
Some More C++
B. J. MacLennan, 2009-12-01

C++ is a huge language, and we have covered only its basics in CS 102. Every class and every textbook
must make choices about what is most important to cover, and I have followed the lead of our
textbooks, How to Think Like a Computer Scientist in C++ and Learning Computing with Robots in
C++. Nevertheless, a few of the C++ topics we have not covered are common enough that later
classes may assume you know them. You can learn them easily enough from other C++ books and
online resources, but I have prepared this document to explain some of them. If you cannot understand
them from these brief explanations, then you will have to consult a C++ reference, but at least you will
know they exist and what they are called.

 1. C-arrays
C++ has inherited many features from C, a much older (and more primitive) language. One of these is
the array, which is much like a vector, but its size is fixed. The simplest way to declare an array is to
put its size in brackets after the its name. For example,

double hours[7];
declares hours to be an array with elements indexed hours[0] to hours[6], just like a vector. An array
can be given an initial value as follows:

double hours[7] = {0.0, 8.0, 4.0, 10.0, 8.0, 8.0, 0.0};
If you want the array to be just big enough to hold the initial values, then you can omit the size and let
the compiler do the counting for you:

double hours[] = {0.0, 8.0, 4.0, 10.0, 8.0, 8.0, 0.0};
You can declare two-dimensional arrays (or matrices), which are a lot like vectors of vectors. For
example,

int mat[2][3];
is an array, whose elements are indexed mat[0][0], mat[0][1], mat[0][2], mat[1][0], mat[1][1],
mat[1][2]. This is also the order in which the elements are stored in memory (called row-major order).
A two-dimensional array can be initialized like this:

int mat[2][3] = {{1, 2, 4}, {1, 3, 9}};
You can let the compiler count the number of rows:

int mat2[][3] = {{1, 2, 4}, {1, 3, 9}, {1, 4, 16}, {1, 5, 25}};
C++ allows you to declare arrays of three or more dimensions in a similar way. The result is the same
as mat[4][3].

Vectors have a size() member function, but there is nothing analogous for C-arrays, so you have to
know how long it is, preferably by giving a name to its size, e.g.,

const int size_hours = 7;
double hours [size_hours];

-1-

In particular, when you pass a C-array to a function, the function cannot use size() to control loops etc.,
so it must know the length of its argument array, or the length must be passed as an additional
parameter.

When you pass an array to a function (e.g., f(hours)), it does not copy the array; rather, it passes the
address where the array begins in memory (effectively passing it by reference). The formal parameter
corresponding to the array can be declared in any of the following ways:

void f (double A[7]);
void f (double A[]);
void f (double* A);

The first suggests (but does not enforce) the fact that f() expects only 7-element arrays; the second
suggests the argument could be any length. The third corresponds to the actual implementation, i.e., a
pointer (address) is being passed. Regardless of how the formal parameter is declared, the elements of
the array can be accessed using either indexing (e.g., A[i]) or through pointer arithmetic (e.g., *(A+i);
see #4 below).

 2. C-strings

(a) Definition
C has no built-in string data type, and so when we speak of C-strings we mean arrays of characters. For
example, char str[100]; declares str to be a array that can hold strings with up to 100 character. Since
C-arrays are of fixed size, so are C-strings, which would be inconvenient for many purposes. For
example, we might want str to hold any string of length up to 100. Since the string stored in a character
array can be shorter than than the size of the char array, C and C++ mark the end of the actual string
with a special null character, written '\0'. To initialize the C-string msg to “Bye.” you could write:

char msg[5] = {'B', 'y', 'e', '.', '\0'};
This is rather ugly, so C++ allows the initialization to be abbreviated:

char msg[5] = "Bye.";
Notice that you have to reserve space for the null character even though you don’t have to write it.
Indeed, whenever you see a double-quoted string of characters in C++, it is really an abbreviation for a
null-terminated array of characters. An array of C-strings is really a two-dimensional char array, e.g.,

char month[12][10] = {"January", "February", "March", …,

 "September", "October", "November", "December"};
Notice that we need 10 columns to accommodate the null character at the end of "September" (the
longest month name). (We could have omitted “12” had we wanted.)

