcribing,
 Analyzing,
 Validating/verifying, and
 Reporting

Quantitative study
 Retrieve the raw data,
 Perform initial cleaning and

processing,
 Create measures to answer

our research questions,
perform analysis of these
measures, and

 Validate the results

Proj-
ects

Years Domain Sites # of Par-
ticipants

Participant
role:location

A > 15 Call center US offshored to India 4 3 dvlprs:India,
DM:India

B 10 Dialer US offshored to India 4 3 dvlprs: India,
DM:India

C > 10 Voice Response US offshored to India 4 3 dvlprs:India,
DM:India

D > 15 Core telephony US partly offshored to
India

6 3 dvlprs: US,
DM: US,
OM: US, QM: US

E 10 Embedded telephony:
endpoints

US offshored to India 2 DM: India,
OM: India

F > 7 Embedded core
telephony

UK partly offshored
to India and Romania

3 DM: UK,
OM: Romania,
QM: UK

G > 15 Messaging UK and US partly
offshored to India

2 DM: UK,
OM: UK

H >5 Contact Center US partly offshored to
India

2 DM: US,
OM: US

I 3 Middleware China 4 3 dvlpers: China,
DM: China

J 2 A web-based development
platform

China 4 3 dvlprs: China, DM:
China

Data

Raw data
Code changes from version control systems

including cvs, svn, clearcase, sccs
MRs from issue tracking systems including

Jira, Sablime, propriatary system

Observations
20544 changes, 85 developers in Project D
13081 changes, 69 developers in Project A,B

and C

演示者
演示文稿备注
basically, icse paper show that project rs affects
the LTC and the shape of individual RS
the current model shows in more detail what affects
the movement of individual RS
the question is: what does individual RS and its movement affect?
is it just noise or does it make smbdy more productive, successful, etc
(10:54:22 PM) 周: u mean put (x28-x7) as a predictor?
(10:54:48 PM) 龙虎: thats movement of individual RS

Results

“productive” ≠ “competent”

How long does it take for a developer
in your project to become productive?
A-J(except D): 2-6 months
D: 12 months

What are the stages for a developer?
A-J(except D): “it takes several years to become

competent in important tasks”
D: “we had attempted to assign mentoring tasks

to developers with only two years of experience,
but had unsatisfactory results”

Why fully productive developers are not assigned some
important project tasks?

Task variations

Interview questions
• What tasks did you do when you joined the project? What was your

project? Which part of the project did you work on: e.g., developing
a new feature, fixing bugs (current engineering)?

• What tasks are you doing now? …

Task variations have two sides
Difficulty is not centrality

• “the effort to complete an MR is not a factor in assessing the
importance of the MR” –manager of G

Difficulty overlaps with centrality
• “it’s always easier to do something that doesn’t involve lots of

people” –tester of D

Difficulty Centrality

Customer
impact

System-
wide impact

Team
impact

Future
impact

Domain

Customer
issue

Working
relationship

Techno-
logy

Task difficulty and task centrality

Task difficulty Difficulty Centrality

Customer
impact

System-
wide

Team
impact

Future
impact

Domain

Customer
issue

Working
relationship

Techno-
logy

 Technology,
 “Java is easier than C++” - developers from I

 Domain . In a product, some domains are
considered to be more difficult than others.
 “this forge module is a mess, it has too many

relationships with other modules.” -developer from J

Working relationships. A task which requires
communications with more people is considered to
be more complicated
 “it’s always easier to do something that doesn’t involve

lots of people” –tester from D

 Customer related issues.
 “A developer found defect is always simpler to fix than a

bug found by customers.” - manager from G

Task centrality Difficulty Centrality

Customer
impact

System-
wide

Team
impact

Future
impact

Domain

Customer
issue

Working
relationship

Techno-
logy

 Customer impact
 D, “customer escalation trumps everything”;
 I, “the most experienced developers are sent to the customers

to resolve their problems.”

 System-wide impact
 J, “there are two most important modules, one is the common

library, all the other modules would invoke them; the other is
the forge module, which needs to invoke all the other modules
and show them to the users.”

