
Opposite page: Mars Rover.  
Photo courtesy of NASA/JPLCaltech 
 

 

 



259 
 

10 
 

 

 

 

 

 

 

 

Artificial Intelligence 

David: Martin is Mommy and Henry's real son. After I find the Blue Fairy then I can 
go home. Mommy will love a real boy. The Blue Fairy will make me into one. 
Gigolo Joe: Is Blue Fairy Mecha, Orga, man or woman? 
David: Woman. 
Gigolo Joe: Woman? I know women! They sometimes ask for me by name. I know 
all about women. About as much as there is to know. No two are ever alike, And 
after they've met me, no two are ever the same. And I know where most of them can 
be found. 
David: Where? 
Gigolo Joe: Rouge City. Across the Delaware.  

Dialog between two Artificial Intelligence entities: Gigolo Joe (played by Jude Law) and 
David (played by Haley Joel Osment) in the movie, Artificial Intelligence, Directed by Steven 

Speilberg, Warner Bros., 2001. 

Opposite page: A.I. Artificial Intelligence 
From the movie poster. Warner Bros., 2001. 
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The Question of Intelligence 

The quest for the understanding of intelligence probably forms the oldest and 
yet to be fully understood human inquiry. With the advent of computers and 
robots the question of whether robots and computers can be as intelligent as 
humans has driven the scientific pursuits in the field of Artificial Intelligence 
(AI). Whether a computer can be intelligent was lucidly discussed by 
Professor Alan Turing in 1950. To illustrate the issues underlying machine 
intelligence, Turing devised a thought experiment in the form of an imitation 
game. It is played with three people, a man, a woman, and an interrogator. 
They are all in separate rooms and interact with each other by typing text into 
a computer (much like the way people interact with each other over IM or 
other instant messaging services). The interrogator's task is to identify which 
person is a man (or woman). To make the game interesting, either player can 
try and be deceptive in giving their answers. Turing argues that a computer 
should be considered intelligent if it could be made to play the role of either 
player in the game without giving itself away. This test of intelligence has 
come to be called the Turing Test and has generated much activity in the 
community of AI researchers (see Exercises). The dialog shown above, from 
the movie Artificial Intelligence, depicts an aspect of the test of intelligence 
designed by Alan Turing. Based on the exchange between Gigolo Joe and 
David, can you conclude that they are both intelligent? Human?  

After over five decades of AI research the field has matured and evolved in 
many ways. For one, the focus on intelligence is no longer limited to humans: 
insects and other forms of animals with varying degrees and kinds of 
intelligence have been the subject of study within AI. There has also been a 
fruitful exchange of ideas and models between AI scientists, biologists, 
psychologists, cognitive scientists, neuroscientists, linguists and philosophers. 
You saw examples of such an influence in the models of Braitenberg vehicles 
introduced earlier. Given the diversity of researchers involved in AI there has 
also been an evolution of what AI itself is really about. We will return to this 
later in the chapter. First, we will give you a few examples of models that 
could be considered intelligent that are commonly used by many AI scientists.  
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Language Understanding 

One aspect of intelligence acknowledged by many people is the use of 
language. People communicate with each other using a language. There are 
many (several thousand) languages in use on this planet. Such languages are 
called natural languages. Many interesting theories have been put forward 
about the origins of language itself. An interesting question to consider is: 
Can people communicate with computers using human (natural) languages? 
In other words, can a computer be made to understand language? Think about 
that for a few moments.  

To make the question of language understanding more concrete, think of your 
Scribbler robot. So far, you have controlled the behavior of the robot by 
writing C++ programs for it. Is it possible to make the Scribbler understand 
English so that you could interact with it? What would an interaction with 
Scribbler look like? Obviously, you would not expect to have a conversation 
with the Scribbler about the dinner you ate last night. However, it would 
probably make sense to ask it to move in a certain way. Or to ask whether it is 
seeing an obstacle ahead. 

Do this: Write down a series of short 1-word commands like: forward, 
right, left, stop, etc. Create a vocabulary of commands and then write a 
program that inputs a command at a time interprets it and makes the Scribbler 
carry it out. For example: 

You: forward 
Scribbler: starts moving forward… 
You: right 
Scribbler starts turning right… 
You: stop 
… 

Experiment with the behavior of the robot based on these commands and 
think about the proper interpretation that may make its behavior more natural.  
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You will find yourself making several assumptions about interpretation of 
even the simplest commands in the exercise above. For example, what 
happens when after you command the Scribbler to move forward, you ask it to 
turn right? Should the Scribbler stop going forward or should it stop and then 
start turning? 

