How To Think Like A Computer Scientist

How To Think Like A Computer Scientist

Learning with C++

by Allen B. Downey

Table of Contents

Contributor List

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Chapter 10

Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:

Chapter 16:

The way of the program
Variables and types
Function

Conditionals and recursion
Fruitful functions
Iteration

Strings and things
Structures

More structures

: Vectors

Member functions
Vectors of objects
Objects of vectors
Classes and invariants
Object-oriented programming

Pointers and references

How To Think Like A Computer Scientist

Chapter 17: Templates

Chapter 18: Linked lists

Chapter 19: Stacks

Chapter 20: Queues and priority queues
Chapter 21: Trees

Chapter 22: Heap

Chapter 23: File input/output and matrices
Appendix: Gnu free documentation license

Index

Contributor List

v—:\ /l\ j /\— How to Think Like a Computer Scientist INDExf

Contributor List

This edition of How to Think Like a Computer Scientist: Learning with C++ is a revision of the
edition prepared by Paul Bui for the Open Books Project. Following is an edited version of Paul’s
preface (sadly, most of the URLs and email addresses, except for my own, seem to be non-functional
now). — Bruce MacLennan, University of Tennessee, Knoxville.

Greetings and salutations! As a busy student in my senior year at Yorktown High School (Arlington,
VA), I have undertaken the assignment of contributing to this open textbook. As a sophomore, I
enrolled in Computer Science, which focused on C++ programming, which I then followed up on by
enrolling in AP Computer Science during my junior year. I consider myself somewhat familiar with
C++ programming by now, which is why I am attempting to pass on my own knowledge of C++.

Allen B. Downey, professor of Computer Science at Wellesley College, originally wrote How to Think
Like a Computer Scientist in Java, as a textbook for his computer science class. Over the summer of
1998, Professor Downey converted the Java version of How to Think Like a Computer Scientist into
C++. Since then, the Java version has undergone several major changes, including the addition of
abstract data types such as stacks, queues, and heaps. The C++ version of the open textbook however,
did not receive these changes, that is... until now.

Of course, my contribution to this open textbook will not be perfect (as I am prone to human error)
and will not be the last. If you feel the urge to contribute, comment, or point out errors, please contact
Charles Harrison at speedy911@mindspring.com. If your contribution, comment, and/or error is
legitimate, then you shall be added to this “comprehensive” list of contributors:

Jonah Cohen
Jonah wrote the Perl scripts to convert the LaTeX source for this book into beautiful html. He
will also contribute to the book several chapters in cooperation with Paul Bui; his major work
will be a chapter concerning object oriented programming in C++. His web page is
http://jonah.ticalc.org and his email is jonah@ibiblio.org

Paul Bui
Paul Bui will be contributing to the book along with Jonah Cohen, various chapters concerning
pointers, references, and templates. Other chapters that involved several abstract data types
(stacks, queues, priority queues, and heaps), which have already been written for Java will be
converted by Paul to C++. His web page is http://www.paul.bui.as and his email is
paulbuil @hotmail.com

Charles Harrison
Charles Harrison is currently maintaining the online text. He corrects errors both technically
and grammaticaly. He also serves as the main for help and information about the C++ portion of
the Open Book Project. His email is speedy911@mindspring.com

Contributor List

Peter Bui
Peter Bui has contributed miscellaneous text corrections.

Donald Oellerich
Donald Oellerich has contributed miscellaneous text corrections.

Drew Stephens
Drew Stephens has helped on countless occasions to perfect the content and accuracy of the
online text.

Bruce MacLennan
Bruce MacLennan has produced this revised edition by updating it to Standard C++, correcting
some errors, and improving the readability of some chapters. His web page is
http://www.cs utk.edu/~mclennan and his email is maclennan@eecs.utk.edu.

How to Think Like a Computer Scientist: Learning with C++ is covered by the Gnu Free
Documentation License. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the appendix entitled “GNU Free Documentation License.”

Revised: 2009-08-03.

—
’

7€

How to Think Like a Computer Scientist !ND?

Chapter 1: The way of the program

r—: /I\ /:— How to Think Like a Computer Scientist INDEJL%

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. I like the way computer
scientists think because they combine some of the best features of mathematics, engineering, and
natural science. Like mathematicians, computer scientists use formal languages to denote ideas
(specifically computations). Like engineers, they design things, assembling components into systems
and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex
systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving. By that I mean the ability
to formulate problems, think creatively about solutions, and express a solution clearly and accurately.
As it turns out, the process of learning to program is an excellent opportunity to practice problem-
solving skills. That's why this chapter is called "The way of the program."

1.1 What is a programming language?

The programming language you will be learning is C++, which is a high-level language; other
high-level languages you might have heard of are Java, C, Pascal and FORTRAN.

As you might infer from the name "high-level language," there are also low-level languages,
sometimes referred to as machine language or assembly language. Loosely-speaking, computers can
only execute programs written in low-level languages. Thus, programs written in a high-level
language have to be translated before they can run. This translation takes some time, which is a small
disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in a high-level language; by
"easier" I mean that the program takes less time to write, it's shorter and easier to read, and it's more
likely to be correct. Secondly, high-level languages are portable, meaning that they can run on
different kinds of computers with few or no modifications. Low-level programs can only run on one
kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level
languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling. An interpreter is a program
that reads a high-level program and does what it says. In effect, it translates the program line-by-line,

Chapter 1: The way of the program

alternately reading lines and carrying out commands.

source e p)
code :-:i interpreter } - (-}
The interpreter ... and the result
reads the appearson
source code... the screen.

A compiler is a program that reads a high-level program and translates it all at once, before executing
any of the commands. Often you compile the program as a separate step, and then execute the
compiled code later. In this case, the high-level program is called the source code, and the translated
program is called the object code or the executable.

As an example, suppose you write a program in C++. You might use a text editor to write the program
(a text editor is a simple word processor). When the program is finished, you might save it in a file
named program.cpp, where "program" is an arbitrary name you make up, and the suffix .cpp is a
convention that indicates that the file contains C++ source code.

Then, depending on what your programming environment is like, you might leave the text editor and
run the compiler. The compiler would read your source code, translate it, and create a new file named
program. o to contain the object code, or program.exe to contain the executable.

source o object P

code = compiler)= code ={ axecutor J |
The compiler ..and generates You exacute the ...and the result
reads the object code. program (one way appearson
source code... oranother)... the screen.

The next step is to run the program, which requires some kind of executor. The role of the executor is
to load the program (copy it from disk into memory) and make the computer start executing the
program.

Although this process may seem complicated, the good news is that in most programming
environments (sometimes called development environments), these steps are automated for you.
Usually you will only have to write a program and type a single command to compile and run it. On
the other hand, it is useful to know what the steps are that are happening in the background, so that if
something goes wrong you can figure out what it is.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The computation
might be something mathematical, like solving a system of equations or finding the roots of a

Chapter 1: The way of the program

polynomial, but it can also be a symbolic computation, like searching and replacing text in a
document or (strangely enough) compiling a program.

The instructions (or commands, or statements) look different in different programming languages, but
there are a few basic functions that appear in just about every language:

input
Get data from the keyboard, or a file, or some other device.
output
Display data on the screen or send data to a file or other device.
math
Perform basic mathematical operations like addition and multiplication.
testing
Check for certain conditions and execute the appropriate sequence of statements.
repetition
Perform some action repeatedly, usually with some variation.

Believe it or not, that's pretty much all there is to it. Every program you've ever used, no matter how
complicated, is made up of functions that look more or less like these. Thus, one way to describe
programming is the process of breaking a large, complex task up into smaller and smaller subtasks
until eventually the subtasks are simple enough to be performed with one of these simple functions.

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often leads to errors. For
whimsical reasons, programming errors are called bugs and the process of tracking them down and
correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it is useful to distinguish
between them in order to track them down more quickly.

Compile-time errors

The compiler can only translate a program if the program is syntactically correct; otherwise, the
compilation fails and you will not be able to run your program. Syntax refers to the structure of your
program and the rules about that structure.

For example, in English, a sentence must begin with a capital letter and end with a period. this
sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we can read the
poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in your program, the
compiler will print an error message and quit, and you will not be able to run your program.

Chapter 1: The way of the program

To make matters worse, there are more syntax rules in C++ than there are in English, and the error
messages you get from the compiler are often not very helpful. During the first few weeks of your
programming career, you will probably spend a lot of time tracking down syntax errors. As you gain
experience, though, you will make fewer errors and find them faster.

Run-time errors

The second type of error is a run-time error, so-called because the error does not appear until you run
the program.

For the simple sorts of programs we will be writing for the next few weeks, run-time errors are rare,
so it might be a little while before you encounter one.

Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical error in your program, it
will compile and run successfully, in the sense that the computer will not generate any error messages,
but it will not do the right thing. It will do something else. Specifically, it will do what you told it to
do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of
the program (its semantics) is wrong. Identifying logical errors can be tricky, since it requires you to
work backwards by looking at the output of the program and trying to figure out what it is doing.

Experimental debugging

One of the most important skills you should acquire from working with this book is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich, challenging, and
interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues and you have to infer
the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what is going wrong, you
modify your program and try again. If your hypothesis was correct, then you can predict the result of
the modification, and you take a step closer to a working program. If your hypothesis was wrong, you
have to come up with a new one. As Sherlock Holmes pointed out, "When you have eliminated the
impossible, whatever remains, however improbable, must be the truth." (from A. Conan Doyle's The
Sign of Four).

For some people, programming and debugging are the same thing. That is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you should
always start with a working program that does something, and make small modifications, debugging
them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code, but it started out

Chapter 1: The way of the program

as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to Larry
Greenfield, "One of Linus's earlier projects was a program that would switch between printing AAAA
and BBBB. This later evolved to Linux" (from The Linux Users' Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other programming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish, and French. They were
not designed by people (although people try to impose some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific applications. For example,
the notation that mathematicians use is a formal language that is particularly good at denoting
relationships among numbers and symbols. Chemists use a formal language to represent the chemical
structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express
computations.

As I mentioned before, formal languages tend to have strict rules about syntax. For example, 3+3=6 is
a syntactically correct mathematical statement, but 3=+6$ is not. Also, H,0 is a syntactically correct

chemical name, but 5,22 is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic elements of
the language, like words and numbers and chemical elements. One of the problems with 3=+6$ is that
$ is not a legal token in mathematics (at least as far as I know). Similarly, ,zz is not legal because

there is no element with the abbreviation zz.

The second type of syntax error pertains to the structure of a statement; that is, the way the tokens are
arranged. The statement 3=+6$ is structurally illegal, because you can't have a plus sign immediately
after an equals sign. Similarly, molecular formulas have to have subscripts after the element name, not
before.

When you read a sentence in English or a statement in a formal language, you have to figure out what
the structure of the sentence is (although in a natural language you do this unconsciously). This
process is called parsing.

For example, when you hear the sentence, "The other shoe fell," you understand that "the other shoe"
is the subject and "fell" is the verb. Once you have parsed a sentence, you can figure out what it
means, that is, the semantics of the sentence. Assuming that you know what a shoe is, and what it
means to fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common —tokens, structure, syntax and
semantics —there are many differences.

Chapter 1: The way of the program

ambiguity
Natural languages are full of ambiguity, which people deal with by using contextual clues and
other information. Formal languages are designed to be nearly or completely unambiguous,
which means that any statement has exactly one meaning, regardless of context.

redundancy
In order to make up for ambiguity and reduce misunderstandings, natural languages employ lots
of redundancy. As a result, they are often verbose. Formal languages are less redundant and
more concise.

literalness
Natural languages are full of idiom and metaphor. If I say, "The other shoe fell," there is
probably no shoe and nothing falling. Formal languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a hard time adjusting to
formal languages. In some ways the difference between formal and natural language is like the
difference between poetry and prose, but more so:

Poetry
Words are used for their sounds as well as for their meaning, and the whole poem together
creates an effect or emotional response. Ambiguity is not only common but often deliberate.
Prose
The literal meaning of words is more important and the structure contributes more meaning.
Prose is more amenable to analysis than poetry, but still often ambiguous.
Programs
The meaning of a computer program is unambiguous and literal, and can be understood entirely
by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First, remember that
formal languages are much more dense than natural languages, so it takes longer to read them. Also,
the structure is very important, so it is usually not a good idea to read from top to bottom, left to right.
Instead, learn to parse the program in your head, identifying the tokens and interpreting the structure.
Finally, remember that the details matter. Little things like spelling errors and bad punctuation, which
you can get away with in natural languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called "Hello, World." because all it
does is print the words "Hello, World."In C++, this program looks like this:

#include <iostream>
using namespace std;

// main: generate some simple output

int main ()

Chapter 1: The way of the program

cout << "Hello, world." << endl;
return 0;

}

Some people judge the quality of a programming language by the simplicity of the "Hello, World."
program. By this standard, C++ does reasonably well. Even so, this simple program contains several
features that are hard to explain to beginning programmers. For now, we will ignore some of them,
like the first two lines.

The third line begins with //, which indicates that it is a comment. A comment is a bit of English text
that you can put in the middle of a program, usually to explain what the program does. When the
compiler sees a //, it ignores everything from there until the end of the line.

In the fourth line, you can ignore the word int for now, but notice the word main. main is a special
name that indicates the place in the program where execution begins. When the program runs, it starts
by executing the first statement in main and it continues, in order, until it gets to the last statement,
and then it quits.

There is no limit to the number of statements that can be in main, but the example contains only two.
The first is a basic output statement, meaning that it outputs or displays a message on the screen.

cout is a special object provided by the system to allow you to send output to the screen. The symbol
<< is an operator that you apply to cout and a string, and that causes the string to be displayed.

endl is a special symbol that represents the end of a line. When you send an endl to cout, it causes
the cursor to move to the next line of the display. The next time you output something, the new text
appears on the next line.

Like all statements, the output statement ends with a semi-colon (;).

The second statement return 0; returns control from your program with a code (0) indicating that
your program has executed successfully.

There are a few other things you should notice about the syntax of this program. First, C++ uses
squiggly-braces ({ and }) to group things together. In this case, the output statement is enclosed in
squiggly-braces, indicating that it is inside the definition of main. Also, notice that the statement is
indented, which helps to show visually which lines are inside the definition.

At this point it would be a good idea to sit down in front of a computer and compile and run this
program. The details of how to do that depend on your programming environment, but from now on
in this book I will assume that you know how to do it.

As I mentioned, the C++ compiler is a real stickler for syntax. If you make any errors when you type
in the program, chances are that it will not compile successfully. For example, if you misspell
iostream, you might get an error message like the following:

Chapter 1: The way of the program

hello.cpp:1l: oistream: No such file or directory

There is a lot of information on this line, but it is presented in a dense format that is not easy to
interpret. A more friendly compiler might say something like:

"On line 1 of the source code file named hello.cpp, you tried to include a header file
named oistream. I didn't find anything with that name, but I did find something named
iostream. Is that what you meant, by any chance?"

Unfortunately, few compilers are so accomodating. The compiler is not really very smart, and in most
cases the error message you get will be only a hint about what is wrong. It will take some time to gain
facility at interpreting compiler messages.

Nevertheless, the compiler can be a useful tool for learning the syntax rules of a language. Starting
with a working program (like hello.cpp), modify it in various ways and see what happens. If you get
an error message, try to remember what the message says and what caused it, so if you see it again in
the future you will know what it means.