 Team impact
 J, “once I found some developer who didn’t write comments in

their committing changes, I would go to them and ask them to
add them and do that in the future.”

.

 Future impact
 D, “I see a sense of urgency for our team in terms of skill

acquisition so the team is equipped to address the next
generation of software and product technologies.”

演示者
演示文稿备注
For example, in Project D, “customer escalation trumps everything”, in Project I, “the most experienced developers are sent to the customers to resolve their problems.” In some open source products the tasks that affect more users tended to be fixed much faster than tasks affecting few users [18].
Tasks which are the most important to satisfy customer requirements and thereby to sell the product are most valuable in a commercial setting

For example, inProject J, “there are two most important modules, oneis the common library, all the other modules would in voke them; the other is the forge module, which needsto invoke all the other modules and show them to the users.”
Tasks that require changes or depend on a large number of modules were considered more important. The impact was gaged by the extent to which task dependencies were distributed over the module structure

E.g, writing comments is a job the team can benefit from, but it requires additional effort. In Project J, “once I found some developer who didn’t write comments in their committing changes, I would go to them and ask them to add them and do that in the future.”
Tasks which influence more members of the team appear to be more valued by the team and are more likely to have a wide and long- term impact.
The team benefits from the maintainability of the code, but that requires extra effort

It appears that the high level developer/manager has more concern about this, e.g, a top developer of D commented: “I see a sense of urgency for our team in terms of skill acquisition so the team is equipped to address the next generation of softwareand product technologies.”
Tasks which lead to major changes to the system architecture or changes affecting the ability to create new features.

Hypothesis 1.
In a software project tasks vary in
terms of difficulty and centrality.
Different tasks require different
degrees of project fluency.

Quantify how a developer’s fluency
grows over time

Number of tasks (modifications) per
staff-month
Productivity adjusted for task

difficulty
Task centrality

R2 = 0.25

Hypothesis 2.
Developers’ productivity plateaus within 6-7 months
in small and medium projects and it takes more than
12 months in large projects.

•AvgFiles: The average # of files modified by a task

•FractionCust: The percentage of tasks related to customer reported issues

log Modifications ~ID + AvgFiles + FractionCust + Tenure

R2 = 0.72

Difficulty Centrality
Customer
impact

System-
wide

Team
impact

Future
impact

Domain

Customer
issue

Working
relationship

Techno-
logy

Hypothesis 3.
Developers take longer to reach full productivity if
we adjust for the difficulty of tasks.

Hypothesis 4.
It takes developers at least three years to become
fluent in large projects.

•Ctr#delta/mod, average # of past modifications to a module

•Ctr#dvlprs/mod
•Ctr#dvlprs/MR
•Ctr#releases/MR

R2 = 0.69

Difficulty Centrality

Customer
impact

System-
wide

Team
impact

Future
impact

Domain

Customer
issue

Working
relationship

Techno-
logy

演示者
演示文稿备注
Each measure is calculated for a particular developer/month pair by averaging the following quantities over all modules modified and all MRs completed by a developer during that month:

Ctr#delta/mod, The number of past modifications to the module: long-term impact.
Ctr#dvlprs/mod, The number of other developers who have modified the module in the past.
Ctr#dvlprs/MR, The number of developers involved in an MR: team and system-wide dimensions.
Ctr#releases/MR, The number of releases the MR has been submitted to: long-term and customer dimensions.

Conclusion
Main findings
Separate the tasks into four dimensions of

difficulty, and four dimensions of centrality,
Propose ways to measure them, and
Quantify the growth of a developer’s fluency.

Practical implications
The offshoring schedule has to accommodate

longer training periods.
 It may require retaining some existing experienced

staff.

演示者
演示文稿备注
The offshoring schedule has to accommodate longer training periods.
The need to implement the most complex tasks and to provide mentoring, may require retaining some existing experienced staff.
The additive increase in task centrality implies that it may take a long time to replace senior developers and clarifies some of the serious issues facing projects that attempt to do that.

The true mastery of a large scale project, i.e, being able to complete most tasks of a project accurately and quickly, needs more than three years of experience, though it might take less time in smaller projects.