Decisions like these also give deep insights into our own abilities of 
understanding language. You can also see that, as in the case of visual 
perception, processing of language (or text) begins at a very primitive level: 
words. If the input is speech, the basic units are electrical signals, perhaps 
coming from a microphone. Just like processing individual pixels to try and 
understand the contents of an image, one has to start at a low level of 
representation for beginning to understand language. 

Researchers working in the field of computational linguistics (or natural 
language understanding) have proposed many theories of language 
processing that can form the basis of a computational model for a Scribbler to 
understand a small subset of the English language. In this section, we will 
examine one such model which is based on the processing of syntax and 
semantics of language interaction. Imagine, interacting with the Scribbler 
using the following set of sentences:  

You: do you see a wall? 
Scribbler: No 
 
You: Beep whenever you see a wall. 
You: Turn right whenever you see a wall to your left. 
You: Turn left whenever you see a wall to your right. 
You: Move for 60 seconds. 
 
[The Scribbler robot moves around for 60 seconds turning 
whenever it sees a wall. It also beeps whenever it sees a 
wall.] 

Earlier, you have written C++ programs that perform similar behaviors. 
However, now imagine interacting with the robot in the fashion described. 
From a physical perspective, imagine that you are sitting in front of a 
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computer, and you have a Bluetooth connection to the robot. The first 
question then becomes: Are you actually speaking or typing the above 
commands? From an AI perspective, both modalities are possible: You could 
be sitting in front of the computer and speaking into a microphone; or you 
could be typing those commands on the keyboard. In the first instance, you 
would need a speech understanding capability. Today, you can obtain 
software (commercial as well as freeware) that will enable you to do this. 
Some of these systems are capable of distinguishing accents, intonations, male 
or female voices etc. Indeed, speech and spoken language understanding is a 
fascinating field of study that combines knowledge from linguistics, signal 
processing, phonology, etc.  

You can imagine that the end result of speaking into a computer is a piece of 
text that transcribes what you said. So, the question posed to the Scribbler 
above: Do you see a wall? will have to be processed and then transcribed into 
text. Once you have the text, that is, a string “Do you see a wall?” it can 
be further processed or analyzed to understand the meaning or the content of 
the text. The field of computational linguistics provides many ways of 
syntactic parsing, analyzing, and extracting meaning from texts. Researchers 
in AI itself have developed ways of representing knowledge in a computer 
using symbolic notations (e.g. formal logic). In the end, the analysis of the 
text will result in a getIR() or getObstacle() command to the Scribbler 
robot and will produce the response shown above. 

Our goal of bringing up the above scenario here is to illustrate to you various 
dimensions of AI research that can involve people from many different 
disciplines. These days, it is entirely possible even for you to design and build 
computer programs or systems that are capable of interacting with robots 
using language. 

Game Playing 

In the early history of AI, scientists posed several challenging tasks which if 
performed by computers could be used as a way of demonstrating the 
feasibility of machine intelligence. It was common practice to think of games 
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in this realm. For example, if a computer could play a game, like chess, or 
checkers, at the same level or better than humans we would be convinced into 
thinking that it was indeed feasible to think of a computer as a possible 
candidate for machine intelligence. Some of the earliest demonstrations of AI 
research included attempts at computer models for playing various games. 
Checkers and chess seemed to be the most popular choices, but researchers 
have indulged themselves into examining computer models of many popular 
games: Poker, Bridge, Scrabble, Backgammon, etc.  

In many games, it is now possible for computer models to play at the highest 
levels of human performance. In Chess, for example, even though the earliest 
programs handily beat novices in the 1960's, it wasn't until 1996 when an 
IBM computer Chess program, named Deep Blue, beat the world champion 
Gary Kasparov at a tournament-level game, though Kasparov did manage to 
win the match 4-2. A year later, in New York, Deep Blue beat Kasparov in a 6 
game match representing the very first time a computer defeated the best 
human player in a classical style game of Chess. While these 
accomplishments are worthy of praise it also now clear that the quest for 
machine intelligence is not necessarily answered by computer game playing. 
This has resulted in much progress in game playing systems and game playing 
technology which is now a multi-billion dollar industry.  

It turns out that in many Chess-like games the general strategy for a computer 
to play the game is very similar. Such games are classified as two-person 
zero-sum games: two people/computers play against each other and the result 
of the game is either a win for one player and loss for the other, or it is a draw. 

 

Two‐person zero‐sum games: Chess, Tic Tac Toe, Konane 
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In many such games, the basic strategy for making the next move is simple: 
look at all the possible moves I have and for each of them all the possible 
moves the other player might have and so on until the very end. Then, trace 
back from wins (or draws) and make the next move based on those desirable 
outcomes. You can see this even in simple games like Tic Tac Toe where it is 
easy to mentally look ahead future moves and then make more informed 
decisions about what to do next. The best way to understand this is to actually 
write a program that plays the game. 