1.6 Glossary

problem-solving
The process of formulating a problem, finding a solution, and expressing the solution.
high-level language
A programming language like C++ that is designed to be easy for humans to read and write.
low-level language
A programming language that is designed to be easy for a computer to execute. Also called
"machine language" or "assembly language."
portability
A property of a program that can run on more than one kind of computer.
formal language
Any of the languages people have designed for specific purposes, like representing
mathematical ideas or computer programs. All programming languages are formal languages.
natural language
Any of the languages people speak that have evolved naturally.
interpret
To execute a program in a high-level language by translating it one line at a time.
compile
To translate a program in a high-level language into a low-level language, all at once, in
preparation for later execution.
source code
A program in a high-level language, before being compiled.
object code
The output of the compiler, after translating the program.
executable

Chapter 1: The way of the program

Another name for object code that is ready to be executed.
algorithm
A general process for solving a category of problems.
bug
An error in a program.
syntax
The structure of a program.
semantics
The meaning of a program.
parse
To examine a program and analyze the syntactic structure.
syntax error
An error in a program that makes it impossible to parse (and therefore impossible to compile).
run-time error
An error in a program that makes it fail at run-time.
logical error
An error in a program that makes it do something other than what the programmer intended.
debugging
The process of finding and removing any of the three kinds of errors.

Revised 2009-08-24.

=N
’

T €

How to Think Like a Computer Scientist !ND?

Chapter 2: Variables and types

—
’

7€

How to Think Like a Computer Scientist mDE)ci

Chapter 2

Variables and types

2.1 More output

As I mentioned in the last chapter, you can put as many statements as you want in main. For example,
to output more than one line:

#include <iostream>
using namespace std;

// main: generate some simple output

int main ()

{

cout << "Hello, world." << endl; // output one line

cout << "How are you?" << endl; // output another

return 0; // signal successful execution
}

As you can see, it is legal to put comments at the end of a line, as well as on a line by themselves.

The phrases that appear in quotation marks are called strings, because they are made up of a sequence
(string) of letters. Actually, strings can contain any combination of letters, numbers, punctuation
marks, and other special characters.

Often it is useful to display the output from multiple output statements all on one line. You can do this
by leaving out the first end1:

int main ()

{
cout << "Goodbye, ";
cout << "cruel world!" << endl;
return 0;

}

In this case the output appears on a single line as Goodbye, cruel world!. Notice that there is a
space between the word "Goodbye," and the second quotation mark. This space appears in the output,
so it affects the behavior of the program.

Chapter 2: Variables and types

Spaces that appear outside of quotation marks generally do not affect the behavior of the program. For
example, I could have written:

int main ()

{

cout<<"Goodbye, ";
cout<<'"cruel world! "<<endl;

return 0;

}

This program would compile and run just as well as the original. The breaks at the ends of lines
(newlines) do not affect the program's behavior either, so I could have written:

int main(){cout<<"Goodbye, ";cout<<"cruel world!"<<endl;return 0;}

That would work, too, although you have probably noticed that the program is getting harder and
harder to read. Newlines and spaces are useful for organizing your program visually, making it easier
to read the program and locate syntax errors.

2.2 Values

A value is one of the fundamental things—like a letter or a number— that a program manipulates. The
only values we have manipulated so far are the string values we have been outputting, like "Hello,
world.". You (and the compiler) can identify string values because they are enclosed in quotation
marks.

There are other kinds of values, including integers and characters. An integer is a whole number like 1
or 17. You can output integer values the same way you output strings:

cout << 17 << endl;

A character value is a single letter or digit or punctuation mark enclosed in single quotes, like 'a' or
'5"'. You can output character values the same way:

cout << '}' << endl;
This example outputs a single close squiggly-brace on a line by itself.

It is easy to confuse different types of values, like "5", '5' and 5, but if you pay attention to the
punctuation, it should be clear that the first is a string, the second is a character and the third is an
integer. The reason this distinction is important should become clear soon.

2.3 Variables

One of the most powerful features of a programming language is the ability to manipulate variables.

Chapter 2: Variables and types

A variable is a named location that stores a value.

Just as there are different types of values (integer, character, etc.), there are different types of
variables. When you create a new variable, you have to declare what type it is. For example, the
character type in C++ is called char. The following statement creates a new variable named fred that
has type char.

char fred;
This kind of statement is called a declaration.

The type of a variable determines what kind of values it can store. A char variable can contain
characters, and it should come as no surprise that int variables can store integers.

There are several types in C++ that can store string values, but we are going to skip that for now (see
Chapter 7).

To create an integer variable, the syntax is
int bob;

where bob is the arbitrary name you made up for the variable. In general, you will want to make up
variable names that indicate what you plan to do with the variable. For example, if you saw these
variable declarations:

char firstLetter;
char lastLetter;
int hour, minute;

you could probably make a good guess at what values would be stored in them. This example also
demonstrates the syntax for declaring multiple variables with the same type: hour and second are
both integers (int type).

2.4 Assignment

Now that we have created some variables, we would like to store values in them. We do that with an
assignment statement.

firstLetter = 'a’'; // give firstLetter the value 'a'
hour = 11; // assign the value 11 to hour
minute = 59; // set minute to 59

This example shows three assignments, and the comments show three different ways people
sometimes talk about assignment statements. The vocabulary can be confusing here, but the idea is
straightforward:

e When you declare a variable, you create a named storage location.
o When you make an assignment to a variable, you give it a value.

Chapter 2: Variables and types

A common way to represent variables on paper is to draw a box with the name of the variable on the
outside and the value of the variable on the inside. This kind of figure is called a state diagram
because is shows what state each of the variables is in (you can think of it as the variable's "state of
mind"). This diagram shows the effect of the three assignment statements:

firstLette hour minute

(a1 59

I sometimes use different shapes to indicate different variable types. These shapes should help remind
you that one of the rules in C++ is that a variable has to have the same type as the value you assign it.
For example, you cannot store a string in an int variable. The following statement generates a
compiler error.

int hour;
hour = "Hello."; // WRONG !!

This rule is sometimes a source of confusion, because there are many ways that you can convert
values from one type to another, and C++ sometimes converts things automatically. But for now you
should remember that as a general rule variables and values have the same type, and we'll talk about
special cases later.

Another source of confusion is that some strings look like integers, but they are not. For example, the
string "123", which is made up of the characters 1, 2 and 3, is not the same thing as the number 123.
This assignment is illegal:

minute = "59"; // WRONG!

2.5 Outputting variables

You can output the value of a variable using the same commands we used to output simple values.

int hour, minute;
char colon;

hour = 11;
minute = 59;

colon = ':';

cout << "The current time is ";
cout << hour;

cout << colon;

cout << minute;

cout << endl;

This program creates two integer variables named hour and minute, and a character variable named
colon. It assigns appropriate values to each of the variables and then uses a series of output

Chapter 2: Variables and types

statements to generate the following:
The current time is 11:59

When we talk about "outputting a variable," we mean outputting the value of the variable. To output
the name of a variable, you have to put it in quotes. For example: cout << "hour";

As we have seen before, you can include more than one value in a single output statement, which can
make the previous program more concise:

int hour, minute;
char colon;

hour = 11;
minute = 59;

colon = ':';
cout << "The current time is " << hour << colon << minute << endl;

On one line, this program outputs a string, two integers, a character, and the special value endl. Very
impressive!

2.6 Keywords

A few sections ago, I said that you can make up any name you want for your variables, but that's not
quite true. There are certain words that are reserved in C++ because they are used by the compiler to
parse the structure of your program, and if you use them as variable names, it will get confused. These
words, called keywords, include int, char, return and many more.

The complete list of keywords is included in the C++ Standard, which is the official language
definition adopted by the the International Organization for Standardization (ISO) on September 1,
1998. You can download a copy electronically from

http://www.ansi.org/

Rather than memorize the list, I would suggest that you take advantage of a feature provided in many
development environments: code highlighting. As you type, different parts of your program should
appear in different colors. For example, keywords might be blue, strings red, and other code black. If
you type a variable name and it turns blue, watch out! You might get some strange behavior from the
compiler.

2.7 Operators

Operators are special symbols that are used to represent simple computations like addition and
multiplication. Most of the operators in C++ do exactly what you would expect them to do, because

Chapter 2: Variables and types

they are common mathematical symbols. For example, the operator for adding two integers is +.
The following are all legal C++ expressions whose meaning is more or less obvious:
1+1 hour-1 hour*60 + minute minute/60

Expressions can contain both variable names and integer values. In each case the name of the variable
is replaced with its value before the computation is performed.

Addition, subtraction and multiplication all do what you expect, but you might be surprised by
division. For example, the following program:

int hour, minute;

hour = 11;

minute = 59;

cout << "Number of minutes since midnight: ";
cout << hour*60 + minute << endl;

cout << "Fraction of the hour that has passed: ";

cout << minute/60 << endl;
would generate the following output:

Number of minutes since midnight: 719
Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the variable minute is 59,
and 59 divided by 60 is 0.98333, not 0. The reason for the discrepancy is that C++ is performing
integer division.

When both of the operands are integers (operands are the things operators operate on), the result must
also be an integer, and by definition integer division always rounds down, even in cases like this
where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a fraction:

"

cout << "Percentage of the hour that has passed: ";
cout << minute*100/60 << endl;

The result is:
Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately correct. In order to get
an even more accurate answer, we could use a different type of variable, called floating-point, that is
capable of storing fractional values. We'll get to that in the next chapter.

2.8 Order of operations

Chapter 2: Variables and types

When more than one operator appears in an expression the order of evaluation depends on the rules of
precedence. A complete explanation of precedence can get complicated, but just to get you started:

e Multiplication and division happen before addition and subtraction. So 2*3-1 yields 5, not 4,
and 2/3-1 yields -1, not 1 (remember that in integer division 2/3 is 0).

o If the operators have the same precedence they are evaluated from left to right. So in the
expression minute*100/60, the multiplication happens first, yielding 5900/60, which in turn
yields 98. If the operations had gone from right to left, the result would be 59*1 which is 59,
which is wrong.

e Any time you want to override the rules of precedence (or you are not sure what they are) you
can use parentheses. Expressions in parentheses are evaluated first,so 2 * (3-1) is 4. You can
also use parentheses to make an expression easier to read, as in (minute * 100) / 60,even
though it doesn't change the result.

2.9 Operators for characters

Interestingly, the same mathematical operations that work on integers also work on characters. For
example,

char letter;
letter = 'a' + 1;
cout << letter << endl;

outputs the letter b. Although it is syntactically legal to multiply characters, it is almost never useful to
do it.

Earlier I said that you can only assign integer values to integer variables and character values to
character variables, but that is not completely true. In some cases, C++ converts automatically
between types. For example, the following is legal.

int number;

number = 'a';
cout << number << endl;

The result is 97, which is the number that is used internally by C++ to represent the character 'a".
However, it is generally a good idea to treat characters as characters, and integers as integers, and only
convert from one to the other if there is a good reason.

Automatic type conversion is an example of a common problem in designing a programming
language, which is that there is a conflict between formalism, which is the requirement that formal
languages should have simple rules with few exceptions, and convenience, which is the requirement
that programming languages be easy to use in practice.

More often than not, convenience wins, which is usually good for expert programmers, who are
spared from rigorous but unwieldy formalism, but bad for beginning programmers, who are often
baffled by the complexity of the rules and the number of exceptions. In this book I have tried to
simplify things by emphasizing the rules and omitting many of the exceptions.

Chapter 2: Variables and types

2.10 Composition

So far we have looked at the elements of a programming language — variables, expressions, and
statements —in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small building
blocks and compose them. For example, we know how to multiply integers and we know how to
output values; it turns out we can do both at the same time:

cout << 17 * 3;

Actually, I shouldn't say "at the same time," since in reality the multiplication has to happen before the
output, but the point is that any expression, involving numbers, characters, and variables, can be used
inside an output statement. We've already seen one example:

cout << hour*60 + minute << endl;
You can also put arbitrary expressions on the right-hand side of an assignment statement:

int percentage;
percentage = (minute * 100) / 60;

This ability may not seem so impressive now, but we will see other examples where composition
makes it possible to express complex computations neatly and concisely.

WARNING: There are limits on where you can use certain expressions; most notably, the left-hand
side of an assignment statement has to be a variable name, not an expression. That's because the left
side indicates the storage location where the result will go. Expressions do not represent storage
locations, only values. So the following is illegal: minute+1 = hour;.

2.11 Glossary

variable
A named storage location for values. All variables have a type, which determines which values
it can store.

value
A letter, or number, or other thing that can be stored in a variable.

type
A set of values. The types we have seen are integers (int in C++) and characters (char in
C++).

keyword
A reserved word that is used by the compiler to parse programs. Examples we have seen include
int, void and endl.

statement
A line of code that represents a command or action. So far, the statements we have seen are

Chapter 2: Variables and types

declarations, assignments, and output statements.
declaration
A statement that creates a new variable and determines its type.
assignment
A statement that assigns a value to a variable.
expression
A combination of variables, operators and values that represents a single result value.
Expressions also have types, as determined by their operators and operands.
operator
A special symbol that represents a simple computation like addition or multiplication.
operand
One of the values on which an operator operates.
precedence
The order in which operations are evaluated.
composition
The ability to combine simple expressions and statements into compound statements and
expressions in order to represent complex computations concisely.

Revised 2009-08-24.

—
’

7€

How to Think Like a Computer Scientist mnz

Chapter 3: Function

v—:\ (I\ /— How to Think Like a Computer Scientist INDEJL%

Chapter 3

Function

3.1 Floating-point

In the last chapter we had some problems dealing with numbers that were not integers. We worked
around the problem by measuring percentages instead of fractions, but a more general solution is to
use floating-point numbers, which can represent fractions as well as integers. In C++, there are two
floating-point types, called £1oat and double. In this book we will use doubles exclusively.

You can create floating-point variables and assign values to them using the same syntax we used for
the other types. For example:

double pi;
pi = 3.14159;

It is also legal to declare a variable and assign a value to it at the same time:

int x = 1;

string empty = ;
double pi = 3.14159;

In fact, this syntax is quite common. A combined declaration and assignment is sometimes called an
initialization.

Although floating-point numbers are useful, they are often a source of confusion because there seems
to be an overlap between integers and floating-point numbers. For example, if you have the value 1, is
it an integer, a floating-point number, or both?

Strictly speaking, C++ distinguishes the integer value 1 from the floating-point value 1.0, even
though they seem to be the same number. They belong to different types, and strictly speaking, you
are not allowed to make assignments between types. For example, the following is illegal

int x = 1.1;

because the variable on the left is an int and the value on the right is a double. But it is easy to forget
this rule, especially because there are places where C++ automatically converts from one type to
another. For example,

double y = 1;

Chapter 3: Function

should technically not be legal, but C++ allows it by converting the int to a double automatically.
This leniency is convenient, but it can cause problems; for example:

double y = 1 / 3;

You might expect the variable y to be given the value 0.333333, which is a legal floating-point value,
but in fact it will get the value 0. 0. The reason is that the expression on the right appears to be the
ratio of two integers, so C++ does infeger division, which yields the integer value 0. Converted to
floating-point, the result is 0. 0.

One way to solve this problem (once you figure out what it is) is to make the right-hand side a
floating-point expression:

double y = 1.0 / 3.0;
This sets y to 0.333333, as expected.

All the operations we have seen—addition, subtraction, multiplication, and division —work on
floating-point values, although you might be interested to know that the underlying mechanism is
completely different. In fact, most processors have special hardware just for performing floating-point
operations.

3.2 Converting from double to int

As I mentioned, C++ converts ints to doubles automatically if necessary, because no information is
lost in the translation. On the other hand, going from a double to an int requires rounding off. C++
doesn't perform this operation automatically, in order to make sure that you, as the programmer, are
aware of the loss of the fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a typecast. Typecasting is so
called because it allows you to take a value that belongs to one type and "cast" it into another type (in
the sense of molding or reforming, not throwing).