Reference
 A. Begel and B. Simon. Novice software developers, all over again. In

International Computing Education Research Workshop, Sydney, Australia.,
2008.

 C. Binder, E. Haughton, and B. Bateman. Fluency: Achieving true mastery in
the learning process. Technical report, University of Virginia Curry School of
Special Education, 2002. Professional Papers in Special Education.

 B. Curtis. Substantiating programmer variability. In Proceedings of the IEEE
69, July 1981.

 B. Curtis. Fifteen years of psychology in software engineering: Individual
differences & cognitive science. In ICSE’84, pages 97–106, 1984.

 B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P. de Vrie.
Moving into a NewSoftware Project Landscape. In ICSE2010, Cape Town,
South Africa, May 1-8, 2010.

 T. Graves and A. Mockus. Identifying productivity drivers by modeling work
units using partial data. Technometrics, 43(2):168–179, May 2001.

 J. D. Herbsleb and A. Mockus. An empirical study of speed and
communication in globally-distributed software development. IEEE
Transactions on Software Engineering, 29(6):481–494, June 2003.

 S. Kvale and S. Brinkman. InterViews: Learning the craft of qualitative
research interviewing (2nd Ed.). Thousand Oaks, CA: Sage Publications, CA,
USA, 2007.

 Lave and E. Wenger. Situated Learning. Legitimate Peripheral Participation.
Cambridge University Press, Cambridge, 1991.

 V. J. Marsick and K. E. Watkins. Informal and incidental learning. New
Directions for Adult and Continuing Education, 89:25–34, 2001.

 A. Mockus. Software support tools and experimental work. In V. Basili and et
al, editors, Empirical Software Engineering Issues: Critical Assessments and
Future Directions, volume LNCS 4336, pages 91–99. Springer, 2007.

Reference
 A. Mockus. Succession: Measuring transfer of code and developer productivity.

In 2009 International Conference on Software Engineering, Vancouver, CA, May
12–22 2009. ACM Press.

 A. Mockus and J. Herbsleb. Expertise browser: A quantitative approach to
identifying expertise. In 2002 International Conference on Software Engineering,
pages 503–512, Orlando, Florida, May 19-25 2002. ACM Press.

 A. Mockus and D. M. Weiss. Globalization by chunking: a quantitative approach.
IEEE Software, 18(2):30–37, March 2001.

 F. E. Ritter and L. J. Schooler. International Encyclopedia of the Social and
Behavioral Sciences, chapter The learning curve, pages 8602–8605. Pergamon,
Amsterdam, 2002.

 P. Robillard. The role of knowledge in software development. Communications of
the ACM, 42(1):87–92, 1999.

 S. E. Sim and R. C. Holt. The ramp-up problem in software projects: A case
study of how software immigrants naturalize. In ICSE 1998, pages 361–370,
1998.

 Van Maanen and E. Schein. Towards a theory of organizational socialization. In
B. Staw, editor, Research in organizational behavior, volume 1, pages 209–264.
JAI Press, Greenwich, CT, 1979.

 G. von Krogh, S. Spaeth, and K. R. Lakhani. Community, joining, and
specialization in open source software innovation: a case study. Research Policy,
32(7):1217–1241, July 2003.

 S. Wood. Fast stable direct fitting and smoothness selection for generalized
additive models. J.R.Statist.Soc.B, 70(3):495–518, 2008.

 Y. Ye and K. Kishida. Toward an understanding of the motivation open source
software developers. In ICSE 2003, pages 419–429, Portland, Oregon, 2003.

 M. Zhou, A. Mockus, and D. Weiss. Learning in offshored and legacy software
projects: How product structure shapes organization. In ICSE Workshop on
S i T h i l C V C d M 19 2009

	幻灯片编号 1
	Agenda
	History of developers’ competence
	Motivation
	幻灯片编号 5
	Research question
	Methodology
	幻灯片编号 8
	幻灯片编号 9
	Results
	幻灯片编号 11
	Task variations
	Task difficulty and task centrality
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	Quantify how a developer’s fluency grows over time
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	Conclusion
	Reference
	Reference