Tic Tac Toe 

Also known as Noughts and Crosses or Hugs and Kisses, Tic Tac Toe is a 
popular children’s game (see description on Wikipedia under Tic-tac-toe). We 
will develop a program that can be used to play this game against a person. 
Almost any board game can be programmed using the basic loop shown 
below: 

void play() { 
    // Initialize board 
    Board board = makeBoard(); 

    // set who moves first/next: X always moves first 
    char player = 'X'; 

    // Display the initial board 
    display(board); 

    // The game loop 
    while (winner(board) == " " && 
           !gameOver(board, player)) { 
        move(board, player); 
        display(board); 
        player = opponent(player); 
    } 
 
    // game over, show outcome 
    string winningPiece = winner(board); 
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    if (winningPiece != "Tie")  
        cout << winningPiece << " won.\n"; 
    else  
        cout << "It is a tie.\n"; 
} 

The function above can be used to play a round of any two-person board 
game. The variable player is the player (or piece) whose move is next. We 
are already using the Tic Tac Toe piece ‘X’ in the function above. Six basic 
functions (shown highlighted above) make up the basic building blocks of the 
game. For Tic Tac Toe, they can be defined as: 

1. makeBoard(): Returns a fresh new board representing the start of the 
game. For Tic Tac Toe, this function will return an empty board 
representing the nine squares. 

2. displayBoard(board): Displays the board on the screen for the user 
to see. The display can be as simple or elaborate as you wish. It is 
good to start with the easiest one you can write. Later you can make it 
fancier. 

3. opponent(player): Returns the opponent of the current player/piece. 
In Tic Tac Toe, if the player is X, it will return an O, and vice versa. 

4. move(board, player): Updates the board by making one move for 
the player. If the player is the user, it will input the move from the 
user. If the player is the computer, it will decide how to make the best 
move. This is where the smarts will come in. 

5. gameOver(board): Returns true if there are no more moves left to be 
made, false otherwise. 

6. winner(board): Examines the board and returns the winning piece or 
that the game is not yet over, or that it is a tie. In Tic Tac Toe, it will 
return either an X, O, a blank (representing game is not over yet), or a 
TIE. 

We will need a few more functions to complete the game but these six form 
the basic core. We will write them first.  
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The board itself consists of nine squares that start out being empty. Players 
choose a game piece: an ‘X’ or an ‘O’. We will assume that ‘X’ always goes 
first. The first thing to do then is to design a representation of the game board. 
We will use the following simple representation: 

typedef vector<char> Board; 
Board board (9, ' ');  

The first line allows Board to be used as an abbreviation for the type 
vector<char>. The second line defines board to be a vector of 9 single 
characters initialized to blanks. Note that we are using this linear 
representation of the board instead of a 2-dimensional one. However, as you 
will see, this representation makes it easier to do many manipulations for the 
game. During play, the board can be displayed in its natural format. Below, 
we show two functions: one creates a fresh new board each time it is called; 
and one displays it: 

Board makeBoard() { 
    /* A 3x3 board is represented as a list of 9 elements. 
     * We will use the following numbering to locate a square 
     *  0 | 1 | 2 
     * ---|---|--- 
     *  3 | 4 | 5 
     * ---|---|--- 
     *  6 | 7 | 8 
     */ 
    return Board (9, ' '); 
} 

void display (Board board) { 
    for (int i = 0; i < 9; i += 3) { 
        if (i > 0)  
            printf ("---|---|---\n"); 
        printf (" %c | %c | %c \n", 
          board[i], board[i+1], board[i+2]); 
    } 
    cout << endl; 
} 
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One advantage of writing the display function as shown is that it gives us a 
quick way of creating and displaying the game. Later, when you are done, you 
can write a fancier version that displays the game graphically (see Exercises). 
With the above functions, we can easily create a fresh new board and display 
it as follows: 

Board board = makeBoard(); 
display(board); 

To determine the opponent of a given piece is simple enough: 

char opponent(char player) { 
    if (player == 'X')  
        return 'O'; 
    else 
        return 'X'; 
} 

Next, we have to write the function move. It first determines whose move it is. 
If it is the user’s move, it will input the move from the user. Otherwise, it will 
determine the best move for the computer. Then it will actually make the 
move. As a first design, we will let move make a random choice out of the 
possible moves for the computer. Later, we will make a more informed 
decision. 