The syntax for typecasting is like the syntax for a function call. For example:

double pi = 3.14159;
int x = int (pi);

The int function returns an integer, so x gets the value 3. Converting to an integer always rounds
down, even if the fraction part is 0.99999999.

For every type in C++, there is a corresponding function that typecasts its argument to the appropriate
type.

3.3 Math functions

Chapter 3: Function

In mathematics, you have probably seen functions like sin and 1og, and you have learned to evaluate
expressions like sin(pi/2) and log(1/x). First, you evaluate the expression in parentheses, which is
called the argument of the function. For example, pi/2 is approximately 1.571, and 1/x is 0.1 (if x
happens to be 10).

Then you can evaluate the function itself, either by looking it up in a table or by performing various
computations. The sin of 1.571 is 1, and the 1og of 0.1 is —1 (assuming that 1og indicates the
logarithm base 10, but see below).

This process can be applied repeatedly to evaluate more complicated expressions like
log(1l/sin(pi/2)). First we evaluate the argument of the innermost function, then evaluate the
function, and so on.

C++ provides a set of built-in functions that includes most of the mathematical operations you can
think of. The math functions are invoked using a syntax that is similar to mathematical notation:

double logval = log (17.0);
double angle = 1.5;
double height = sin (angle);

The first example sets Logval to the logarithm of 17, base e. There is also a function called 1og10
that takes logarithms base 10.

The second example finds the sine of the value of the variable angle. C++ assumes that the values
you use with sin and the other trigonometric functions (cos, tan) are in radians. To convert from
degrees to radians, you can divide by 360 and multiply by 2.

If you don't happen to know pi to 15 digits, you can calculate it using the acos function. The
arccosine (or inverse cosine) of —1 is i, because the cosine of mis —1.

double pi = acos(-1.0);
double degrees = 90;
double angle = degrees * 2 * pi / 360.0;

Before you can use any of the math functions, you have to include the cmath header file. Header files
contain information the compiler needs about functions that are defined outside your program. For
example, in the "Hello, world!" program we included a header file named iostream using an include
statement:

#include <iostream>

iostream contains information about input and output (I/O) streams, including the object named
cout.

Similarly, the math header file contains information about the math functions. You can include it at the
beginning of your program along with iostream:

#include <cmath>

To make all of the definitions in these header files "visible" in your program, you need one additional

Chapter 3: Function

statement (whose exact meaning is explained later):

using namespace std;

3.4 Composition

Just as with mathematical functions, C++ functions can be composed, meaning that you use one
expression as part of another. For example, you can use any expression as an argument to a function:

double x = cos (angle + pi/2);

This statement takes the value of pi, divides it by two and adds the result to the value of angle. The
sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to another:
double x = exp (log (10.0));

This statement finds the log base e of 10 and then raises e to that power. The result gets assigned to x;
I hope you know what it is.

3.5 Adding new functions

So far we have only been using the functions that are built into C++, but it is also possible to add new
functions. Actually, we have already seen one function definition: main. The function named main is
special because it indicates where the execution of the program begins, but the syntax for main is the
same as for any other function definition:

int NAME (LIST OF PARAMETERS) {
STATEMENTS

}

You can make up any name you want for your function, except that you can't call it main or any other
C++ keyword. The list of parameters specifies what information, if any, you have to provide in order
to use (or call) the new function.

main doesn't take any parameters, as indicated by the empty parentheses () in it's definition. The first
couple of functions we are going to write also have no parameters, so the syntax looks like this:

void newLine () {
cout << endl;

}

The keyword void indicates that (unlike such mathematical functions as 1log and arccos) this
function does not return any value. It is named newLine and contains only a single statement, which
outputs a newline character, represented by the special value end1l.

Chapter 3: Function

In main we can call this new function using syntax that is similar to the way we call the built-in C++
commands:

int main ()

{
cout << "First Line." << endl;
newLine ();
cout << "Second Line." << endl;
return 0;

}

The output of this program is

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space between the lines? We
could call the same function repeatedly:

int main ()
{
cout << "First Line." << endl;
newLine ();
newLine ();
newLine ();
cout << "Second Line." << endl;

return 0;

}
Or we could write a new function, named threeLine, that prints three new lines:

void threeLine ()

{

newLine (); newLine (); newLine ();

int main ()

{
cout << "First Line." << endl;
threeLine ();
cout << "Second Line." << endl;

return 0;

}

You should notice a few things about this program:

e You can call the same procedure repeatedly. In fact, it is quite common and useful to do so.
¢ You can have one function call another function. In this case, main calls threeLine and

Chapter 3: Function

threeLine calls newLine. Again, this is common and useful.

e In threeLine I wrote three statements all on the same line, which is syntactically legal
(remember that spaces and new lines usually don't change the meaning of a program). On the
other hand, it is usually a better idea to put each statement on a line by itself, to make your
program easy to read. I sometimes break that rule in this book to save space.

So far, it may not be clear why it is worth the trouble to create all these new functions. Actually, there
are a lot of reasons, but this example only demonstrates two:

1. Creating a new function gives you an opportunity to give a name to a group of statements.
Functions can simplify a program by hiding a complex computation behind a single command,
and by using English words in place of arcane code. Which is clearer, newLine or cout <<
endl?

2. Creating a new function can make a program smaller by eliminating repetitive code. For
example, a short way to print nine consecutive new lines is to call threeLine three times. How
would you print 27 new lines?

3.6 Definitions and uses

Pulling together all the code fragments from the previous section, the whole program looks like this:

#include <iostream>
using namespace std;

void newLine ()

{

cout << endl;

void threeLine ()

{

newLine (); newLine (); newLine ();

int main ()

{
cout << "First Line." << endl;
threeLine ();
cout << "Second Line." << endl;
return 0;

}

This program contains three function definitions: newLine, threeLine, and main.

Inside the definition of main, there is a statement that uses or calls threeLine. Similarly, threeLine
calls newLine three times. Notice that the definition of each function appears above the place where it
is used.

Chapter 3: Function

This is necessary in C++; the definition of a function must appear before (above) the first use of the
function. You should try compiling this program with the functions in a different order and see what
€rror messages you get.

3.7 Programs with multiple functions

When you look at a program that contains several functions, it is tempting to read it from top to
bottom, but that is likely to be confusing, because that is not the order of execution of the program.

Execution always begins at the first statement of main, regardless of where it is in the program (often
it is at the bottom). Statements are executed one at a time, in order, until you reach a function call.
Function calls are like a detour in the flow of execution. Instead of going to the next statement, you go
to the first line of the called function, execute all the statements there, and then come back and pick up
again where you left off.

That sounds simple enough, except that you have to remember that one function can call another.
Thus, while we are in the middle of main, we might have to go off and execute the statements in
threeLine. But while we are executing threeLine, we get interrupted three times to go off and
execute newLine.

Fortunately, C++ is adept at keeping track of where it is, so each time newLine completes, the
program picks up where it left off in threeLine, and eventually gets back to main so the program can
terminate.

What's the moral of this sordid tale? When you read a program, don't read from top to bottom.
Instead, follow the flow of execution.

3.8 Parameters and arguments

Some of the built-in functions we have used have parameters, which are values that you provide to
let the function do its job. For example, if you want to find the sine of a number, you have to indicate
what the number is. Thus, sin takes a double value as a parameter.

Some functions take more than one parameter, like pow, which takes two doubles, the base and the
exponent.

Notice that in each of these cases we have to specify not only how many parameters there are, but also
what type they are. So it shouldn't surprise you that when you write a function definition, the
parameter list indicates the type of each parameter. For example:

void printTwice (char phil) {
cout << phil << phil << endl;

}

This function takes a single parameter, named phil, that has type char. Whatever that parameter is

Chapter 3: Function

(and at this point we have no idea what it is), it gets printed twice, followed by a newline. I chose the
name phil to suggest that the name you give a parameter is up to you, but in general you want to
choose something more explanatory than phil.

In order to call this function, we have to provide a char. For example, we might have a main function
like this:

int main () {
printTwice ('a');
return 0;

}

The char value you provide is called an argument, and we say that the argument is passed to the
function. In this case the value 'a' is passed as an argument to printTwice where it will get printed
twice.

Alternatively, if we had a char variable, we could use it as an argument instead:

int main () {
char argument = 'b';
printTwice (argument);
return 0;

}

Notice something very important here: the name of the variable we pass as an argument (argument)
has nothing to do with the name of the parameter (phil). Let me say that again:

The name of the variable we pass as an argument has nothing to do with the name of the
parameter.

They can be the same or they can be different, but it is important to realize that they are not the same
thing, except that they happen to have the same value (in this case the character 'b").

The value you provide as an argument must have the same type as the parameter of the function you
call. This rule is important, but it is sometimes confusing because C++ sometimes converts arguments
from one type to another automatically. For now you should learn the general rule, and we will deal
with exceptions later.

3.9 Parameters and variables are local

Parameters and variables only exist inside their own functions. Within the confines of main, there is
no such thing as phil. If you try to use it, the compiler will complain. Similarly, inside printTwice
there is no such thing as argument.

Variables like this are said to be local. In order to keep track of parameters and local variables, it is
useful to draw a stack diagram. Like state diagrams, stack diagrams show the value of each variable,
but the variables are contained in larger boxes that indicate which function they belong to.

Chapter 3: Function

For example, the state diagram for printTwice looks like this:

argument
/_ o ™~
(o') main
phil
\ fintTwice
(w5) p

Whenever a function is called, it creates a new instance of that function. Each instance of a function
contains the parameters and local variables for that function. In the diagram an instance of a function
is represented by a box with the name of the function on the outside and the variables and parameters
inside.

In the example, main has one local variable, argument, and no parameters. printTwice has no local
variables and one parameter, named phil.

3.10 Functions with multiple parameters

The syntax for declaring and invoking functions with multiple parameters is a common source of
errors. First, remember that you have to declare the type of every parameter. For example

void printTime (int hour, int minute) {
cout << hour;
cout << ":";
cout << minute;

}

It might be tempting to write (int hour, minute),but that format is only legal for variable
declarations, not for parameters.

Another common source of confusion is that you do not have to declare the types of arguments. The
following is wrong!

int hour = 11;
int minute = 59;
printTime (int hour, int minute); // WRONG!

In this case, the compiler can tell the type of hour and minute by looking at their declarations. It is
unnecessary and illegal to include the type when you pass them as arguments. The correct syntax is
printTime (hour, minute).

Chapter 3: Function

3.11 Functions with results

You might have noticed by now that some of the functions we are using, like the math functions, yield
results. Other functions, like newLine, perform an action but don't return a value. That raises some
questions:

o What happens if you call a function and you don't do anything with the result (i.e. you don't
assign it to a variable or use it as part of a larger expression)?

o What happens if you use a function without a result as part of an expression, like newLine() +
77

o Can we write functions that yield results, or are we stuck with things like newLine and
printTwice?

The answer to the third question is "yes, you can write functions that return values," and we'll do it in
a couple of chapters. I will leave it up to you to answer the other two questions by trying them out.
Any time you have a question about what is legal or illegal in C++, a good way to find out is to ask
the compiler.

3.12 Glossary

floating-point
A type of variable (or value) that can contain fractions as well as integers. There are a few
floating-point types in C++; the one we use in this book is double.

initialization
A statement that declares a new variable and assigns a value to it at the same time.

function
A named sequence of statements that performs some useful function. Functions may or may not
take parameters, and may or may not produce a result.

parameter
A piece of information you provide in order to call a function. Parameters are like variables in
the sense that they contain values and have types.

argument
A value that you provide when you call a function. This value must have the same type as the
corresponding parameter.

call
Cause a function to be executed.

Revised 2009-08-31.

- T €= How to Think Like a Computer Scientist iNDEX

10

Chapter 4: Conditionals and recursion

v—: (l\ /\— How to Think Like a Computer Scientist INDEJL%

Chapter 4

Conditionals and recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields the remainder when the
first operand is divided by the second. In C++, the modulus operator is a percent sign, %. The syntax is
exactly the same as for other operators:

int quotient = 7 / 3;
int remainder = 7 % 3;

The first operator, integer division, yields 2. The second operator yields 1. Thus, 7 divided by 3 is 2
with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check whether one
number is divisible by another: if x % y is zero, then x is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or digits from a number. For
example, x % 10 yields the rightmost digit of x (in base 10). Similarly x % 100 yields the last two
digits.

4.2 Conditional execution

In order to write useful programs, we almost always need the ability to check certain conditions and
change the behavior of the program accordingly. Conditional statements give us this ability. The
simplest form is the if statement:

if (x > 0) {
cout << "x is positive" << endl;

}

The expression in parentheses is called the condition. If it is true, then the statements in brackets get
executed. If the condition is not true, nothing happens.

The condition can contain any of the comparison operators:

Chapter 4: Conditionals and recursion

X ==y // X equals y

x =y // x is not equal to y

X >y // x is greater than y

Xx <y // x is less than y

X >=y // X is greater than or equal to y
X <=y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax C++ uses is a little different from
mathematical symbols like =, # and <. A common error is to use a single = instead of a double ==.
Remember that = is the assignment operator, and == is a comparison operator. Also, there is no such
thing as =< or =>.

The two sides of a condition operator have to be the same type. You can only compare ints to ints,
doubles to doubles and strings to strings.

4.3 Alternative execution

A second form of conditional execution is alternative execution, in which there are two possibilities,
and the condition determines which one gets executed. The syntax looks like:

if (x%2 == 0) {

cout << "x is even" << endl;
} else {

cout << "x is odd" << endl;

}

If the remainder when x is divided by 2 is zero, then we know that x is even, and this code displays a
message to that effect. If the condition is false, the second set of statements is executed. Since the
condition must be true or false, exactly one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or oddness) of numbers often,
you might want to "wrap" this code up in a function, as follows:

void printParity (int x) {
if (x%2 == 0) {
cout << "x is even" << endl;
} else {
cout << "x is odd" << endl;
}
}

Now you have a function named printParity that will display an appropriate message for any
integer you care to provide. In main you would call this function as follows:

printParity (17);

Always remember that when you call a function, you do not have to declare the types of the
arguments you provide. C++ can figure out what type they are. You should resist the temptation to
write things like:

Chapter 4: Conditionals and recursion

int number = 17;
printParity (int number); // WRONG! !!

4.4 Chained conditionals

Sometimes you want to check for a number of related conditions and choose one of several actions.
One way to do this is by chaining a series of ifs and elses:

if (x > 0) {

cout << "x is positive" << endl;
} else if (x < 0) {

cout << "x is negative" << endl;
} else {

cout << "x is zero" << endl;

}

These chains can be as long as you want, although they can be difficult to read if they get out of hand.
One way to make them easier to read is to use standard indentation, as demonstrated in these
examples. If you keep all the statements and squiggly-braces lined up, you are less likely to make
syntax errors and you can find them more quickly if you do.

4.5 Nested conditionals

In addition to chaining, you can also nest one conditional within another. We could have written the
previous example as:

if (x == 0) {
cout << "x is zero" << endl;
} else {
if (x> 0) {
cout << "x is positive" << endl;
} else {
cout << "x is negative" << endl;
}
}

There is now an outer conditional that contains two branches. The first branch contains a simple
output statement, but the second branch contains another if statement, which has two branches of its
own. Fortunately, those two branches are both output statements, although they could have been
conditional statements as well.

Notice again that indentation helps make the structure apparent, but nevertheless, nested conditionals
get difficult to read very quickly. In general, it is a good idea to avoid them when you can.

On the other hand, this kind of nested structure is common, and we will see it again, so you better
get used to it.

