
349

 Myro
Overview

Below is a chapter by chapter summary of all the Myro features introduced in
this text. For a more comprehensive listing of all the Myro features you
should consult the C++/Myro Reference Manual.

Chapter 1

#include "Myro.h"

This preprocessor directive inserts into your program all the robot commands
available in the C++/Myro library. We will use this whenever we intend to
write programs that use the robot.

connect();

This command establishes a wireless communication connection with the
robot and reports when the connection has been made.

disconnect();
This command disconnects the wireless connection to your robot.

robot.beep(<TIME>, <FREQUENCY>);
Makes the robot beep for <TIME> seconds at frequency specified by
<FREQUENCY>.

robot.getName()
Returns the name of the robot.

Myro Overview

350

robot.setName(<NEW NAME>);
Sets the name of the robot to <NEW NAME>. The new name should be enclosed
in double quotes, no spaces, and not more than 16 characters long. For
example: setName("Bender").

robot.gamepad();

Enables manual control of several robot functions and can be used to move
the robot around.1

Chapter 2

robot.backward(SPEED);
Move backwards at SPEED (value in the range -1.0…1.0).

robot.backward(SPEED,SECONDS);
Move backwards at SPEED (value in the range -1.0…1.0) for a time given in
SECONDS, then stop.

robot.forward(SPEED);
Move forward at SPEED (value in the range -1.0..1.0).

robot.forward(SPEED,TIME);
Move forward at SPEED (value in the range -1.0…1.0) for a time given in
seconds, then stop.

robot.motors(LEFT,RIGHT);
Turn the left motor at LEFT speed and right motor at RIGHT speed (value in the
range -1.0…1.0).

robot.move(TRANSLATE, ROTATE);
Move at the TRANSLATE and ROTATE speeds (value in the range -1.0…1.0).

1 The gamepad is not supported by the current C++/Myro interface.

Myro Overview

351

robot.rotate(SPEED);
Rotates at SPEED (value in the range -1.0…1.0). Negative values rotate right
(clockwise) and positive values rotate left (counter-clockwise).

robot.stop();
Stops the robot.

robot.translate(SPEED);
Move in a straight line at SPEED (value in the range -1.0…1.0). Negative
values specify backward movement and positive values specify forward
movement.

robot.turnLeft(SPEED);
Turn left at SPEED (value in the range -1.0…1.0)

robot.turnLeft(SPEED,SECONDS);
Turn left at SPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

robot.turnRight(SPEED);
Turn right at SPEED (value in the range -1.0..1.0)

robot.turnRight(SPEED,SECONDS);
Turn right at SPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

wait(TIME)
Pause for the given amount of TIME seconds. TIME can be a decimal number.

Chapter 3

speak(<something>);
The computer converts the text in <something> to speech and speaks it out.
<something> is also simultaneously printed on the screen. Speech generation
is done synchronously. That is, anything following the speak command is
done only after the entire thing is spoken.

Myro Overview

352

speak(<something>, 0);
The computer converts the text in <something> to speech and speaks it out.
<something> is also simultaneously printed on the screen. Speech generation
is done asynchronously. That is, execution of subsequent commands can be
done prior to the text being spoken.

timeRemaining(<seconds>)
This is used to specify timed repetitions in a while-loop (see below).

Chapter 4

randomNumber()

Returns a random number in the range 0.0 and 1.0. This is an alternative Myro
function that works just like (double) rand() / RAND_MAX, which uses the
rand() function from the C++ cstdlib library (see below).

askQuestion(MESSAGE-STRING)
A dialog window with MESSAGE-STRING is displayed with choices: "Yes" and
"No". Returns "Yes" or "No" depending on what the user selects.

askQuestion(MESSAGE-STRING, LIST-OF-OPTIONS)2
A dialog window with MESSAGE-STRING is displayed with choices indicated in
LIST-OF-OPTIONS, which is string of labels separated by commas. Returns
option string depending on what the user selects.

currentTime()
The current time, in seconds from an arbitrary starting point in time, many
years ago.

robot.getStall()
Returns true if the robot is stalled when trying to move, false otherwise.