#include <cstlib> 
using namespace std; 

char You = 'X'; 
char Me = 'O'; 

void move(Board& board, char player) { 
    int square; 

    if (player == You) {   // user's move? 
        cout << "Enter your move: "; 
        cin >> square; 
        square--; 
    } else                 // my turn 
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        // player is the computer, make a random choice 
        square = choice(possibleMoves(board, player)); 
    // place player's piece on the chosen square 
    applyMove(board, player, square); 
} 

Notice the ampersand & after type Board in the first line of move. This means 
that when we call move, the computer will not make a fresh copy of the board 
for move to use (which is what usually happens), but will pass a reference to 
(the address of) the board in the caller. This is because the purpose of move is 
to make a move, which changes the board, and so we want to change the 
original game board and not a local copy of it.  This way of passing a 
parameter to a function is called pass by reference (as opposed to the usual 
pass by value). 

We will leave it as an exercise for you to define an integer function 
choice(vec) that returns a random element of the integer vector vec. 

We have set the global variables You and Me to specific pieces. This is a 
simplification for now. Later you can come back and rewrite them so that for 
each game, the user gets to select their piece. In Tic Tac Toe, X always moves 
first. So by making the user’s piece X, we have made an assumption that the 
user always goes first. Again, later we can come back and modify this (see 
exercises). Also notice that we are not doing any error checking in user input 
to ensure that a legal move was input (see exercises). 

The user inputs their move by entering a number from 1..9 where the square 
numbering is as shown below. This is slightly different from our internal 
numbering of squares and more natural for people. In the move function 
above, we subtract 1 from the input number so it maps to the proper square in 
our internal scheme. 

  1 | 2 | 3 
 ---|---|--- 
  2 | 5 | 6 
 ---|---|--- 
  7 | 8 | 9 
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Again, we have simplified the interface for now. The exercises suggest how to 
improve on this design. 

The move function defined above requires two additional functions (shown 
highlighted). These are also core functions in any board-based game and are 
described below: 

7. possibleMoves(board, player): Returns a list of possible moves 
for the given player. 

8. applyMove(board, player, square): Given a specific square and 
a player/piece, this function actually applies the move on the board. In 
Tic Tac Toe all one has to do is actually place the piece in the given 
square. In other games, like Chess or Checkers, there may be pieces 
that get removed. 

In Tic Tac Toe all empty squares are possible places where a player can 
move. Below, we write a function that, given a board, returns a list of all the 
possible locations where a piece can be placed: 

vector<int> possibleMoves(Board board, char player) { 
    vector<int> moves (0); 
    for (int i = 0; i < 9; i++)  
        if (board[i] == ' ')  
            moves.push_back(i); 
    return moves; 
} 

To complete the game playing program, we need to write two more functions 
defined above. The winner function examines the board and determines who 
won. It returns the winning piece (an "X", "O") or the string "Tie". In case 
the game is not yet over, it returns " ". Below, we first define all the winning 
positions in Tic Tac Toe, based on our board representation. Next, we define 
the function itself to examine the board. 
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// These square triples represent wins (three in a row). 

int Wins[][3] = {{0, 1, 2},{3, 4, 5},{6, 7, 8}, // the rows 
                 {0, 3, 6},{1, 4, 7},{2, 5, 8}, // the columns 
                 {0, 4, 8},{2, 4, 6}};          // diagonals 

string winner(Board board) { 
    for (int win = 0; win < 8; win++) { 
        char posWinner = board[Wins[win][0]]; 
        if (posWinner != ' ' && 
            posWinner == board[Wins[win][1]] && 
            posWinner == board[Wins[win][2]])  
            return string(1, posWinner); 
    } 
 
    // No winner yet, are there empty squares left? 
    for (int i = 0; i < 9; i++)  
        if (board[i] == ' ')  
            return " "; 
    // The board is full and no one has three in a row 
    return "Tie"; 
} 

The declaration of Wins illustrates a C++ feature that you have seen before 
(ch. 7), but uses it in a new way. It declares Wins to be a two-dimensional 
array; [][3] means that it has three columns but the number of rows is 
determined by the following initialization, which lists the contents of the array 
row by row.  In the body of winner, expressions such as Wins[win][1] refer 
to row win and column 1 of Wins. 

Last, the gameOver function can be written either by relying on the fact that 
winner returns  " " when the game is not yet over. Alternately, we can write 
it using possibleMoves as follows: 

bool gameOver(Board board, char player) { 
    return possibleMoves(board).size() == 0; 
} 
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Implement applyMOVE and you have all the ingredients for a program to play 
a game of Tic Tac Toe. The version above is simplified in many ways, and yet 
it captures the essential elements of playing a round of Tic Tac Toe. 