Chapter 4: Conditionals and recursion

4.6 The return statement

The return statement allows you to terminate the execution of a function before you reach the end.
One reason to use it is if you detect an error condition:

#include <iostream>
#include <cmath>
using namespace std;

void printLogarithm (double x) {
if (x <= 0.0) {
cout << "Positive numbers only, please." << endl;
return;

}

double result = log (x);
cout << "The log of x is " << result << endl;

}

This defines a function named printLogarithm that takes a double named x as a parameter. The
first thing it does is check whether x is less than or equal to zero, in which case it displays an error
message and then uses return to exit the function. The flow of execution immediately returns to the
caller and the remaining lines of the function are not executed.

I used a floating-point value on the right side of the condition because there is a floating-point variable
on the left.

Remember that any time you want to use one a function from the math library, you have to include the
header file cmath.

4.7 Recursion

I mentioned in the last chapter that it is legal for one function to call another, and we have seen
several examples of that. I neglected to mention that it is also legal for a function to call itself. It may
not be obvious why that is a good thing, but it turns out to be one of the most magical and interesting
things a program can do.

For example, look at the following function:

void countdown (int n) {
if (n == 0) {
cout << "Blastoff!" << endl;
} else {
cout << n << endl;
countdown (n-1);
}
}

The name of the function is countdown and it takes a single integer as a parameter. If the parameter is
zero, it outputs the word "Blastoff." Otherwise, it outputs the parameter and then calls a function

Chapter 4: Conditionals and recursion

named countdown —itself —passing n-1 as an argument.

What happens if we call this function like this:

int main ()

{

countdown (3);
return 0;

}

The execution of countdown begins with n=3, and since n is not zero, it outputs the value 3, and then
calls itself...

The execution of countdown begins with n=2, and since n is not zero, it outputs the value 2,
and then calls itself...

The execution of countdown begins with n=1, and since n is not zero, it outputs the value 1,
and then calls itself...

The execution of countdown begins with n=0, and since n is zero, it outputs the word
"Blastoff!" and then returns.

The countdown that got n=1 returns.
The countdown that got n=2 returns.
The countdown that got n=3 returns.

And then you're back in main (what a trip). So the total output looks like:

3
2
1
Blastoff!

As a second example, let's look again at the functions newLine and threeLine.

void newLine () {
cout << endl;

}

void threeLine () {
newLine (); newLine (); newLine ();

}

Although these work, they would not be much help if I wanted to output 2 newlines, or 106. A better
alternative would be

void nLines (int n) {
if (n > 0) {
cout << endl;
nLines (n-1);

}

Chapter 4: Conditionals and recursion

}

This program is similar to countdown; as long as n is greater than zero, it outputs one newline, and
then calls itself to output n-1 additional newlines. Thus, the total number of newlines is 1 + (n-1),
which usually comes out to roughly n.

The process of a function calling itself is called recursion, and such functions are said to be
recursive.

4.8 Infinite recursion

In the examples in the previous section, notice that each time the functions get called recursively, the
argument gets smaller by one, so eventually it gets to zero. When the argument is zero, the function
returns immediately, without making any recursive calls. This case—when the function completes
without making a recursive call —is called the base case.

If a recursion never reaches a base case, it will go on making recursive calls forever and the program
will never terminate. This is known as infinite recursion, and it is generally not considered a good
idea.

In most programming environments, a program with an infinite recursion will not really run forever.
Eventually, something will break and the program will report an error. This is the first example we
have seen of a run-time error (an error that does not appear until you run the program).

You should write a small program that recurses forever and run it to see what happens.

4.9 Stack diagrams for recursive functions

In the previous chapter we used a stack diagram to represent the state of a program during a function
call. The same kind of diagram can make it easier to interpret a recursive function.

Remember that every time a function gets called it creates a new instance that contains the function's
local variables and parameters.

This figure shows a stack diagram for countdown, called with n = 3:

Chapter 4: Conditionals and recursion

main
n 3 countdown
n: 2 countdown
o1 countdown
n: 0 countdown

There is one instance of main and four instances of countdown, each with a different value for the
parameter n. The bottom of the stack, countdown with n=0 is the base case. It does not make a
recursive call, so there are no more instances of countdown.

The instance of main is empty because main does not have any parameters or local variables. As an
exercise, draw a stack diagram for nLines, invoked with the parameter n=4.

4.10 Glossary

modulus
An operator that works on integers and yields the remainder when one number is divided by
another. In C++ it is denoted with a percent sign (%).
conditional
A block of statements that may or may not be executed depending on some condition.
chaining
A way of joining several conditional statements in sequence.
nesting
Putting a conditional statement inside one or both branches of another conditional statement.
recursion
The process of calling the same function you are currently executing.
infinite recursion
A function that calls itself recursively without every reaching the base case. Eventually an
infinite recursion will cause a run-time error.

Revised 2008-12-05.

| | |
v—:\§ | /:—; How to Think Like a Computer Scientist INDEX

Chapter 5: Fruitful functions

v—:\ (I\ /— How to Think Like a Computer Scientist INDEJL%

Chapter 5

Fruitful functions

5.1 Return values

Some of the built-in functions we have used, like the math functions, have produced results. That is,
the effect of calling the function is to generate a new value, which we usually assign to a variable or
use as part of an expression. For example:

double e = exp (1.0);
double height = radius * sin (angle);

But so far all the functions we have written have been void functions; that is, functions that return no
value. When you call a void function, it is typically on a line by itself, with no assignment:

nLines (3);
countdown (n-1);

In this chapter, we are going to write functions that return things, which I will refer to as fruitful
functions, for want of a better name. The first example is area, which takes a double as a parameter,
and returns the area of a circle with the given radius:

double area (double radius) {
double pi = acos (-1.0);
double area = pi * radius * radius;
return area;

}

The first thing you should notice is that the beginning of the function definition is different. Instead of
void, which indicates a void function, we see double, which indicates that the return value from this
function will have type double.

Also, notice that the last line is an alternate form of the return statement that includes a return value.
This statement means, "return immediately from this function and use the following expression as a
return value." The expression you provide can be arbitrarily complicated, so we could have written
this function more concisely:

double area (double radius) {

Chapter 5: Fruitful functions

return acos(-1.0) * radius * radius;

}

On the other hand, temporary variables like area often make debugging easier. In either case, the
type of the expression in the return statement must match the return type of the function. In other
words, when you declare that the return type is double, you are making a promise that this function
will eventually produce a double. If you try to return with no expression, or an expression with the
wrong type, the compiler will take you to task.

Sometimes it is useful to have multiple return statements, one in each branch of a conditional:

double absoluteValue (double x) {
if (x < 0) {
return -Xx;
} else {
return Xx;

}
}

Since these return statements are in the alternative branches of a conditional, only one will be
executed. Although it is legal to have more than one return statement in a function, you should keep
in mind that as soon as one is executed, the function terminates without executing any subsequent
statements.

Code that appears after a return statement, or any place else where it can never be executed, is called
dead code. Some compilers warn you if part of your code is dead.

If you put return statements inside a conditional, then you have to guarantee that every possible path
through the program hits a return statement. For example:

double absoluteValue (double x) {
if (x < 0) {
return -x;
} else if (x > 0) {
return x;
} // WRONG! !

}

This program is not correct because if x happens to be 0, then neither condition will be true and the
function will end without hitting a return statement. Unfortunately, many C++ compilers do not
catch this error. As a result, the program may compile and run, but the return value when x==0 could
be anything, and will probably be different in different environments.

By now you are probably sick of seeing compiler errors, but as you gain more experience, you will
realize that the only thing worse than getting a compiler error is not getting a compiler error when
your program is wrong.

Here's the kind of thing that's likely to happen: you test absolutevalue with several values of x and
it seems to work correctly. Then you give your program to someone else and they run it in another
environment. It fails in some mysterious way, and it takes days of debugging to discover that the
problem is an incorrect implementation of absolutevalue. If only the compiler had warned you!

Chapter 5: Fruitful functions

From now on, if the compiler points out an error in your program, you should not blame the compiler.
Rather, you should thank the compiler for finding your error and sparing you days of debugging.
Some compilers have an option that tells them to be extra strict and report all the errors they can find.
You should turn this option on all the time.

As an aside, you should know that there is a function in the cmath library called fabs that calculates
the absolute value of a double—correctly.

5.2 Program development

At this point you should be able to look at complete C++ functions and tell what they do. But it may
not be clear yet how to go about writing them. I am going to suggest one technique that I call
incremental development.

As an example, imagine you want to find the distance between two points, given by the coordinates
(X1, ¥q) and (x,, ¥,). By the usual definition,

2 + (yZ - y1)2]

distance = V [(x, = %)
The first step is to consider what a distance function should look like in C++. In other words, what
are the inputs (parameters) and what is the output (return value).

In this case, the two points are the parameters, and it is natural to represent them using four doubles.
The return value is the distance, which will have type double.

Already we can write an outline of the function:

double distance (double x1, double yl, double x2, double y2) {
return 0.0;

}

The return statement is a placekeeper so that the function will compile and return something, even
though it is not the right answer. At this stage the function doesn't do anything useful, but it is
worthwhile to try compiling it so we can identify any syntax errors before we make it more
complicated.

In order to test the new function, we have to call it with sample values. Somewhere in main I would
add:

double dist = distance (1.0, 2.0, 4.0, 6.0);
cout << dist << endl;

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that way, the
result will be 5 (the hypotenuse of a 3-4-5 triangle). When you are testing a function, it is useful to
know the right answer.

Chapter 5: Fruitful functions

Once we have checked the syntax of the function definition, we can start adding lines of code one at a
time. After each incremental change, we recompile and run the program. That way, at any point we
know exactly where the error must be —in the last line we added.

The next step in the computation is to find the differences x, - x, andy, - y,. I will store those

2
values in temporary variables named dx and dy.

double distance (double x1, double yl, double x2, double y2) {
double dx = x2 - x1;
double dy = y2 - yl;
cout << "dx is " << dx << endl;
cout << "dy is " << dy << endl;
return 0.0;

}

I added output statements that will let me check the intermediate values before proceeding. As I
mentioned, I already know that they should be 3.0 and 4.0.

When the function is finished I will remove the output statements. Code like that is called
scaffolding, because it is helpful for building the program, but it is not part of the final product.
Sometimes it is a good idea to keep the scaffolding around, but comment it out, just in case you need
it later.

The next step in the development is to square dx and dy. We could use the pow function, but it is
simpler and faster to just multiply each term by itself.

double distance (double x1, double yl, double x2, double y2) {
double dx = x2 - x1;
double dy = y2 - yl;
double dsquared = dx*dx + dy*dy;
cout << "dsquared is " << dsquared;
return 0.0;

}

Again, I would compile and run the program at this stage and check the intermediate value (which
should be 25.0).

Finally, we can use the sqrt function to compute and return the result.

double distance (double x1, double yl, double x2, double y2) {
double dx = x2 - x1;
double dy = y2 - yl;
double dsquared = dx*dx + dy*dy;
double result = sqgrt (dsquared);
return result;

}

Then in main, we should output and check the value of the result.

As you gain more experience programming, you might find yourself writing and debugging more than
one line at a time. Nevertheless, this incremental development process can save you a lot of
debugging time.

Chapter 5: Fruitful functions

The key aspects of the process are:

e Start with a working program and make small, incremental changes. At any point, if there is an
error, you will know exactly where it is.

o Use temporary variables to hold intermediate values so you can output and check them.

e Once the program is working, you might want to remove some of the scaffolding or consolidate
multiple statements into compound expressions, but only if it does not make the program
difficult to read.

5.3 Composition

As you should expect by now, once you define a new function, you can use it as part of an expression,
and you can build new functions using existing functions. For example, what if someone gave you
two points, the center of the circle and a point on the perimeter, and asked for the area of the circle?

Let's say the center point is stored in the variables xc and yc, and the perimeter point is in xp and yp.
The first step is to find the radius of the circle, which is the distance between the two points.
Fortunately, we have a function, distance, that does that.

double radius = distance (xc, yc, Xp, YpP);
The second step is to find the area of a circle with that radius, and return it.

double result = area (radius);
return result;

Wrapping that all up in a function, we get:

double fred (double xc, double yc, double xp, double yp) {
double radius = distance (xc, yc, Xp, yYp);
double result = area (radius);
return result;

}

The name of this function is fred, which may seem odd. I will explain why in the next section.

The temporary variables radius and area are useful for development and debugging, but once the
program is working we can make it more concise by composing the function calls:

double fred (double xc, double yc, double xp, double yp) {
return area (distance (xc, yc, xXp, yp));

}

5.4 Overloading

In the previous section you might have noticed that fred and area perform similar functions
—finding the area of a circle—but take different parameters. For area, we have to provide the radius;

Chapter 5: Fruitful functions

for fred we provide two points.

If two functions do the same thing, it is natural to give them the same name. In other words, it would
make more sense if fred were called area.

Having more than one function with the same name, which is called overloading, is legal in C++ as
long as each version takes different parameters. So we can go ahead and rename fred:

double area (double xc, double yc, double xp, double yp) {
return area (distance (xc, yc, Xp, YpP)):

}

This looks like a recursive function, but it is not. Actually, this version of area is calling the other
version. When you call an overloaded function, C++ knows which version you want by looking at the
arguments that you provide. If you write:

double x = area (3.0);

C++ goes looking for a function named area that takes a double as an argument, and so it uses the
first version. If you write

double x = area (1.0, 2.0, 4.0, 6.0);

C++ uses the second version of area.

Many of the built-in C++ commands are overloaded, meaning that there are different versions that
accept different numbers or types of parameters.

Although overloading is a useful feature, it should be used with caution. You might get yourself
nicely confused if you are trying to debug one version of a function while accidently calling a
different one.

Actually, that reminds me of one of the cardinal rules of debugging: make sure that the version of
the program you are looking at is the version of the program that is running! Some time you
may find yourself making one change after another in your program, and seeing the same thing every
time you run it. This is a warning sign that for one reason or another you are not running the version
of the program you think you are. To check, stick in an output statement (it doesn't matter what it
says) and make sure the behavior of the program changes accordingly.

5.5 Boolean values

The types we have seen so far are pretty big. There are a lot of integers in the world, and even more
floating-point numbers. By comparison, the set of characters is pretty small. Well, there is another
type in C++ that is even smaller. It is called boolean, and the only values in it are true and false.

Without thinking about it, we have been using boolean values for the last couple of chapters. The
condition inside an if statement or a while statement is a boolean expression. Also, the result of a

Chapter 5: Fruitful functions

comparison operator is a boolean value. For example:
if (x == 5) {
// do something
}

The operator == compares two integers and produces a boolean value.

The values true and false are keywords in C++, and can be used anywhere a boolean expression is
called for. For example,
while (true) {
// loop forever

}

is a standard idiom for a loop that should run forever (or until it reaches a return or break
statement).

5.6 Boolean variables

As usual, for every type of value, there is a corresponding type of variable. In C++ the boolean type is
called bool. Boolean variables work just like the other types:

bool fred;
fred = true;
bool testResult = false;

The first line is a simple variable declaration; the second line is an assignment, and the third line is a
combination of a declaration and as assignment, called an initialization.

As I mentioned, the result of a comparison operator is a boolean, so you can store it in a bool variable

bool evenFlag = (n%2 == 0); // true if n is even
bool positiveFlag = (x > 0); // true if x is positive

and then use it as part of a conditional statement later

if (evenFlag) {
cout << "n was even when I checked it" << endl;

}

A variable used in this way is called a flag, since it flags the presence or absence of some condition.