2 This description may not reflect the final C++/Myro API.

Myro Overview

353

robot.getBattery()
Returns the current battery power level (in volts). It can be a double number
between 0.0 and 9.0 with 0.0 indicating no power and 9.0 being the highest.
There are also LED power indicators present on the robot. The robot behavior
becomes erratic when batteries run low. It is then time to replace all batteries.

Chapter 5

robot.getBright(<POSITION>)
Returns the current value in the <POSITION> light sensor. <POSITION> can
either be one of "left", "center", "right" or one of the numbers 0, 1, 2.

robot.getGamepad(<device>)
robot.getGamepadNow(<device>)
Returns a double vector indicating the status of the specified <device>.
<device> can be "axis" or "button". The getGamepad function waits for an
event before returning values. getGamepadNow immediately returns the
current status of the device.

robot.getIR(<POSITION>)
Returns the current value in the <POSITION> IR sensor. <POSITION> can
either be one of "left" or "right" or one of the numbers 0, 1.

robot.getLight(<POSITION>)
Returns the current value in the <POSITION> light sensor. <POSITION> can
either be one of "left", "center", "right" or one of the numbers 0, 1, 2.
The positions 0, 1, and 2 correspond to the left, center, and right sensors.

robot.getObstacle(<POSITION>)
Returns the current value in the <POSITION> IR sensor. <POSITION> can
either be one of "left", "center", "right" or one of the numbers 0, 1, or 2.

savePicture(<picture>, <file>);
savePicture(<picture vector>, <file>);

Saves the picture in the file specified. The extension of the file should be
“.gif” or “.jpg”. If the first parameter is a vector of pictures, the file name

Myro Overview

354

should have an extension “.gif” and an animated GIF file is created using the
pictures provided.

robot.senses();
Displays Scribbler’s sensor values in a window. The display is updated every
second.

show(<picture>);
Displays the picture in a window. You can click the left mouse anywhere in
the window to display the (x, y) and (r, g, b) values of the point in the
window’s status bar.

robot.takePicture()
robot.takePicture("color")
robot.takePicture("gray")
Takes a picture and returns a picture object. When no parameters are
specified, the picture is in color.

cout << <vector>
cout << <list>

Print vector <vector> or list <list>.

Chapters 6 & 7

No new Myro features were introduced in these chapters.

Chapter 83

GraphWin()
GraphWin(<title>, <width>, <height>)
Returns a graphics window object. It creates a graphics window with title,

3 The graphics and sound capabilities of the C++/Myro interface are under
development, and so this description might not reflect the final interface.
Consult the documentation for more information.

Myro Overview

355

<title> and dimensions <width> x <height>. If no parameters are specified,
the window created is 200x200 pixels.

<window>.close();
Closes the displayed graphics window <window>.

<window>.setBackground(<color>);
Sets the background color of the window to be the specified color. <color>
can be a named color (Google: color names list), or a new color created using
the color_rgb command (see below).

color_rgb(<red>, <green>, <blue>)
Creates a new RGB color object using the specified <red>, <green>, and
<blue> values. The values can be in the range 0..255.

Point(<x>, <y>)
Creates a Point object at (<x>, <y>) location in the window.

<point>.getX()
<point>.getY()
Returns the x and y coordinates of the Point object <point>.

Line(<start point>, <end point>)
Creates a Line object starting at <start point> and ending at <end point>.

<line>.getP1()
<line>.getP2()
Returns an endpoint (Point object) of a Line object.

Circle(<center point>, <radius>)
Creates a Circle object centered at <center point> with radius <radius>
pixels.

Rectangle(<point1>, <point2>)
Creates a Rectangle object with opposite corners located at <point1> and
<point2>.

Myro Overview

356

Oval(<point1>, <point2>)
Creates an Oval object in the bounding box defined by the corner points
<point1> and <point2>.

Polygon(<point1>, <point2>, <point3>,…)
Polygon([<point1>, <point2>, …])
Creates a Polygon object with the given points as vertices.

Text(<anchor point>, <string>)
Creates a Text object anchored (bottom-left corner of text) at <anchor
point>. The text itself is defined by <string>.