Do This: Implement the program above and play a few rounds of Tic Tac 
Toe. When you play against the computer, you are anticipating possible 
moves down the road and then playing your own moves with those in mind.  

You probably had no problems beating the computer at the game. That is 
because the computer is just picking its moves by random from a set of 
possible moves: 

// player is the computer, make a random choice 
square = choice(possibleMoves(board, player)); 

This is the line in move where we can put some intelligence into the program. 
However, the basic question that needs to be asked is: which of the possible 
moves is the best one for me? Think about this for yourself a little. In Tic Tac 
Toe, you play in two modes: defensively so as not to lose after the next move, 
or offensively to try and win. If a win is imminent for you, you will of course 
make that move, but if it isn’t (and neither is a loss) how do you select your 
move? We will try and generalize this idea next in a way that will also be 
applicable to other board games. 

Let us delegate the responsibility of finding the best move to a function: 
bestMove that will return the best move from among a set of possible moves. 
That is, we can change the line in move as follows: 

// player is the computer, make the best choice 
square = bestMove(board, player, 
                  possibleMoves(board, player)); 

If bestMove were to make a random choice (as above) we could write it as: 

int bestMove(Board board, char player, vector<int> moves) { 
    return choice(moves); 
} 
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Imagine that you decided to go watch two players playing a game of Chess (or 
Tic Tac Toe). However, you get there in the middle of the game. You walk 
into the room, look at the board, and are able to evaluate how each player is 
doing without knowing anything about how the board came to be. For 
example, take a look at the Tic Tac Toe boards: 

  X | O | X       O | X | X       X | O | X       X |   | 
 ---|---|---     ---|---|---     ---|---|---     ---|---|--- 
    | O |           |   |         O | X | O         |   | 
 ---|---|---     ---|---|---     ---|---|---     ---|---|---          
  O | X | X       X |   | O         | X |           |   | 

           1                                2                             3                               4 

In all the cases above, the computer is playing O and it is O’s turn next. 
Examine each board and think about what the best move for O would be. 

In case 1, the computer has to play defensively and place an O in square 6 to 
avoid losing the game. In case 2, it can be on the offensive and recognize that 
it will win the game by placing an O in square 5. In case 3, it has to play to 
avoid losing. In the last case, the board is wide open. Of the eight possible 
choices, is there a best move? From experience, you are probably going to 
place the O in the center square (square 5). Why? Let us elaborate this by 
looking ahead (see Figure on next page). 

Think about how we could quantify each of the above board positions with 
respect to O’s chances of winning. For each board, count the number of 
possible winning positions still remaining for O and compare those for X. For 
example, in the first board, O has 5 possible winning positions, and X has 6. 
We could say that O is 5 – 6 = –1 has one less possibility than X. If you did 
this for the second and the third boards, you will see that both X and O are 
even in the number of possible remaining winning positions (5 each). 
However, in the fourth case, O has 5 possible winning positions remaining, 
and X has only 4. Try and work out the remaining board positions to confirm 
the scores shown above. Clearly, you can see that placing O in square 5 is the 
best of all the possibilities. Try and elaborate the 5 possible moves for O in 
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case 2 above. You will find that one of the five leads to a win for O. Similarly, 
when you elaborate the two options for O in case 1, you will notice that one 
leads to a tie and the other to a loss for O. We can capture all these situations 
in a function that takes a look at the board and returns a number representing a 
score in favor of O: the higher the value returned, the more desirable the 
board. 

 

That is, a win for the computer receives a high score, a loss receives a low 
score. Otherwise, it is the difference in the number of open wins remaining for 
each. We can capture this in C++ as follows: 

int INFINITY = 10; 
int evaluate(Board board, char player) { 
    // if board is a win for player, return INFINITY 
    char piece = winner(board, player); 
    if (piece == Me) 
        return INFINITY; 
    else if (piece == You) 
        return –INFINITY; 
    else 
        return openWins(board,Me) - openWins(board,You); 
} 
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We define INFINITY as 10, a large enough number relative to the other values 
that might be returned by evaluate. openWins looks at each winning triple 
on the board and counts the number of openings for the given player. 

int openWins(Board board, char player) { 
    int possWins = 0; 
    for (int pos = 0; pos < 8; pos++) { 
        int n = 0; 
        for (int i = 0; i < 3; i++) 
            if ((board[Wins[pos][i]] == player) ||           
                (board[Wins[pos][i]] == ' ')) 
                n++; 
        if (n == 3) possWins++; 
    } 
    return possWins; 
} 

Do This: Implement the two functions above and then test them. Create 
several board positions (use the ones from examples above) and confirm that 
the board is being evaluated to the correct values. 