5.7 Logical operators

There are three logical operators in C++: AND, OR and NOT, which are denoted by the symbols &s,
| | and !. The semantics (meaning) of these operators is similar to their meaning in English. For

Chapter 5: Fruitful functions

example x > 0 && x < 10 is true only if x is greater than zero AND less than 10.

evenFlag || n%3 == 0 is true if either of the conditions is true, that is, if evenFlag is true OR the
number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a bool expression, so !evenFlag is
true if evenFlag is false; that is, if the number is odd.

Logical operators often provide a way to simplify nested conditional statements. For example, how
would you write the following code using a single conditional?

if (x> 0) {
if (x < 10) {
cout << "x is a positive single digit." << endl;
}
}

5.8 Bool functions

Functions can return bool values just like any other type, which is often convenient for hiding
complicated tests inside functions. For example:

bool isSingleDigit (int x)
{
if (x >= 0 && x < 10) {
return true;
} else {
return false;

}
}

The name of this function is isSingleDigit. It is common to give boolean functions names that
sound like yes/no questions. The return type is bool, which means that every return statement has to
provide a bool expression.

The code itself is straightforward, although it is a bit longer than it needs to be. Remember that the
expression x >= 0 && x < 10 has type bool, so there is nothing wrong with returning it directly,
and avoiding the if statement altogether:

bool isSingleDigit (int x)
{

return (x >= 0 && x < 10);

}
In main you can call this function in the usual ways:

cout << isSingleDigit (2) << endl;
bool bigFlag = !isSingleDigit (17);

The first line outputs the value true because 2 is a single-digit number. Unfortunately, when C++
outputs bools, it does not display the words true and false, but rather the integers 1 and 0. (There is

Chapter 5: Fruitful functions

a way to fix that using the boolalpha flag, but it is too hideous to mention.)
The second line assigns the value true to bigFlag only if 17 is not a single-digit number.

The most common use of bool functions is inside conditional statements

if (isSingleDigit (x)) {

cout << "x is little" << endl;
} else {

cout << "x is big" << endl;

}

5.9 Returning from main

Now that we have functions that return values, I can explain why main is supposed to be a int
function; it's supposed to return an integer:

int main ()

{

return 0;

}

The usual return value from main is 0, which indicates that the program succeeded at whatever it was
supposed to to. If something goes wrong, it is common to return —1, or some other value that indicates
what kind of error occurred.

Of course, you might wonder who this value gets returned to, since we never call main ourselves. It
turns out that when the system executes a program, it starts by calling main in pretty much the same
way it calls all the other functions.

There are even some parameters that are passed to main by the system, but we are not going to deal
with them for a little while.

5.10 More recursion

So far we have only learned a small subset of C++, but you might be interested to know that this
subset is now a complete programming language, by which I mean that anything that can be
computed can be expressed in this language. Any program ever written could be rewritten using only
the language features we have used so far (actually, we would need a few commands to control
devices like the keyboard, mouse, disks, etc., but that's all).

Proving that claim is a non-trivial exercise first accomplished by Alan Turing, one of the first
computer scientists (well, some would argue that he was a mathematician, but a lot of the early
computer scientists started as mathematicians). Accordingly, it is known as the Turing thesis. If you
take a course on the theory of computation, you will have a chance to see the proof.

Chapter 5: Fruitful functions

To give you an idea of what you can do with the tools we have learned so far, we'll evaluate a few
recursively-defined mathematical functions. A recursive definition is similar to a circular definition, in
the sense that the definition contains a reference to the thing being defined. A truly circular definition
is typically not very useful:

frabjuous
an adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other hand, if you looked up
the definition of the mathematical function factorial, you might get something like:

0!

n! =n « (n-1)!

(Factorial is usually denoted with the symbol !, which is not to be confused with the C++ logical
operator ! which means NOT.) This definition says that the factorial of O is 1, and the factorial of any
other value, n, is n multiplied by the factorial of n-1. So 3! is 3 times 2!, which is 2 times 1!, which
is 1 times O!. Putting it all together, we get 3t equal to 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a C++ program to evaluate
it. The first step is to decide what the parameters are for this function, and what the return type is.
With a little thought, you should conclude that factorial takes an integer as a parameter and returns an
integer:

int factorial (int n)

{
}

If the argument happens to be zero, all we have to do is return 1:

int factorial (int n)
{
if (n == 0) {
return 1;
}
}

Otherwise, and this is the interesting part, we have to make a recursive call to find the factorial of n-1,
and then multiply it by n.

int factorial (int n)
{
if (n == 0) {
return 1;
} else {
int recurse = factorial (n-1);
int result = n * recurse;
return result;

10

Chapter 5: Fruitful functions
If we look at the flow of execution for this program, it is similar to nLines from the previous chapter.
If we call factorial with the value 3:
Since 3 is not zero, we take the second branch and calculate the factorial of n-1...
Since 2 is not zero, we take the second branch and calculate the factorial of n-1...
Since 1 is not zero, we take the second branch and calculate the factorial of n-1...

Since 0 is zero, we take the first branch and return the value 1 immediately without making
any more recursive calls.

The return value (1) gets multiplied by n, which is 1, and the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is returned to main, or whoever

called factorial (3).

Here is what the stack diagram looks like for this sequence of function calls:

1 main
6|

~ n: 3 recurse: 2 result: 6 factorial
21

4o 2 recurse: 1 result: 2 factorial
1 I“ .

~ o 1 recurse: 1 result: 1 factorial
1 factorial

] n O

The return values are shown being passed back up the stack.

Notice that in the last instance of factorial, the local variables recurse and result do not exist
because when n=0 the branch that creates them does not execute.

5.11 Leap of faith

Following the flow of execution is one way to read programs, but as you saw in the previous section,
it can quickly become labarynthine. An alternative is what I call the "leap of faith." When you come
to a function call, instead of following the flow of execution, you assume that the function works
correctly and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in functions. When you call
cos or exp, you don't examine the implementations of those functions. You just assume that they
work, because the people who wrote the built-in libraries were good programmers.

11

Chapter 5: Fruitful functions

Well, the same is true when you call one of your own functions. For example, in Section 5.8 we wrote
a function called isSingleDigit that determines whether a number is between 0 and 9. Once we
have convinced ourselves that this function is correct—by testing and examination of the code —we
can use the function without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive call, instead of following the
flow of execution, you should assume that the recursive call works (yields the correct result), and then
ask yourself, "Assuming that I can find the factorial of n-1, can I compute the factorial of n?" In this
case, it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the function works correctly when you have not even
finished writing it, but that's why it's called a leap of faith!

5.12 One more example

In the previous example I used temporary variables to spell out the steps, and to make the code easier
to debug, but I could have saved a few lines:

int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n * factorial (n-1);

}
}

From now on I will tend to use the more concise version, but I recommend that you use the more
explicit version while you are developing code. When you have it working, you can tighten it up, if
you are feeling inspired.

After factorial, the classic example of a recursively-defined mathematical function is fibonacci,
which has the following definition:

1
1
fibonacci(n-1) + fibonacci(n-2);

fibonacci(0)

fibonacci(1l)

fibonacci(n)

Translated into C++, this is

int fibonacci (int n) {

if (n==10 [[n==1) {

return 1;
} else {

return fibonacci (n-1) + fibonacci (n-2);
}

}

If you try to follow the flow of execution here, even for fairly small values of n, your head explodes.

12

Chapter 5: Fruitful functions

But according to the leap of faith, if we assume that the two recursive calls (yes, you can make two
recursive calls) work correctly, then it is clear that we get the right result by adding them together.

5.13 Glossary

return type

The type of value a function returns.
return value

The value provided as the result of a function call.
dead code

Part of a program that can never be executed, often because it appears after a return statement.

scaffolding

Code that is used during program development but is not part of the final version.
void

A special return type that indicates a void function; that is, one that does not return a value.
overloading

Having more than one function with the same name but different parameters. When you call an

overloaded function, C++ knows which version to use by looking at the arguments you provide.

boolean
A value or variable that can take on one of two states, often called true and false. In C++,
boolean values can be stored in a variable type called bool.

flag
A variable (usually type bool) that records a condition or status information.

comparison operator
An operator that compares two values and produces a boolean that indicates the relationship
between the operands.

logical operator
An operator that combines boolean values in order to test compound conditions.

Revised 2008-12-05.

£,

| =]

How to Think Like a Computer Scientist INDEX]

13

Chapter 6: Iteration

v—:\ (I\ /— How to Think Like a Computer Scientist INDEJL%

Chapter 6

Iteration

6.1 Multiple assignment

I haven't said much about it, but it is legal in C++ to make more than one assignment to the same
variable. The effect of the second assignment is to replace the old value of the variable with a new
value.

int fred = 5;
cout << fred;
fred = 7;

cout << fred;

The output of this program is 57, because the first time we print £red his value is 5, and the second
time his value is 7.

This kind of multiple assignment is the reason I described variables as a container for values. When
you assign a value to a variable, you change the contents of the container, as shown in the figure:
int fred = 5; fred = 7;

fred fred
5 X 7 ‘
When there are multiple assignments to a variable, it is especially important to distinguish between an

assignment statement and a statement of equality. Because C++ uses the = symbol for assignment, it is
tempting to interpret a statement like a = b as a statement of equality. It is not!

First of all, equality is commutative, and assignment is not. For example, in mathematics if a = 7
then 7 = a. But in C++ the statement a = 7; is legal, and 7 = a; is not.

Furthermore, in mathematics, a statement of equality is true for all time. If a = b now, then a will
always equal b. In C++, an assignment statement can make two variables equal, but they don't have to
stay that way!

int a = 5;

Chapter 6: Iteration

int b = a; // a and b are now equal
a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b, and so they are no longer
equal. In many programming languages an alternate symbol is used for assignment, such as <- or :=,
in order to avoid confusion.

Although multiple assignment is frequently useful, you should use it with caution. If the values of
variables are changing constantly in different parts of the program, it can make the code difficult to
read and debug.

6.2 Iteration

One of the things computers are often used for is the automation of repetitive tasks. Repeating
identical or similar tasks without making errors is something that computers do well and people do
poorly.

We have seen programs that use recursion to perform repetition, such as nLines and countdown. This
type of repetition is called iteration, and C++ provides several language features that make it easier to
write iterative programs.

The two features we are going to look at are the while statement and the for statement.

6.3 The while statement

Using a while statement, we can rewrite countdown:

void countdown (int n) {
while (n > 0) {
cout << n << endl;
n = n-1;

}

cout << "Blastoff!" << endl;

}

You can almost read a while statement as if it were English. What this means is, "While n is greater
than zero, continue displaying the value of n and then reducing the value of n by 1. When you get to
zero, output the word “Blastoff!"'

More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, exit the while statement and continue execution at the next statement.

3. If the condition is true, execute each of the statements between the squiggly-braces, and then go
back to step 1.

Chapter 6: Iteration

This type of flow is called a loop because the third step loops back around to the top. Notice that if the
condition is false the first time through the loop, the statements inside the loop are never executed.
The statements inside the loop are called the body of the loop.

The body of the loop should change the value of one or more variables so that, eventually, the
condition becomes false and the loop terminates. Otherwise the loop will repeat forever, which is
called an infinite loop. An endless source of amusement for computer scientists is the observation
that the directions on shampoo, "Lather, rinse, repeat," are an infinite loop.

In the case of countdown, we can prove that the loop will terminate because we know that the value
of n is finite, and we can see that the value of n gets smaller each time through the loop (each
iteration), so eventually we have to get to zero. In other cases it is not so easy to tell:

void sequence (int n) {

while (n != 1) {
cout << n << endl;
if (n%2 == 0) { // n is even
n=n/ 2;
} else { // n is odd
n =n*3 + 1;
}
}
}
The condition for this loop is n != 1, so the loop will continue until n is 1, which will make the

condition false.

At each iteration, the program outputs the value of n and then checks whether it is even or odd. If it is
even, the value of n is divided by two. If it is odd, the value is replaced by 3n+1. For example, if the
starting value (the argument passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will ever reach
1, or that the program will terminate. For some particular values of n, we can prove termination. For
example, if the starting value is a power of two, then the value of n will be even every time through
the loop, until we get to 1. The previous example ends with such a sequence, starting with 16.

Particular values aside, the interesting question is whether we can prove that this program terminates
for all values of n. So far, no one has been able to prove it or disprove it!

6.4 Tables

One of the things loops are good for is generating tabular data. For example, before computers were
readily available, people had to calculate logarithms, sines and cosines, and other common
mathematical functions by hand. To make that easier, there were books containing long tables where
you could find the values of various functions. Creating these tables was slow and boring, and the
result tended to be full of errors.

Chapter 6: Iteration

When computers appeared on the scene, one of the initial reactions was, "This is great! We can use
the computers to generate the tables, so there will be no errors." That turned out to be true (mostly),
but shortsighted. Soon thereafter computers and calculators were so pervasive that the tables became
obsolete.

Well, almost. It turns out that for some operations, computers use tables of values to get an
approximate answer, and then perform computations to improve the approximation. In some cases,
there have been errors in the underlying tables, most famously in the table the original Intel Pentium
used to perform floating-point division.

Although a "log table" is not as useful as it once was, it still makes a good example of iteration. The
following program outputs a sequence of values in the left column and their logarithms in the right
column:

double x = 1.0;

while (x < 10.0) {
cout << x << "\t" << log(x) << "\n";
X =x+ 1.0;

}

The sequence \t represents a tab character. The sequence \n represents a newline character. These
sequences can be included anywhere in a string, although in these examples the sequence is the whole
string.

A tab character causes the cursor to shift to the right until it reaches one of the tab stops, which are
normally every eight characters. As we will see in a minute, tabs are useful for making columns of
text line up.

A newline character has exactly the same effect as end1; it causes the cursor to move on to the next
line. Usually if a newline character appears by itself, I use end1, but if it appears as part of a string, I
use \n.

The output of this program is

.693147
.09861
.38629
.60944
.79176
.94591
.07944
.19722

VCoOJoOUTE WN
NN RRRRPROO

If these values seem odd, remember that the 1og function uses base e. Since powers of two are so
important in computer science, we often want to find logarithms with respect to base 2. To do that, we
can use the following formula:

log, x=log, x/log, 2.

Chapter 6: Iteration

Changing the output statement to
cout << x << "\t" << log(x) / log(2.0) << endl;

yields

.58496

.32193
.58496
.80735

VoUW N R
WWNhNMDNDNMDDNREEFEO

.16993

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base 2 are round numbers. If
we wanted to find the logarithms of other powers of two, we could modify the program like this:

double x = 1.0;

while (x < 100.0) {
cout << x << "\t" << log(x) / log(2.0) << endl;
X =x * 2.0;

}

Now instead of adding something to x each time through the loop, which yields an arithmetic
sequence, we multiply x by something, yielding a geometric sequence. The result is:

1 0
2 1
4 2
8 3
16 4
32 5
64 6

Because we are using tab characters between the columns, the position of the second column does not
depend on the number of digits in the first column.

Log tables may not be useful any more, but for computer scientists, knowing the powers of two is! As
an exercise, modify this program so that it outputs the powers of two up to 65536 (that's 218). Print it
out and memorize it.

6.5 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and read the value at the
intersection. A multiplication table is a good example. Let's say you wanted to print a multiplication
table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2, all on one line.

Chapter 6: Iteration

int 1 = 1;

while (i <= 6) {
cout << 2*i << " "
i=1+1;

}

cout << endl;

The first line initializes a variable named i, which is going to act as a counter, or loop variable. As
the loop executes, the value of i increases from 1 to 6, and then when i is 7, the loop terminates. Each
time through the loop, we print the value 2*i followed by three spaces. By omitting the end1 from
the first output statement, we get all the output on a single line.