(b) <cstring> Library
The <cstring> library provides a number of useful functions for operating on null-terminated C-strings.
I’ll mention a few of them here; see a C++ reference for more information. The function strlen(S)
returns the length of string S. The function strcmp(S,T) compares two strings; if they are equal it

-2-

returns 0, if S is lexicographically greater than T it returns a positive number, and if S is
lexicographically less than T, it returns a negative number. The invocation strcpy(S,T) copies string T
into string S, but you must ensure that S is big enough to contain T, or it will overrun the storage after
S. (Note that S = T will not work on C-strings.) Finally, strcat(S,T) concatenates T onto the end of S
(analogous to S += T), but you must ensure that S is big enough to hold the concatenated strings.

 3. Formatted Input with scanf
In LCR ch. 7 (pp. 184–9) you learned about formatted output using the printf function in the <cstdio>
library. There is also a formatted input function, scanf, which I’ll describe briefly; see the online
documentation for more. The invocation scanf(format, &v1, …, &vn) attempts to read n values into
the variables v1, …, vn according to format, which is a C-string. The most common format specifiers
are %d to read a decimal integer, %lf to read a double, %c to read a character, and %s to read a C-
string. The invocation returns an int, which is the number of values scanf() successfully read. If it is
less than n, then the input did not fit the provided format (e.g., you tried to read an integer and there
were alphabetic characters). If scanf() returns the special value EOF (often equal to -1), then an eof
was encountered. Here is a simple example:

int data;
if (scanf("%d", &data) != 1)
 { cout << "Bad input!\n; exit(1) }

If you don’t care about errors, then you can use scanf() as a statement (see #7 below), e.g.,

double rate;
scanf("%lf", &rate);

 4. Pointer Arithmetic
C++ permits a limited amount of arithmetic on pointers, but more than enough to get you into trouble!
To get the idea, look at the following code:

double hours[7];
double* pd;
pd = hours;

The pointer pd has been declared to be a pointer to a double variable, and the assignment pd = hours
causes it to point to the first element of hours, that is, it contains the address of hours[0]. The
expression pd+1 is also a pointer, namely to the next value in memory, which in this case will be
hours[1]. To see why, suppose that hours begins at address 708644; after the assignment, that value
will be in pd. Further suppose, as is often the case, that doubles occupy 4 bytes. Then, since pd has
type double*, pd+1 will be the address 708648 (== 708644 + 4), which is the location of
hours[1].Thus you can fetch the i-th element of hours with either hours[i] or *(pd+i). Also, if pd
points to hours[0], then pd++ will advance it to hours[1], and in this way you can increment your way
through an array (which on many computers is very very slightly faster than using indexing). Similarly,
you can do pd-1 and pd--, which also illustrates a problem. If pd points to hours[0], then pd-1 points
to hours[-1], which does not make sense, since it is not in the array hours at all! It is the address

-3-

708640, which might not even contain a double number; it could be an int, four characters, or
anything else, but your program will treat it like a double and get meaningless results. In other words,
with pointer arithmetic you can point to just about any location in your memory area, but that doesn’t
mean you will get meaningful results. This can create hard-to-diagnose program bugs.

You have seen that you can either add an integer to a pointer or subtract an integer from a pointer to get
another pointer of the same type. You can also subtract two pointers of the same base type, which gives
the integer number of base-type values between the two pointers. This makes sense if both pointers are
pointing into the same array, but doesn’t make much sense in most other cases. You can compare
pointers for equality and inequality (==, !=), which is useful. You can also compare them with the order
operators (<, >), but that doesn’t make much sense unless they happen to be pointers into the same
array.

 5. Command-line Arguments
As you know, many programs that are invoked from the linux command line can take one or more
command-line arguments (e.g., vi myfile.cpp or cp file1 file2). Programs that you write can also take
command-line arguments, and it’s not difficult to use them. Replace your usual “int main ()” function
header with the following:

int main (int argc, char* argv[])
The first parameter, argc (argument count), is the number of command line arguments provided to your
program. The second parameter, argv (argument value), is a C-array of pointers to C-strings. This is
not as complicated as it sounds; argv[1] is a C-string containing the first argument, argv[2] is the
second, and so forth. Also, argv[0] is your program’s name (the “zeroth argument”). For example, if
your compiled program is in a file called myprog, and the user writes on the command line:

myprog infile.dat outfile.txt
then argc will be 3, argv[0] will be "myprog", argv[1] will be "infile.dat", and argv[2] will be
"outfile.txt". Note that argc is always at least 1. You can use the functions in <cstring> to manipulate
the arguments (see #2).