Next, we can rewrite bestMove to take advantage of evaluate: 

int bestMove(Board board, char player, vector<int> moves) { 
    vector<int> scores (0); 
    for (m = 0; m < moves.size(); m++) { 
        Board b (board); 
        applyMove(b, player, moves[m]); 
        scores.push_back(evaluate(b)); 
    } 
    return moves[maxIndex(scores)]; 
} 

The declaration Board b (board) initializes b to be a fresh copy of board, 
so that we won't affect the original board while we are trying out possible 
moves. Notice how bestMove takes each possible move, creates a new board 
with that move, and then evaluates the score of the resulting board. It pushes 
each evaluation on the back (end) of the scores vector, which is initially 
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empty. Finally, it returns the move with the highest score as the best move. 
Modify your program from above to use this version of bestMove (you will 
need to program maxIndex(V), which returns the index (position) of the 
maximum element of V). Play the game several times. You will notice that 
there is a significant improvement in the computer’s playing ability. Can you 
measure it in some way? (See Exercises). 

The above rewrite of bestMove will make the program play significantly 
better but there is still more room for improvement. In most board games 
good players are able to mentally picture the game several moves ahead. In 
many games, like Chess, certain recognizable situations lead to well 
determined outcomes and so a great part of playing a successful game also 
relies on the ability to recognize those situations.  

Looking ahead several moves in a systematic manner is something computers 
are quite capable of doing and hence anyone (even you!) can turn them into 
fairly good players. The challenge lies in the number of moves you can look 
ahead with limited memory capacity and, if time to make the next move is 
limited, how to choose among the best available options. These decisions lend 
interesting character to computer game programs and continue to be a 
constant source of fascination for many people. Let’s us look at how your Tic 
Tac Toe program can easily look at all the possible moves all the way to the 
end of game in determining its next move (which, in most situations leads to a 
draw, given the simplicity of the game).  

When you look ahead a few moves, you take into account that your opponent 
is going to try and beat you at every move. Your program, in trying to select 
the best move, can look ahead at the opponent’s moves and take that into 
consideration when choosing its best move. In fact, it can go further, all the 
way to the end. The evaluate function we wrote above can be used 
effectively to evaluate future board situations by assuming that when it is the 
computer’s move, it will always try to pick the move that promises the highest 
score in the future. However, when it examines the opponent’s moves, it has 
to assume that the opponent is going to make the move that is worst for the 
computer. In other words, when looking ahead, the computer is going to 
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maximize its possible score while the opponent is going to minimize the 
computer’s chances to win. This can be captured in the following: 

int lookahead(Board board, char player, bool MAX, int level) { 

   vector<int> moves = possibleMoves(board, player); 
   if (level <= 0 || moves.size()==0) // limit of look ahead 
      return evaluate(board, player); 
 
   int V; 
   if (MAX) {        // computer’s move 
      V = -INFINITY; 
      for (int m = 0; m < moves.size(); m++) { 
         Board b (board); 
         b[moves[m]] = player; 
         V = max(V, 
              lookahead(b, opponent(player), !MAX, level-1)); 
      } 
    } else {        // opponent’s move 
      V = INFINITY; 
      for (int m = 0; m < moves.size(); m++) { 
         Board b (board); 
         b[moves[m]] = player; 
         V = min(V, 
              lookahead(b, opponent(player), !MAX, level-1)); 
      } 
    } 
    return V; 
} 

The lookahead function defined above takes the current board, the player 
whose turn it is, whether the player is the computer (one trying to maximize 
its outcome) or the opponent (one trying to minimize the computer’s 
outcomes), and the levels still to look ahead, and computes a score based on 
examining all the moves going forward to the limit of look ahead. In the 
above function when MAX is true it represents the computer and false 
represents its opponent. Thus, depending on the value of MAX, the evaluation is 
minimized or maximized accordingly. Each time it looks ahead further, the 
level is reduced by 1. The final value returned by lookahead can be used by 
bestMove as follows: 
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int LEVEL = 9; 
int bestMove(Board board, char player, vector<int> moves) { 

    vector<int> scores (0); 
    for (int m = 0; m < moves.size(); m++) { 
        Board b (board); 
        b[moves[m]] = player; 
        scores.push_back( 
          lookahead(b, opponent(player), false, LEVEL-1));  
    }  

    return moves[maxIndex(scores)]; 
} 

As before, the move with the highest value is considered the best move. We 
have set the value of LEVEL above at 9 (i.e. look 9 moves ahead!) implying 
that each time it will look as far as the end of the game before making the 
decision. There can only be a maximum of 9 moves in a Tic Tac Toe game. 
The quality of the computer’s decision maker can in fact be adjusted by 
lowering the value of LEVEL. At LEVEL = 1, it will be equivalent to the 
version we wrote earlier that only used the evaluate function.  