The output of this program is:
2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a function, allowing you to
take advantage of all the things functions are good for. We have seen two examples of encapsulation,
when we wrote printParity in Section 4.3 and isSingleDigit in Section 5.8.

Generalization means taking something specific, like printing multiples of 2, and making it more
general, like printing the multiples of any integer.

Here's a function that encapsulates the loop from the previous section and generalizes it to print
multiples of n.

void printMultiples (int n)

{
int 1 = 1;
while (i <= 6) {
cout << n*i << " "
i=1i+1;
}
cout << endl;
}

To encapsulate, all I had to do was add the first line, which declares the name, parameter, and return
type. To generalize, all I had to do was replace the value 2 with the parameter n.

If we call this function with the argument 2, we get the same output as before. With argument 3, the
output is:

3 6 9 12 15 18

and with argument 4, the output is

Chapter 6: Iteration

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table: we'll call
printMultiples repeatedly with different arguments. In fact, we are going to use another loop to
iterate through the rows.

int i = 1;

while (i <= 6) {
printMultiples (i);
i=1i+1;

}

First of all, notice how similar this loop is to the one inside printMultiples. All I did was replace
the print statement with a function call.

The output of this program is

3 4 5 6

6 8 10 12

9 12 15 18
12 16 20 24
15 20 25 30
18 24 30 36

AU WN -
R PR o000 RN

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you, try replacing the spaces
between columns with tab characters and see what you get.

6.7 Functions

In the last section I mentioned "all the things functions are good for." About this time, you might be
wondering what exactly those things are. Here are some of the reasons functions are useful:

By giving a name to a sequence of statements, you make your program easier to read and
debug.

Dividing a long program into functions allows you to separate parts of the program, debug them
in isolation, and then compose them into a whole.

Functions facilitate both recursion and iteration.

Well-designed functions are often useful for many programs. Once you write and debug one,
you can reuse it.

6.8 More encapsulation

To demonstrate encapsulation again, I'll take the code from the previous section and wrap it up in a
function:

void printMultTable () {

Chapter 6: Iteration

int 1 = 1;
while (i <= 6) {
printMultiples (1i);
i=1+1;
}
}

The process I am demonstrating is a common development plan. You develop code gradually by
adding lines to main or someplace else, and then when you get it working, you extract it and wrap it
up in a function.

The reason this is useful is that you sometimes don't know when you start writing exactly how to
divide the program into functions. This approach lets you design as you go along.

6.9 Local variables

About this time, you might be wondering how we can use the same variable i in both
printMultiples and printMultTable. Didn't I say that you can only declare a variable once? And
doesn't it cause problems when one of the functions changes the value of the variable?

The answer to both questions is "no," because the i in printMultiples and the i in
printMultTable are not the same variable. They have the same name, but they do not refer to the
same storage location, and changing the value of one of them has no effect on the other.

Remember that variables that are declared inside a function definition are local. You cannot access a
local variable from outside its "home" function, and you are free to have multiple variables with the
same name, as long as they are not in the same function.

The stack diagram for this program shows clearly that the two variables named i are not in the same
storage location. They can have different values, and changing one does not affect the other.

’ main
‘ i 1 printhMultTable

‘ n 1 i 3 printMultiples

Notice that the value of the parameter n in printMultiples has to be the same as the value of i in
printMultTable. On the other hand, the value of i in printMultiple goes from 1 up to n. In the
diagram, it happens to be 3. The next time through the loop it will be 4.

It is often a good idea to use different variable names in different functions, to avoid confusion, but
there are good reasons to reuse names. For example, it is common to use the names i, j and k as loop
variables. If you avoid using them in one function just because you used them somewhere else, you
will probably make the program harder to read.

Chapter 6: Iteration

6.10 More generalization

As another example of generalization, imagine you wanted a program that would print a
multiplication table of any size, not just the 6x6 table. You could add a parameter to
printMultTable:

void printMultTable (int high) {
int i = 1;
while (i <= high) {
printMultiples (i);
i=1i+1;
}
}

I replaced the value 6 with the parameter high. If I call printMultTable with the argument 7, I get

3 4 5 6

6 8 10 12

9 12 15 18
12 16 20 24
10 15 20 25 30
12 18 24 30 36
14 21 28 35 42

N oo Wi
[oo o) '~ \S)

which is fine, except that I probably want the table to be square (same number of rows and columns),
which means I have to add another parameter to printMultiples, to specify how many columns the
table should have.

Just to be annoying, I will also call this parameter high, demonstrating that different functions can
have parameters with the same name (just like local variables):

void printMultiples (int n, int high) {
int 1 = 1;
while (i <= high) {
cout << n*ji << " "
i=1i+1;
}

cout << endl;

}

void printMultTable (int high) {
int i = 1;
while (i <= high) {
printMultiples (i, high);
i=1i+1;
}
}

Notice that when I added a new parameter, I had to change the first line of the function (the interface
or prototype), and I also had to change the place where the function is called in printMultTable. As
expected, this program generates a square 7x7 table:

Chapter 6: Iteration

1 2 3 4 5 6 7

2 4 6 8 10 12 14

3 6 9 12 15 18 21

4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

When you generalize a function appropriately, you often find that the resulting program has
capabilities you did not intend. For example, you might notice that the multiplication table is
symmetric, because ab = ba, so all the entries in the table appear twice. You could save ink by
printing only half the table. To do that, you only have to change one line of printMultTable. Change

printMultiples (i, high);

to
printMultiples (i, 1i);
and you get
1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49

I'll leave it up to you to figure out how it works.

6.11 Glossary

loop
A statement that executes repeatedly while a condition is true or until some condition is
satisfied.
infinite loop
A loop whose condition is always true.
body
The statements inside the loop.
iteration
One pass through (execution of) the body of the loop, including the evaluation of the condition.
tab
A special character, written as \t in C++, that causes the cursor to move to the next tab stop on
the current line.
encapsulate
To divide a large complex program into components (like functions) and isolate the components
from each other (for example, by using local variables).
local variable

10

Chapter 6: Iteration

A variable that is declared inside a function and that exists only within that function. Local
variables cannot be accessed from outside their home function, and do not interfere with any
other functions.

generalize
To replace something unnecessarily specific (like a constant value) with something
appropriately general (like a variable or parameter). Generalization makes code more versatile,
more likely to be reused, and sometimes even easier to write.

development plan
A process for developing a program. In this chapter, I demonstrated a style of development
based on developing code to do simple, specific things, and then encapsulating and
generalizing.

Revised 2008-12-05.

=N
’

T €

How to Think Like a Computer Scientist !ND?

11

Chapter 7: Strings and things

v—:\ (I\ /— How to Think Like a Computer Scientist INDEJL%

Chapter 7

Strings and things

7.1 Containers for strings

We have seen five types of values—booleans, characters, integers, floating-point numbers and
strings—but only four types of variables—bool, char, int and double. So far we have no way to
store a string in a variable or perform operations on strings.

In fact, there are several kinds of variables in C++ that can store strings. One is a basic type that is
part of the C++ language, sometimes called "a native C string." The syntax for C strings is a bit ugly,
and using them requires some concepts we have not covered yet, so for the most part we are going to
avoid them.

The string type we are going to use is called string, which is a class defined in a standard C++
library, which can be used by putting in your program:

#include <string>
using namespace std;

You might be wondering what is meant by class. It will be a few more chapters before I can give a
complete definition, but for now a class is a collection of functions that defines the operations we can
perform on some type. The string class contains all the functions that apply to strings.

Unfortunately, it is not possible to avoid C strings altogether. In a few places in this chapter I will
warn you about some problems you might run into using strings instead of C strings.

7.2 string variables

You can create a variable with type string in the usual ways:
string first;
first = "Hello, ";

string second = "world.";

The first line creates a string without giving it a value. The second line assigns it the string value
"Hello." The third line is a combined declaration and assignment, also called an initialization.

Chapter 7: Strings and things

Normally when string values like "Hello, " or "world." appear, they are treated as C strings. In
this case, when we assign them to a string variable, they are converted automatically to string
values.

We can output strings in the usual way:
cout << first << second << endl;

In order to compile this code, you will have to include the header file for the string class along with
other header files, followed by:

using namespace std;

Before proceeding, you should type in the program above and make sure you can compile and run it.

7.3 Extracting characters from a string

Strings are called "strings" because they are made up of a sequence, or string, of characters. The first
operation we are going to perform on a string is to extract one of the characters. C++ uses square
brackets ([and]) for this operation:

string fruit = "banana";
char letter = fruit[l];
cout << letter << endl;

The expression fruit[1] indicates that I want character number 1 from the string named fruit. The
result is stored in a char named letter. When I output the value of letter, I get a surprise:

a

a 1s not the first letter of "banana". Unless you are a computer scientist. For perverse reasons,
computer scientists always start counting from zero. The Oth letter ("zeroeth") of "banana" is b. The
1th letter ("oneth") is a and the 2th ("twoeth") letter is n.

If you want the the zereoth letter of a string, you have to put zero in the square brackets:

char letter = fruit[0];

7.4 Size

To find the length of a string (number of characters), we can use the size function. The syntax for
calling this function is a little different from what we've seen before:

int size;

size = fruit.size();

To describe this function call, we would say that we are invoking the size function on the string

Chapter 7: Strings and things

named fruit. This vocabulary may seem strange, but we will see many more examples where we
invoke a function on an object. The syntax for function invocation is called "dot notation," because
the dot (period) separates the name of the object, fruit, from the name of the function, size.

size takes no arguments, as indicated by the empty parentheses (). The return value is an integer, in
this case 6. Notice that it is legal to have a variable with the same name as a function.

To find the last letter of a string, you might be tempted to try something like

int size = fruit.size();
char last = fruit[size]; // WRONG! !

That won't work. The reason is that there is no 6th letter in "banana". Since we started counting at 0,
the 6 letters are numbered from O to 5. To get the last character, you have to subtract 1 from size.

int size = fruit.size();
char last = fruit[size-1];

7.5 Traversal

A common thing to do with a string is start at the beginning, select each character in turn, do
something to it, and continue until the end. This pattern of processing is called a traversal. A natural
way to encode a traversal is with a while statement:

int index = 0;

while (index < fruit.size()) {
char letter = fruit[index];
cout << letter << endl;
index = index + 1;

}

This loop traverses the string and outputs each letter on a line by itself. Notice that the condition is
index < fruit.size(), which means that when index is equal to the size of the string, the
condition is false and the body of the loop is not executed. The last character we access is the one with
the index fruit.size()-1.

The name of the loop variable is index. An index is a variable or value used to specify one member
of an ordered set, in this case the set of characters in the string. The index indicates (hence the name)
which one you want. The set has to be ordered so that each letter has an index and each index refers to
a single character.

As an exercise, write a function that takes a string as an argument and that outputs the letters
backwards, all on one line.

7.6 A run-time error

Chapter 7: Strings and things

Way back in Section 1.3 I talked about run-time errors, which are errors that don't appear until a
program has started running. So far, you probably haven't seen many run-time errors, because we
haven't been doing many things that can cause one. Well, now we are. If you use the [] operator and
you provide an index that is negative or greater than size-1, C++ will fetch what would be at that
location in the string, but it's not part of the string, so it's effectively garbage. If you assign to it, you
will be changing a different variable altogether! This is a common mistake. If you want to be more
cautious, you can write fruit.at[index], which will check to make sure that the value of index is
legal. If it's not, you may get a run-time error and a message something like this:

index out of range: 6, string: banana

Try fruit.at(6) in your development environment and see how it looks.

7.7 The £ind function

The string class provides several other functions that you can invoke on strings. The £ind function
is like the opposite the [] operator. Instead of taking an index and extracting the character at that
index, find takes a character and finds the index where that character appears.

string fruit = "banana';
int index = fruit.find('a');

This example finds the index of the letter 'a' in the string. In this case, the letter appears three times,
so it is not obvious what £ind should do. According to the documentation, it returns the index of the
first appearance, so the result is 1. If the given letter does not appear in the string, £ind returns a
special value called string: :npos, which can be tested. For example,

int possibleIndex = fruit.find('x');
if (possibleIndex == string::npos) {

cout << "No 'x' in fruit!\n";

}

In addition, there is a version of find that takes another string as an argument and that finds the
index where the substring appears in the string. For example, string fruit = "banana";
int index = fruit.find("nan");

This example returns the value 2.

You should remember from Section 5.4 that there can be more than one function with the same name,
as long as they take a different number of parameters or different types. In this case, C++ knows
which version of f£ind to invoke by looking at the type of the argument we provide.

7.8 Our own version of £ind

If we are looking for a letter in a string, we may not want to start at the beginning of the string. One
way to generalize the £ind function is to write a version that takes an additional parameter —the index

Chapter 7: Strings and things

where we should start looking. Here is an implementation of this function.

int find (string s, char c, int i)

{

while (i<s.size()) {

if (s[i] == c) return i;
i=1i+1;

}

return string::npos;

}

Instead of invoking this function on a string, like the first version of £ind, we have to pass

the string as the first argument. The other arguments are the character we are looking for and the
index where we should start. (As it turns out, the built-in version of £ind has an optional second
argument, which specifies where to start searching. Thus you can write s.find(c, i) to find the
first occurrence of c starting at index i.)

7.9 Looping and counting
The following program counts the number of times the letter 'a' appears in a string:

string fruit = "banana";
int size = fruit.size();

int count = 0;

int index = 0;
while (index < size) {
if (fruit[index] == 'a') {
count = count + 1;
}

index = index + 1;

}

cout << count << endl;

This program demonstrates a common idiom, called a counter. The variable count is initialized to
zero and then incremented each time we find an 'a'. (To increment is to increase by one; it is the
opposite of decrement, and unrelated to excrement, which is a noun.) When we exit the loop, count
contains the result: the total number of a's.

As an exercise, encapsulate this code in a function named countLetters, and generalize it so that it
accepts the string and the letter as arguments.

As a second exercise, rewrite this function so that instead of traversing the string, it uses the version
of £ind we wrote in the previous section.

Chapter 7: Strings and things

7.10 Increment and decrement operators

Incrementing and decrementing are such common operations that C++ provides special operators for
them. The ++ operator adds one to the current value of an int, char or double, and -- subtracts one.
Neither operator works on strings, and neither should be used on boo1ls.

Technically, it is legal to increment a variable and use it in an expression at the same time. For
example, you might see something like:

cout << i++ << endl;

Looking at this, it is not clear whether the increment will take effect before or after the value is
displayed. Because expressions like this tend to be confusing, I would discourage you from using
them. In fact, to discourage you even more, I'm not going to tell you what the result is. If you really
want to know, you can try it.

Using the increment operators, we can rewrite the letter-counter:

int index = 0;
while (index < size) {
if (fruit[index] == 'a') {
count++;
}

index++;

}
It is a common error to write something like
index = index++; // WRONG!!

Unfortunately, this is syntactically legal, so the compiler will not warn you. The effect of this
statement is to leave the value of index unchanged. This is often a difficult bug to track down.

Remember, you can write index = index + 1;,0r you can write index++;, but you shouldn't mix
them.

7.11 String concatenation

Interestingly, the + operator can be used on strings; it performs string concatenation. To concatenate
means to join the two operands end to end. For example:

string fruit = "banana";
string bakedGood = " nut bread";
string dessert = fruit + bakedGood;

cout << dessert << endl;

The output of this program is banana nut bread.

Chapter 7: Strings and things

Unfortunately, the + operator does not work on native C strings, so you cannot write something like

n

string dessert2 = "banana" + nut bread";

because both operands are C strings. As long as one of the operands is a string, though, C++ will
automatically convert the other.

It is also possible to concatenate a character onto the beginning or end of a string. In the following
example, we will use concatenation and character arithmetic to output an abecedarian series.