 6. Type Definition
C++ allows you to give a new name to a data type. For example,

typedef double real;
makes real a synonym for double. After this definition, you can use real in variable declarations,
function headers, etc. There are two main reasons for doing this. One is that it allows you to give a
more meaningful, application-oriented name (such as real) to a machine data type (such as double),
thus improving the readability of your program. Another reason is that it makes your programs more
maintainable, since if you later decide to represent real numbers by a different machine type, such as
float or long double, you only have to change it in one place.

-4-

 7. Expressions as Statements
We normally use expression to refer to code that returns a value (such as N*5 or 0<x) and statement to
refer to code that does something besides compute a value (e.g., N=10, return, if, for). However, in C+
+ any expression can be used as a statement; its value is simply thrown away. For example, if you write

N*5;
in your program, it will compute N*5, then throw the result away and go on to the next statement. This
feature is pretty useless unless the expression has some side-effect (such as changing memory or doing
I/O) in addition to computing a value. Then you might use the expression as a statement if you are
more interested in the side effect than in the value computed. One very common example is to use the
N++ and N-- for their side-effect (incrementing/decrementing N), while ignoring their value (discussed
in #8). You might also call a non-void function as a statement if you were interested in what the
function does but not the value it returns. An example is scanf() (see #3).

 8. Pre/Post Increment/Decrement
In addition to the operators N++ and N--, which you know, there are also operators ++N and --N,
which have the same effect on N (incrementing or decrementing it, respectively), but differ in the
values they return. The difference is that ++N increments N and its value is the value of N after it has
been incremented, whereas N++ increments N, but its value is the value of N before it was
incremented. You can tell which is which, because the ++ is before N if you increment before you fetch
N’s value, and it follows N if you fetch N’s value before you increment it. These are called pre-
increment and post-increment, respectively. Clear? The same applies to the pre- and post-decrement
operators --N and N--.
Of course, if you restrict yourself to using these as statements, rather than expressions (see #7), then
there is no difference between the pre- and post- forms. With regard to the use of N++ as an expression
the author of ThinkCS says (Sec. 7.10), “I am not going to tell you what the result is,” since he feels the
notation is too confusing. It’s a point worth considering; you don’t have to use a feature just because
it’s there. (However, you will, no doubt, see it in other people’s programs.)

 9. Nonzero Integers as Boolean true
As you remember, the bool value false is equivalent to the integer 0 and the bool value true is
equivalent to 1. (It’s as though there were a built-in declaration enum bool {false, true};.) In point of
fact, in conditional expressions (in if, while, for, etc.) any nonzero integer value is interpreted as true.
This encourages some “expert” programmers to write less-than-transparent code. For example, they
might write

for (N=100; N; N--) { … }
instead of the clearer

for (N=100; N>0; N--) { … }.
In the old days, the former was slightly more efficient, but with modern compilers there is no
difference. Nowadays, readability and transparency of purpose are much more important.

-5-

 10. General for-Loops
Recall that a for-loop, “for (initializer; condition; updater) { body }” is equivalent to

initializer
while (condition) {
 body
 updater

}
The initializer and updater can be multiple statements (or expressions, see #7 above) separated by
commas. Here is an example:

for (i=0, p=1; i <= n; i++, p *= x)
 cout << x << "^" << i << " = " << p << endl;

Any of the parts can be omitted if they are not needed. If the body would be empty, it can be replaced
by a semicolon:

for (n = 0, r = x; r /= 2; n++);
Can you figure out what this loop does? (Recall #9.) Although the C++ for-loop is very powerful and
flexible, it is also an invitation to write opaque, difficult-to-maintain code.