How many levels ahead one looks in a game like this can depend on the game 
itself. Can you guess how many board situations the computer will have to 
look at in doing a look ahead at LEVEL = 9 after the user’s first move? It will 
be 40,320 different board situations! Why? Additionally, by the time it is the 
computer’s second move, it will only need to look at 720 board positions. 
This is because, in Tic Tac Toe, as the board gets filled, there are fewer 
possible moves remaining. In fact, by the time it is the computer’s third move, 
it only needs to look at a total of 24 boards. And, if the computer makes it to 
its fourth move, it will only have to look at two possible moves. Thus, an 
exhaustive search for all the possible board positions until the end of the game 
each time the computer has to make a move it will be examining a total of 
41,066 board positions. However, if you consider a typical game of Chess, in 
which each player makes an average of 32 moves and the number of feasible 
moves available at any time averages around 10, you would soon realize that 
the computer would have to examine something of the order of 1065 board 
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positions before making a move! This, even for the fastest computers 
available today, will take several gazillion years! More on that later. But, to 
play an interesting two-person zero-sum game, it is not essential to look so far 
ahead. You can vary the amount of look ahead by adjusting the value of 
LEVEL in such programs. 

Do This: Implement lookahead as described above and compare how well 
the computer plays against you. Try and vary the levels from 1, 2, …, to see if 
there is any improvement in the computer’s play. Would you consider this 
program intelligent? 

The exercises at the end of the chapter will guide you in transforming the 
above program into a more robust and even efficient game playing program 
for Tic Tac Toe. However, study the program structure carefully and you will 
be able to use the same strategy, including much of the core of the program, to 
play many other two-person board games. 

Smarter Paper Scissors Rock 

In Chapter 7, you saw an example of a program that played the game of Paper 
Scissors Rock against a human user. In that version, the program’s choice 
strategy for picking an object was completely random. We reproduce that 
section of the program here: 

… 
string items[] = {"Paper", "Scissors", "Rock"}; 
 
… 
// Computer makes a selection 
string myChoice = items[rand() % 3]; 
… 

In the above program segment, myChoice is the program’s choice. As you can 
see, the program uses a random number to select its object. That is, the 
likelihood of picking any of the three objects is 0.33 or 33%. The game and 
winning strategies for this game have been extensively studied. Some 
strategies rely on detecting patterns in human choice behavior. Even though 
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we may not realize it there are patterns in our seemingly random behavior. 
Computer programs can easily track such behavior patterns by keeping long 
histories of player’s choices, detect them, and then design strategies to beat 
those patterns. This has been shown to work quite effectively. It involves 
recording player’s choices and searching through them. Another strategy is to 
study human choice statistics in this game. Before we present you with some 
data, do the exercise suggested below: 

Do This: Play the game against a few people, Play several dozen rounds. 
Record the choices made by each player (just write a P/S/R in two columns). 
Once done, compute the percentages of each object picked. Now read on. 

It turns out that most casual human players are more prone towards picking 
Rock than Paper or Scissors. In fact, various analyses suggest that 36% of the 
time people tend to pick Rock, 30% Paper, and 34% Scissors. This suggests 
that RPS is not merely a game of chance there is room for some strategies at 
winning. Believe it or not, there are world championships of RPS held each 
year. Even a simple game like this has numerous possibilities. We can use 
some of this information, for instance, to make our program smarter or better 
adept at playing the game. All we have to do is instead of using a fair 33% 
chance of selecting each object we can skew the chances of selection based on 
people’s preferences. Thus, if 36% of the time people tend to pick Rock, it 
would be better for our program to pick Paper 36% of the time since Paper 
beats Rock. Similarly, our program should pick Scissors 30% of the time to 
match the chance of beating Paper, and pick Rock 34% of the time to match 
the chances of beating Scissors. We can bias the random number generator 
using these percentages as follows: 

First generate a random number in the range 0..99 
If the number generated is in the range 0..29, select Scissors (30%) 
If the number generated is in the range 30..63, select Rock (34%) 
If the number generated is in the range 64..99, select Paper (36%) 

The above strategy of biasing the random selection can be implemented as 
follows: 



Artificial Intelligence 
 

281 
 

string mySelection() { 

    // First generate a random number in the range 0..99 
    int n = rand() % 100; 

    // If the n is in range 0..29, select Scissors 
    if (n <= 29) 
        return "Scissors"; 
    else if (n <= 63) 
        // if n in range 30..63, select Rock 
        return "Rock"; 
    else 
        return "Paper"; 
} 

Do This: Modify your RPS program from Chapter 7 to use this strategy. Play 
the game several times. Does it perform much better that the previous 
version? You will have to test this by collecting data from both versions 
against several people (make sure they are novices!).  