"Abecedarian" refers to a series or list in which the elements appear in alphabetical order. For
example, in Robert McCloskey's book Make Way for Ducklings, the names of the ducklings are Jack,
Kack, Lack, Mack, Nack, Ouack, Pack and Quack. Here is a loop that outputs these names in order:

string suffix = "ack";

char letter = 'J';

while (letter <= 'Q"') {
cout << letter + suffix << endl;
letter++;

}
The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that's not quite right because I've misspelled "Ouack" and "Quack." As an exercise, modify
the program to correct this error.

Again, be careful to use string concatenation only with strings and not with native C strings.
Unfortunately, an expression like letter + "ack" is syntactically legal in C++, although it produces
a very strange result, at least in my development environment.

7.12 strings are mutable

You can change the letters in a string one at a time using the [] operator on the left side of an
assignment. For example,

string greeting = "Hello, world!";
greeting[0] = 'J';

Chapter 7: Strings and things

cout << greeting << endl;

produces the output Jello, world!.

7.13 strings are comparable

All the comparison operators that work on ints and doubles also work on strings. For example, if
you want to know if two strings are equal:

if (word == "banana") {
cout << "Yes, we have no bananas!" << endl;

}

The other comparison operations are useful for putting words in alphabetical order.

if (word < "banana") {
cout << "Your word, " << word << ", comes before banana." << endl;
} else if (word > "banana") {

cout << "Your word, " << word << ", comes after banana." << endl;
} else {
cout << "Yes, we have no bananas!" << endl;

}

You should be aware, though, that the string class does not handle upper and lower case letters the
same way that people do. All the upper case letters come before all the lower case letters. As a result,

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, like all lower-case,
before performing the comparison. The next sections explains how. I will not address the more
difficult problem, which is making the program realize that zebras are not fruit.

7.14 Character classification

It is often useful to examine a character and test whether it is upper or lower case, or whether it is a
character or a digit. C++ provides a library of functions that perform this kind of character
classification. In order to use these functions, you have to include the header file cctype.

char letter = 'a';
if (isalpha(letter)) {
cout << "The character " << letter << " is a letter." << endl;

}

The return value from isalpha should be a bool, but it is actually int and returns 1 if the argument is
a letter, and O if it is not.

Chapter 7: Strings and things

This oddity is not as inconvenient as it seems, because it is legal to use this kind of integer in a
conditional, as shown in the example. The value O is treated as false, and all non-zero values are
treated as true.

Technically, this sort of thing should not be allowed —integers are not the same thing as boolean
values. Nevertheless, the C++ habit of converting automatically between types can be useful.

Other character classification functions include isdigit, which identifies the digits O through 9, and
isspace, which identifies all kinds of "white" space, including spaces, tabs, newlines, and a few
others. There are also isupper and islower, which distinguish upper and lower case letters.

Finally, there are two functions that convert letters from one case to the other, called toupper and
tolower. Both take a single character as a parameter and return a (possibly converted) character.

char letter = 'a';
letter = toupper (letter);
cout << letter << endl;

The output of this code is A.

As an exercise, use the character classification and conversion library to write functions
named stringToUpper and stringToLower that take a single string as a parameter, and that
modify the string by converting all the letters to upper or lower case. The return type should be void.

7.15 Other string functions

This chapter does not cover all the string functions. Two additional ones, ¢_str and substr, are
covered in Section 23.2 and Section 23 .4.

7.16 Glossary

object
A collection of related data that comes with a set of functions that operate on it. The objects we
have used so far are the cout object provided by the system, and the standard string class.
index
A variable or value used to select one of the members of an ordered set, like a character from a
string.
traverse
To iterate through all the elements of a set performing a similar operation on each.
counter
A variable used to count something, usually initialized to zero and then incremented.
increment
Increase the value of a variable by one. The increment operator in C++ is ++. In fact, that's why
C++ 1s called C++, because it is meant to be one better than C.
decrement

Chapter 7: Strings and things

Decrease the value of a variable by one. The decrement operator in C++ is —-.
concatenate
To join two operands end-to-end.

Revised 2010-01-08.

=N
’

(|\ l (g‘ How to Think Like a Computer Scientist

10

Chapter 8: Structures

v—:\ (I\ /— How to Think Like a Computer Scientist INDEJL%

Chapter 8

Structures

8.1 Compound values

Most of the data types we have been working with represent a single value—an integer, a
floating-point number, a boolean value. strings are different in the sense that they are made up of
smaller pieces, the characters. Thus, strings are an example of a compound type.

Depending on what we are doing, we may want to treat a compound type as a single thing (or object),
or we may want to access its parts (or instance variables). This ambiguity is useful.

It is also useful to be able to create your own compound values. C++ provides two mechanisms for
doing that: structures and classes. We will start out with structures and get to classes in Chapter 14
(there is not much difference between them).

8.2 Point objects

As a simple example of a compound structure, consider the concept of a mathematical point. At one
level, a point is two numbers (coordinates) that we treat collectively as a single object. In
mathematical notation, points are often written in parentheses, with a comma separating the
coordinates. For example, (0, 0) indicates the origin, and (x, y) indicates the point x units to the
right and y units up from the origin.

A natural way to represent a point in C++ is with two doubles. The question, then, is how to group
these two values into a compound object, or structure. The answer is a struct definition:

struct Point {
double x, y;
}i

struct definitions appear outside of any function definition, usually at the beginning of the program
(after the include statements).

This definition indicates that there are two elements in this structure, named x and y. These elements

Chapter 8: Structures

are called instance variables, for reasons I will explain a little later.

It is a common error to leave off the semi-colon at the end of a structure definition. It might seem odd
to put a semi-colon after a squiggly-brace, but you'll get used to it.

Once you have defined the new structure, you can create variables with that type:

Point blank;
blank.x 3.0;
blank.y 4.0;

The first line is a conventional variable declaration: blank has type Point. The next two lines
initialize the instance variables of the structure. The "dot notation" used here is similar to the syntax
for invoking a function on an object, as in fruit.size(). Of course, one difference is that function
names are always followed by an argument list, even if it is empty.

The result of these assignments is shown in the following state diagram:

blank
< 3
y': 4

As usual, the name of the variable blank appears outside the box and its value appears inside the box.
In this case, that value is a compound object with two named instance variables.

8.3 Accessing instance variables

You can read the values of an instance variable using the same syntax we used to write them:
int x = blank.x;

The expression blank.x means "go to the object named blank and get the value of x." In this case
we assign that value to a local variable named x. Notice that there is no conflict between the local
variable named x and the instance variable named x. The purpose of dot notation is to identify which
variable you are referring to unambiguously.

You can use dot notation as part of any C++ expression, so the following are legal.

cout << blank.x << ", " << blank.y << endl;
double distance = blank.x * blank.x + blank.y * blank.y;

The first line outputs 3, 4; the second line calculates the value 25.

Chapter 8: Structures

8.4 Operations on structures

Most of the operators we have been using on other types, like mathematical operators (+, %, etc.) and
comparison operators (==, >, etc.), do not work on structures. Actually, it is possible to define the
meaning of these operators for the new type, but we won't do that in this book.

On the other hand, the assignment operator does work for structures. It can be used in two ways: to
initialize the instance variables of a structure or to copy the instance variables from one structure to
another. An initialization looks like this:

Point blank = { 3.0, 4.0 };

The values in squiggly braces get assigned to the instance variables of the structure one by one, in
order. So in this case, x gets the first value and y gets the second.

Unfortunately, this syntax can be used only in an initialization, not in an assignment statement. So the
following is illegal.

Point blank;
blank = { 3.0, 4.0 }; // WRONG !!

You might wonder why this perfectly reasonable statement should be illegal, and there is no good
answer. I'm sorry.

On the other hand, it is legal to assign one structure to another. For example:

Point pl = { 3.0, 4.0 };
Point p2 pl;
cout << p2.x << ", " << p2.y << endl;

The output of this program is 3, 4.

8.5 Structures as parameters

You can pass structures as parameters in the usual way. For example,

void printPoint (Point p) {
COU.t << ll(ll << p.x << n, n << p.y << u)u << endl;

}

printPoint takes a point as an argument and outputs it in the standard format. If you call
printPoint (blank), it will output (3, 4).

As a second example, we can rewrite the distance function from Section 5.2 so that it takes two
Points as parameters instead of four doubles.

double distance (Point pl, Point p2) {
double dx = p2.x - pl.x;
double dy = p2.y - pl.y;

Chapter 8: Structures

return sqrt (dx*dx + dy*dy);
}

8.6 Pass by value

When you pass a structure as an argument, remember that the argument and the parameter are not the
same variable. Instead, there are two variables (one in the caller and one in the callee) that have the
same value, at least initially. For example, when we call printPoint, the stack diagram looks like
this:

main
blank
< 3
yi 4

printPoint
P
x 3
y: 4

If printPoint happened to change one of the instance variables of p, it would have no effect on
blank. Of course, there is no reason for printPoint to modify its parameter, so this isolation
between the two functions is appropriate.

This kind of parameter-passing is called "pass by value" because it is the value of the structure (or
other type) that gets passed to the function.

8.7 Pass by reference

An alternative parameter-passing mechanism that is available in C++ is called "pass by reference.
This mechanism makes it possible to pass a structure to a procedure and modify it.

For example, you can reflect a point around the 45-degree line by swapping the two coordinates. The
most obvious (but incorrect) way to write a reflect function is something like this:

void reflect (Point p) // WRONG !!
{

double temp = p.x;

p.x = pP.Y;

p.y = temp;

}

Chapter 8: Structures

But this won't work, because the changes we make in reflect will have no effect on the caller.

Instead, we have to specify that we want to pass the parameter by reference. We do that by adding an
ampersand (&) to the parameter declaration:

void reflect (Pointé& p)

{
double temp = p.x;
p.x = p.y;
p.y = temp;

}

Now we can call the function in the usual way:

printPoint (blank);
reflect (blank);
printPoint (blank);

The output of this program is as expected:

(3, 4)
(4, 3)

Here's how we would draw a stack diagram for this program:

main
blank
X 4 =l
X 3
] reflact

The parameter p is a reference to the structure named blank. The usual representation for a reference
is a dot with an arrow that points to whatever the reference refers to.

The important thing to see in this diagram is that any changes that reflect makes in p will also affect
blank.

Passing structures by reference is more versatile than passing by value, because the callee can modify
the structure. It is also faster, because the system does not have to copy the whole structure. On the
other hand, it is less safe, since it is harder to keep track of what gets modified where. Nevertheless, in
C++ programs, almost all structures are passed by reference almost all the time. In this book I will
follow that convention.

8.8 Rectangles

Chapter 8: Structures

Now let's say that we want to create a structure to represent a rectangle. The question is, what
information do I have to provide in order to specify a rectangle? To keep things simple let's assume
that the rectangle will be oriented vertically or horizontally, never at an angle.

There are a few possibilities: I could specify the center of the rectangle (two coordinates) and its size
(width and height), or I could specify one of the corners and the size, or I could specify two opposing
corners.

The most common choice in existing programs is to specify the upper left corner of the rectangle and
the size. To do that in C++, we will define a structure that contains a Point and two doubles.

struct Rectangle {
Point corner;
double width, height;

}i

Notice that one structure can contain another. In fact, this sort of thing is quite common. Of course,
this means that in order to create a Rectangle, we have to create a Point first:

Point corner = { 0.0, 0.0 };
Rectangle box = { corner, 100.0, 200.0 };

This code creates a new Rectangle structure and initializes the instance variables. The figure shows
the effect of this assignment.

box

corner:
. 0
Yo 0

width: 100
height: 200

We can access the width and height in the usual way:

box.width = box.width + 50.0;
cout << box.height << endl;

In order to access the instance variables of corner, we can use a temporary variable:

Point temp = box.corner;
double x = temp.x;

Alternatively, we can compose the two statements:

double x = box.corner.x;

Chapter 8: Structures

It makes the most sense to read this statement from right to left: "Extract x from the corner of the
box, and assign it to the local variable x."

While we are on the subject of composition, I should point out that you can, in fact, create the Point
and the Rectangle at the same time:

Rectangle box = { { 0.0, 0.0 }, 100.0, 200.0 };

The innermost squiggly braces are the coordinates of the corner point; together they make up the first
of the three values that go into the new Rectangle. This statement is an example of nested structure.

8.9 Structures as return types

You can write functions that return structures. For example, findCenter takes a Rectangle as an
argument and returns a Point that contains the coordinates of the center of the Rectangle:

Point findCenter (Rectangle& box)
{

double x = box.corner.x + box.width/2;
double y = box.corner.y + box.height/2;
Point result = {x, y};

return result;

}

To call this function, we have to pass a box as an argument (notice that it is being passed by
reference), and assign the return value to a Point variable:

Rectangle box = { {0.0, 0.0}, 100, 200 };
Point center = findCenter (box);
printPoint (center);

The output of this program is (50, 100).

8.10 Passing other types by reference

It's not just structures that can be passed by reference. All the other types we've seen can, too. For
example, to swap two integers, we could write something like:

void swap (int& x, int& y)

{
int temp = x;
X =Y
y = temp;

}

We would call this function in the usual way:

int i = 7;

Chapter 8: Structures

int j = 9;
swap (i, 3J);
cout << 1 << j << endl;

The output of this program is 97. Draw a stack diagram for this program to convince yourself this is
true. If the parameters x and y were declared as regular parameters (without the &s), swap would not
work. It would modify x and y and have no effect on i and j.

When people start passing things like integers by reference, they often try to use an expression as a
reference argument. For example:

int i = 7;
int j = 9;
swap (i, j+1); // WRONG! !

This is not legal because the expression j+1 is not a variable—it does not occupy a location that the
reference can refer to. It is a little tricky to figure out exactly what kinds of expressions can be passed
by reference. For now a good rule of thumb is that reference arguments have to be variables.

8.11 Getting user input

The programs we have written so far are pretty predictable; they do the same thing every time they
run. Most of the time, though, we want programs that take input from the user and respond
accordingly.

There are many ways to get input, including keyboard input, mouse movements and button clicks, as
well as more exotic mechanisms like voice control and retinal scanning. In this text we will consider
only keyboard input.

In the header file iostream, C++ defines an object named cin that handles input in much the same
way that cout handles output. To get an integer value from the user:

int x;
cin >> x;

The >> operator causes the program to stop executing and wait for the user to type something. If the
user types a valid integer, the program converts it into an integer value and stores it in x.

If the user types something other than an integer, C++ doesn't report an error, or anything sensible like
that. Instead, it puts some meaningless value in x and continues.

Fortunately, there is a way to check and see if an input statement succeeds. We can invoke the good
function on cin to check what is called the stream state. good returns a boo1l: if true, then the last
input statement succeeded. If not, we know that some previous operation failed, and also that the next
operation will fail.

Thus, getting input from the user might look like this:

Chapter 8: Structures

int main ()

{

int x;

// prompt the user for input

cout << "Enter an integer: ";

// get input
cin >> x;

// check and see if the input statement succeeded
if (cin.good() == false) {
cout << "That was not an integer." << endl;
return -1;

}

// print the value we got from the user
cout << x << endl;
return 0;

}
cin can also be used to input a pstring:

string name;

cout << "What is your name? ";
cin >> name;
cout << name << endl;

Unfortunately, this statement only takes the first word of input, and leaves the rest for the next input
statement. So, if you run this program and type your full name, it will only output your first name.

Because of these problems (inability to handle errors and funny behavior), I avoid using the >>
operator altogether, unless I am reading data from a source that is known to be error-free.