Image(<centerPoint>, <file name>)
Creates an Image centered at <center point> from the image file <file
name>. The image can be in GIF, JPEG, or PNG format.

All of the graphics objects respond to the following commands:

<object>.draw(<window>);
Draws the <object> in the specified graphics window <window>.

<object>.undraw();
Undraws <object>.

<line-object>.getP1()
<line-object>.getP2()
Returns the end points of the <line-object>.

<object>.getCenter()
Returns the center point of the <object>.

<object>.setOutline(<color>);
<object>.setFill(<color>);
Sets the outline and the fill color of the <object> to the specified <color>.

<object>.setWidth(<pixels>);
Sets the thickness of the outline of the <object> to <pixels>.

Myro Overview

357

<object>.move(<dx>, <dy>);
Moves the object <dx>, <dy> from its current position.

The following sound-related functions were presented in this chapter.

<robot/computer object>.beep(<seconds>, <frequency>);
<robot/computer object>.beep(<seconds>, <f1>, <f2>);
Makes the robot or computer beep for <seconds> time at frequency specified.
You can either specify a single frequency <frequency> or a mix of two: <f1>
and <f2>.

robot.playSong(<song>) ;
Plays the <song> on the robot.

readSong(<filename>)
Reads a song object from <filename>.

song2text(song)
Converts a song to text format.

makeSong(<text>)
text2song(<text>)
Converts <text> to a song format.

Chapter 94
getBlob()

Return a three-element vector of integers of the number of pixels that matched
the blob, the average x and y locations of blob pixels.

getHeight(<picture>)
getWidth(<picture>)

Returns the height and width of the <picture> object (in pixels).

4 The graphics capabilities of the C++/Myro interface are under development,
and so this description might not reflect the final interface.

Myro Overview

358

getPixel(<picture>, x, y)
Returns the pixel object at x, y in the <picture>.

getPixels(<picture>)

Returns an iterator of type Pixels, which returns one Pixel at a time from

<picture>.

getRGB(pixel)
getRed(<pixel>)
getGreen(<pixel>)
getBlue(<pixel>)

Returns the RGB values of the <pixel>. getRBG returns a color_rgb object.

getBlob()

Returns a three-element vector<int> containing the number of on-pixels and
the average x- and y-locations of blob pixels. See chapter text for example.

makeColor(<red>, <green>, <blue>)

Creates a color_rgb object with the given <red>, <green>, and <blue>
values (all of which are in the range [0..255]).

makePicture(<file>)
makePicture(<width>, <height>)
makePicture(<width>, <height>, <color>)

Creates a picture object either by reading a picture from a <file>, or of the
given <width> and <height>. If <color> is not specified, the picture created
has a white background.

pickAColor()
Creates an interactive dialog window to select a color visually. Returns the
color object corresponding to the selected color.

pickAFile()
Creates an interactive dialog window that allows user to navigate to a folder
and select a file to open. Note: it cannot be used to create new files.

Myro Overview

359

repaint();
repaint(<picture>);
Refreshes the displayed <picture>.

savePicture(<picture>, <file>);
savePicture(<picture vector>, <gif file>);
Saves the <picture> in the specified file (a GIF or JPEG as determined by
the extension of the <file>: .gif or .jpg). <picture vector> is saved as
an animated GIF file.

setColor(<pixel>, <color_rgb>);
setRed(<pixel>, <value>);
setGreen(<pixel), <value>);
setBlue(<Pixel>, <value>);

Sets the color of <pixel> to specified <color_rgb> or <value>.

setPixel(<picture>, x, y, <color_rgb>);
setPixel(<picture>, x, y, <pixel>);

Sets the pixel at x, y in <picture> to specified <color_rgb> or color of
<pixel>.

show(<picture>);
show(<picture>, <name>);

Displays the <picture> on the screen in a window named <name> (string).

takePicture()
takePicture("gray")
takePicture("blob")
Takes a picture from the Scribbler camera. It is a color picture by default, or
grayscale ("gray"), or a filtered image based on the defined blob ("blob").
See chapter text for examples.

Chapters 10 – 12

No new Myro features were introduced in these chapters.

Myro Overview

360