Another strategy that people use is based upon the following observation: 

After many rounds, people tend to make the move that would have beaten 
their own previous move. 

Say a player picks Paper. Their next pick will be Scissors. A computer 
program or a player playing against this player should then pick Rock to beat 
Scissors. Note that the relationship between the choices is cyclical. Paper 
beats Rock, Rock beats Scissors, and Scissors beat Paper. Therefore, since the 
player’s previous move was Paper, your program can pick Rock in 
anticipation of the player’s pick of Scissors. Try to think over this carefully 
and make sure your head is not spinning by the end of it. If a player can spot 
this they can use this as a winning strategy. We will leave the implementation 
the of this strategy as an exercise. The exercises also suggest another strategy.  

The point of the above examples is that using strategies in your programs you 
can make your programs smarter or more intelligent. Deliberately, we have 
started to use the term intelligence a little more loosely than what Alan Turing 
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implied in his famous essay. Many people would argue that these programs 
are not intelligent in the ultimate sense of the word. We agree. However, 
writing smarter programs is a natural activity. If the programs incorporate 
strategies or heuristics that people would use when they are doing the same 
activity, then the programs have some form of artificial intelligence in them. 
Even if the strategy used by the program is nothing like what people would 
use, but it would make the program smarter or better, we would call it 
artificial intelligence. Many people would disagree with this latter claim. To 
some, the quest for figuring out intelligence is limited to the understanding of 
intelligence in humans (and other animals). In AI both points of view are quite 
prevalent and make for some passionate debates among scholars. 

Discussion 

The very idea of considering a computer as an intelligent device has its 
foundations in the general purpose nature of computers. By changing the 
program the same computer can be made to behave in many different ways. 
At the core of it a computer is just a symbol manipulator: manipulating 
encodings for numbers, or letters, or images, etc. It is postulated that the 
human brain is also a symbol manipulator. The foundations of AI lie in the 
fact that most intelligent systems are physical symbol systems and since a 
computer is a general purpose symbol manipulator, it can be used for studying 
or simulating intelligence.  
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Myro Review 
 

No new Myro functions were introduced in the chapter. 

C++ Review 
 
TYPE & NAME 
Indicates that the specified parameter is to be passed by reference (rather than 
passed by value), which allows it to be modified from within the function. 

typedef TYPE NAME 
Allows NAME to be used as an abbreviation for TYPE. 

 

Exercises 
 
1. Read Alan Turing’s paper Computing Machinery and Intelligence. You can 
easily find a copy of it by searching on the web. 

2. Do a web search for “Searle Chinese Room argument” to locate 
Philosopher John Searle’s arguments that no matter how intelligent a 
computer or a program gets, it will never have a “mind”. 

3. Rewrite display for Tic Tac Toe game to display the board graphically. 

4. Design a language of one-word English commands for the Scribbler. Write 
a program to input one command at a time, interpret it, and then execute the 
command on the Scribbler. 

5. Extend the language from Exercise 4 to include queries (e.g. wall?) and 
then modify your program to incorporate such queries. 
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6. Do a survey of speech understanding systems. 

7. Do a survey of computational linguistics. 

8. In the Tic Tac Toe program designed in this Chapter, we assumed that the 
user always plays an X. Modify your program so that it gives the user a choice 
at the beginning of the game. Further, at the end of each game, the pieces are 
swapped. 

9. In the function move defined for Tic Tac Toe, the program accepts whatever 
the user inputs for their move. Try the program and instead of entering a valid 
move, enter your name instead. What happens? Such an error might be easily 
detected since it will halt the program’s execution. However, next try entering 
a number from 1-9 using a spare position that is already occupied in the 
board. What happens? Modify the function to accept only correct moves. If 
the user enters an incorrect move, the program should point that out and give 
the user another chance. 

10. The function gameOver can make use of the winner function to make its 
decision in the Tic Tac Toe program. Rewrite gameOver to do this. 

11. One way to measure how one strategy compares against another is to play 
it against another strategy over and over again recording the number of wins, 
losses, and draws. Modify your Tic Tac Toe or RPS program to substitute the 
second strategy for the user (instead of taking input from the user, it uses a 
function that implements the second strategy. Add statements to play the 
game many times (say 1000) and record the wins, losses, and draws. You may 
also want to suppress all board output since the game is being played 
completely inside the program. Do a comparison of all the strategies discussed 
in this Chapter and how they compare against each other. 
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