 11. Conditional Operator
You are familiar with the C++ conditional statement, “if(—) — else — ”, but C++ also has a
conditional expression, which is sometimes convenient. The expression “C ? T : F” has the value T if
conditional C is true, and the value F otherwise. For example, the conditional statement

if (A > B) max = A;
else max = B;

can be written more concisely as a conditional expression:

max = (A > B) ? A : B;

 12. malloc() and free()
These are functions for allocating and deallocating memory, which C++ has inherited from C. They are
ancestors of C++’s new and delete, which are safer to use. The invocation malloc(N) allocates a block
of N bytes from the heap and returns a pointer to it. You have to know how many bytes to allocate for
the type of data you intend to put in the block, but a built-in function sizeof() will help you figure it
out. Also, malloc() returns a void* pointer, so you will have to cast it to another kind of pointer to use
it in your program. For example, the following two declarations are effectively equivalent:

double* ptr = (double*) malloc (sizeof(double));
double* ptr = new double;

-6-

The effect of free(ptr) is the same as delete ptr. Both malloc() and free() (as well as the related
functions calloc() and realloc()) are in the <cstdlib> library. Avoid using new/delete and
malloc()/free() is the same program, because they are not guaranteed to play well together.

 13. Preprocessor Directives
C++ has many preprocessor directives, which are used to modify your source code before it is
processed by the compiler. You are familiar with the #include directive, which inserts a header file or
other C++ text into your program. Here I will mention a couple more that are useful.

(a) #define
The #define preprocessor directive is used to define a macro, which is an abbreviation for some
arbitrary program text. For example,

#define ERROR cout << "You have made error: " <<
makes ERROR an abbreviation for “cout << "You have made error: " <<”. The macro text begins
with the first non-blank character (“c” in this case) and continues up to the end of the line. Thereafter,
if you code

ERROR "Bad Input\n";
it will be just as though you wrote

cout << "You have made error: " << "Bad Input\n";
It is the custom in C++ programming to give macros names in all uppercase letters so that they can be
distinguished from other names. You are familiar with the standard macro NULL.

Consider the following macro definition:

#define UTILS
This defines UTILS to be the empty macro; that is, UTILS will be replaced by the empty string. This
might seem pointless, but it has an important use, which I’ll discuss now.

(b) #ifdef and #ifndef in Header Files
The C++ preprocessor can handle conditional statements similar to C++ if-statements. Here I will
mention only two variants. The directive #ifdef means “if defined” and the directive #ifndef means “if
not defined.” Suppose you have the following in your program:

#ifdef MYMAC
…

#endif
If the macro MYMAC is defined, then everything from the #ifdef to the #endif will be included in your
program, otherwise that text will be skipped as though it wasn’t there. #ifndef MYMAC is similar, but
opposite: if MYMAC is not defined, then the text up to #endif will be included, but if it’s defined, the
text will be skipped. This can be used to solve a common problem in program organization.

-7-

Suppose you have a header file utils.h for a bunch of utility functions that you find useful, so you often
#include it in your source code. You also have a header file graphics.h for some graphics classes that
you have implemented, which also use (and #include) utils.h. Now the problem is that if your main
program includes utils.h (because it needs some utilities) and also includes graphics.h (because it does
some graphics), then it will end up including utils.h twice, which will lead to duplicate declaration
errors. There are ways to avoid this, but they are unwieldy for large programs with many included files.
The simple solution is to wrap the utility declarations in utils.h with the following directives:

// file utils.h
#ifndef UTILS
#define UTILS
// declarations of the utilities
 …
#endif

The first time utils.h is included, UTILS will not be defined, so it will process the text up to the #endif.
This will #define UTILS and include all the utility declarations. If utils.h is included again, UTILS
will be defined already, and so #ifndef UTILS will skip the #define and everything else up to the
#endif (i.e., all the declarations in utils.h).

~~~~~
In conclusion, there is much more to the C++ features you learned about in class as well as to those 
described here, and there are many other C++ features that I have not mentioned at all. If you continue 
programming in C++ you can learn about them from other C++ books and from online reference 
material.

-8-


	 1. C-arrays
	 2. C-strings
	(a) Definition
	(b) <cstring> Library

	 3. Formatted Input with scanf
	 4. Pointer Arithmetic
	 5. Command-line Arguments
	 6. Type Definition
	 7. Expressions as Statements
	 8. Pre/Post Increment/Decrement
	 9. Nonzero Integers as Boolean true
	 10. General for-Loops
	 11. Conditional Operator
	 12. malloc() and free()
	 13. Preprocessor Directives
	(a) #define
	(b) #ifdef and #ifndef in Header Files