Instead, I use a function in the string library called getline.

string name;

cout << "What is your name? ";
getline (cin, name);
cout << name << endl;

The first argument to getline is cin, which is where the input is coming from. The second argument
is the name of the string where you want the result to be stored.

getline reads the entire line until the user hits Return or Enter. This is useful for inputting strings
that contain spaces.

In fact, get1line is generally useful for getting input of any kind. For example, if you wanted the user
to type an integer, you could input a string and then check to see if it is a valid integer. If so, you can
convert it to an integer value. If not, you can print an error message and ask the user to try again.

To convert a C string to an integer you can use the atoi function defined in the header file cstdlib.

Chapter 8: Structures

We will get to that in Section 23.4.

8.12 Glossary

structure
A collection of data grouped together and treated as a single object.

instance variable
One of the named pieces of data that make up a structure.

reference
A value that indicates or refers to a variable or structure. In a state diagram, a reference appears
as an arrow.

pass by value
A method of parameter-passing in which the value provided as an argument is copied into the
corresponding parameter, but the parameter and the argument occupy distinct locations.

pass by reference
A method of parameter-passing in which the parameter is a reference to the argument variable.
Changes to the parameter also affect the argument variable.

Revised 2008-12-06.

r—;\i /|\ /\—i How to Think Like a Computer Scientist tNDEL%
| i {

—_—

10

Chapter 9: More structures

v—:\ /l\ j /\— How to Think Like a Computer Scientist INDExf

Chapter 9

More structures

9.1 Time

As a second example of a user-defined structure, we will define a type called Time, which is used to
record the time of day. The various pieces of information that form a time are the hour, minute and
second, so these will be the instance variables of the structure.

The first step is to decide what type each instance variable should be. It seems clear that hour and
minute should be integers. Just to keep things interesting, let's make second a double, so we can
record fractions of a second.

Here's what the structure definition looks like:

struct Time {
int hour, minute;
double second;

}i
We can create a Time object in the usual way:
Time time = { 11, 59, 3.14159 };

The state diagram for this object looks like this:

time
hourr 11
minute: 59

second: 3.14159

The word "instance" is sometimes used when we talk about objects, because every object is an
instance (or example) of some type. The reason that instance variables are so-named is that every
instance of a type has a copy of the instance variables for that type.

Chapter 9: More structures

9.2 printTime

When we define a new type it is a good idea to write function that displays the instance variables in a
human-readable form. For example:

void printTime (Time& t) {
cout << t.hour << ":" << t.minute << ":" << t.second << endl;

}

The output of this function, if we pass time an argument, is 11:59:3.14159.

9.3 Functions for objects

In the next few sections, I will demonstrate several possible interfaces for functions that operate on
objects. For some operations, you will have a choice of several possible interfaces, so you should
consider the pros and cons of each of these:

pure function
Takes objects and/or basic types as arguments but does not modify the objects. The return value
is either a basic type or a new object created inside the function.

modifier
Takes objects as parameters and modifies some or all of them. Often returns void.

fill-in function
One of the parameters is an "empty" object that gets filled in by the function. Technically, this is
a type of modifier.

9.4 Pure functions

A function is considered a pure function if the result depends only on the arguments, and it has no side
effects like modifying an argument or outputting something. The only result of calling a pure function
is the return value.

One example is after, which compares two Times and returns a bool that indicates whether the first
operand comes after the second:

bool after (Time& timel, Time& time2) {
if (timel.hour > time2.hour) return true;
if (timel.hour < time2.hour) return false;

if (timel.minute > time2.minute) return true;
if (timel.minute < time2.minute) return false;

if (timel.second > time2.second) return true;

Chapter 9: More structures

return false;

}

What is the result of this function if the two times are equal? Does that seem like the appropriate
result for this function? If you were writing the documentation for this function, would you mention
that case specifically?

A second example is addTime, which calculates the sum of two times. For example, if itis 9:14: 30,
and your breadmaker takes 3 hours and 35 minutes, you could use addTime to figure out when the
bread will be done.

Here is a rough draft of this function that is not quite right:

Time addTime (Time& tl, Time& t2) {
Time sum;
sum.hour = tl.hour + t2.hour;
sum.minute = tl.minute + t2.minute;
sum.second = tl.second + t2.second;
return sum;

}

Here is an example of how to use this function. If currentTime contains the current time and
breadTime contains the amount of time it takes for your breadmaker to make bread, then you could
use addTime to figure out when the bread will be done.

Time currentTime = { 9, 14, 30.0 };

Time breadTime = { 3, 35, 0.0 };

Time doneTime = addTime (currentTime, breadTime);
printTime (doneTime);

The output of this program is 12:49:30, which is correct. On the other hand, there are cases where
the result is not correct. Can you think of one?

The problem is that this function does not deal with cases where the number of seconds or minutes
adds up to more than 60. When that happens we have to "carry" the extra seconds into the minutes
column, or extra minutes into the hours column.

Here's a second, corrected version of this function.

Time addTime (Time& tl, Time& t2) {
Time sum;
sum.hour = tl.hour + t2.hour;
sum.minute = tl.minute + t2.minute;
sum.second = tl.second + t2.second;
if (sum.second >= 60.0) {
sum.second -= 60.0;
sum.minute += 1;

}

if (sum.minute >= 60) {
sum.minute -= 60;
sum.hour += 1;

}

return sum;

Chapter 9: More structures

}

Although it's correct, it's starting to get big. Later, I will suggest an alternate approach to this problem
that will be much shorter.

This code demonstrates two operators we have not seen before, += and -=. These operators provide a
concise way to increment and decrement variables. For example, the statement sum.second -=
60.0; is equivalent to sum.second = sum.second - 60;

9.5 const parameters

You might have noticed that the parameters for after and addTime are being passed by reference.
Since these are pure functions, they do not modify the parameters they receive, so I could just as well
have passed them by value.

The advantage of passing by value is that the calling function and the callee are appropriately
encapsulated —it is not possible for a change in one to affect the other, except by affecting the return
value.

On the other hand, passing by reference usually is more efficient, because it avoids copying the
argument. Furthermore, there is a nice feature in C++, called const, that can make reference
parameters just as safe as value parameters.

If you are writing a function and you do not intend to modify a parameter, you can declare that it is a
constant reference parameter. The syntax looks like this:

void printTime (const Time& time)
Time addTime (const Time& tl, const Time& t2) ...

I've included only the first line of the functions. If you tell the compiler that you don't intend to
change a parameter, it can help remind you. If you try to change one, you should get a compiler error,
or at least a warning.

9.6 Modifiers

Of course, sometimes you want to modify one of the arguments. Functions that do are called
modifiers.

As an example of a modifier, consider increment, which adds a given number of seconds to a Time
object. Again, a rough draft of this function looks like:

void increment (Time& time, double secs) {
time.second += secs;

if (time.second >= 60.0) {

Chapter 9: More structures

time.second -= 60.0;
time.minute += 1;

}

if (time.minute >= 60) {
time.minute -= 60;
time.hour += 1;

}

}

The first line performs the basic operation; the remainder deals with the special cases we saw before.

Is this function correct? What happens if the argument secs is much greater than 60? In that case, it is
not enough to subtract 60 once; we have to keep doing it until second is below 60. We can do that by
replacing the if statements with while statements:

void increment (Time& time, double secs) {
time.second += secs;

while (time.second >= 60.0) {
time.second -= 60.0;
time.minute += 1;

}

while (time.minute >= 60) {
time.minute -= 60;
time.hour += 1;

}

}

This solution is correct, but not very efficient. Can you think of a solution that does not require
iteration?

9.7 Fill-in functions

Occasionally you will see functions like addTime written with a different interface (different
arguments and return values). Instead of creating a new object every time addTime is called, we could
require the caller to provide an "empty" object where addTime can store the result. Compare the
following with the previous version:

void addTimeFill (const Time& tl, const Time& t2, Time& sum) {
sum.hour = tl.hour + t2.hour;
sum.minute = tl.minute + t2.minute;
sum.second tl.second + t2.second;

if (sum.second >= 60.0) {
sum.second -= 60.0;
sum.minute += 1;

}

if (sum.minute >= 60) {
sum.minute -= 60;
sum.hour += 1;

}

}

Chapter 9: More structures

One advantage of this approach is that the caller has the option of reusing the same object repeatedly
to perform a series of additions. This can be slightly more efficient, although it can be confusing
enough to cause subtle errors. For the vast majority of programming, it is worth a spending a little run
time to avoid a lot of debugging time.

Notice that the first two parameters can be declared const, but the third cannot.

9.8 Which is best?

Anything that can be done with modifiers and fill-in functions can also be done with pure functions. In
fact, there are programming languages, called functional programming languages, that only allow
pure functions. Some programmers believe that programs that use pure functions are faster to develop
and less error-prone than programs that use modifiers. Nevertheless, there are times when modifiers
are convenient, and cases where functional programs are less efficient.

In general, I recommend that you write pure functions whenever it is reasonable to do so, and resort to
modifiers only if there is a compelling advantage. This approach might be called a functional
programming style.

9.9 Incremental development versus planning

In this chapter I have demonstrated an approach to program development I refer to as rapid
prototyping with iterative improvement. In each case, I wrote a rough draft (or prototype) that
performed the basic calculation, and then tested it on a few cases, correcting flaws as I found them.

Although this approach can be effective, it can lead to code that is unnecessarily complicated —since
it deals with many special cases —and unreliable —since it is hard to know if you have found all the
eITors.

An alternative is high-level planning, in which a little insight into the problem can make the
programming much easier. In this case the insight is that a Time is really a three-digit number in base
60! The second is the "ones column," the minute is the "60's column", and the hour is the "3600's
column."

When we wrote addTime and increment, we were effectively doing addition in base 60, which is
why we had to "carry" from one column to the next.

Thus an alternate approach to the whole problem is to convert Times into doubles and take advantage
of the fact that the computer already knows how to do arithmetic with doubles. Here is a function
that converts a Time into a double:

double convertToSeconds (const Time& t) {
int minutes = t.hour * 60 + t.minute;
double seconds = minutes * 60 + t.second;

Chapter 9: More structures

return seconds;

}
Now all we need is a way to convert from a double to a Time object:
Time makeTime (double secs) {

Time time;
time.hour = int (secs / 3600.0);

secs -= time.hour * 3600.0;
time.minute = int (secs / 60.0);
secs -= time.minute * 60;

time.second = secs;
return time;

}

You might have to think a bit to convince yourself that the technique I am using to convert from one
base to another is correct. Assuming you are convinced, we can use these functions to rewrite
addTime:

Time addTime (const Time& tl, const Time& t2) {
double seconds = convertToSeconds (tl) + convertToSeconds (t2);
return makeTime (seconds);

}

This is much shorter than the original version, and it is much easier to demonstrate that it is correct
(assuming, as usual, that the functions it calls are correct). As an exercise, rewrite increment the
same way.

9.10 Generalization

In some ways converting from base 60 to base 10 and back is harder than just dealing with times.
Base conversion is more abstract; our intuition for dealing with times is better.

But if we have the insight to treat times as base 60 numbers, and make the investment of writing the
conversion functions (convertToSeconds and makeTime), we get a program that is shorter, easier to
read and debug, and more reliable.

It is also easier to add more features later. For example, imagine subtracting two Times to find the
duration between them. The naive approach would be to implement subtraction with borrowing.
Using the conversion functions would be easier and more likely to be correct.

Ironically, sometimes making a problem harder (more general) makes is easier (fewer special cases,
fewer opportunities for error).

9.11 Algorithms

When you write a general solution for a class of problems, as opposed to a specific solution to a single

Chapter 9: More structures

problem, you have written an algorithm. I mentioned this word in Chapter 1, but did not define it
carefully. It is not easy to define, so I will try a couple of approaches.

First, consider something that is not an algorithm. When you learned to multiply single-digit numbers,
you probably memorized the multiplication table. In effect, you memorized 100 specific solutions.
That kind of knowledge is not really algorithmic.

But if you were "lazy," you probably cheated by learning a few tricks. For example, to find the
product of n and 9, you can write n-1 as the first digit and 10-n as the second digit. This trick is a
general solution for multiplying any single-digit number by 9. That's an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrowing, and long
division are all algorithms. One of the characteristics of algorithms is that they do not require any
intelligence to carry out. They are mechanical processes in which each step follows from the last
according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school learning to execute
algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually challenging, and a
central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are the most
difficult to express algorithmically. Understanding natural language is a good example. We all do it,
but so far no one has been able to explain zow we do it, at least not in the form of an algorithm.

Later in this book, you will have the opportunity to design simple algorithms for a variety of
problems. If you take the next class in the computer science sequence, Data Structures, you will see
some of the most interesting, clever, and useful algorithms computer science has produced.

9.12 Glossary

instance
An example from a category. My cat is an instance of the category "feline things." Every object
is an instance of some type.

instance variable
One of the named data items that make up an structure. Each structure has its own copy of the
instance variables for its type.

constant reference parameter
A parameter that is passed by reference but that cannot be modified.

pure function
A function whose result depends only on its parameters, and that has so effects other than
returning a value.

functional programming style
A style of program design in which the majority of functions are pure.

Chapter 9: More structures

modifier
A function that changes one or more of the objects it receives as parameters, and usually returns
void.

fill-in function
A function that takes an "empty" object as a parameter and fills it its instance variables instead
of generating a return value.

algorithm
A set of instructions for solving a class of problems by a mechanical, unintelligent process.

Revised 2008-12-06.

=N
’

T €

How to Think Like a Computer Scientist wnz

Chapter 10: Vectors

| | {
v;\‘ m | = How to Think Like a Computer Scientist INDEX

Chapter 10

Vectors

A vector is a set of values where each value is identified by a number (called an index). An string is
similar to a vector, since it is made up of an indexed set of characters. The nice thing about vectors is
that they can be made up of any type of element, including basic types like ints and doubles, and
user-defined types like Point and Time.

The standard vector type is called vector, but in order to use it, you have to include the header
file vector, which will be most convenient to use if you also include using namespace std.

You can create a vector the same way you create other variable types:

vector<int> count;
vector<double> doubleVector;

The type that makes up the vector appears in angle brackets (< and >). The first line creates a vector of
integers named count; the second creates a vector of doubles. Although these statements are legal,
they are not very useful because they create vectors that have no elements (their length is zero). (It is
possible to add elements to a vector after it is declared, but I will not discuss that here.) It is more
common to specify the length of the vector in parentheses:

vector<int> count (4);

The syntax here is a little odd; it looks like a combination of a variable declarations and a function
call. In fact, that's exactly what it is. The function we are invoking is a vector constructor. A
constructor is a special function that creates new objects and initializes their instance variables. In
this case, the constructor takes a single argument, which is the size of the new vector.

The following figure shows how vectors are represented in state diagrams:

count

The large numbers inside the boxes are the elements of the vector. The small numbers outside the
boxes are the indices used to identify each box. When you allocate a new vector, the elements are not

Chapter 10: Vectors

initialized. They could contain any values.

There is another constructor for vectors that takes two parameters; the second is a "fill value," the
value that will be assigned to each of the elements.

vector<int> count (4, 0);

This statement creates a vector of four elements and initializes all of them to zero.

10.1 Accessing elements

The [] operator reads and writes the elements of a vector in much the same way it accesses the
characters in a string. As with strings, the indices start at zero, so count[0] refers to the "zeroeth"
element of the vector, and count[1] refers to the "oneth" element. You can use the [] operator
anywhere in an expression:

count[0] = 7;

count[1l] = count[0] * 2;
count[2]++;
count[3] -= 60;

All of these are legal assignment statements. Here is the effect of this code fragment:

count

Since elements of this vector are numbered from O to 3, there is no element with the index 4. Itis a
common error to go beyond the bounds of a vector, which causes a run-time error. The program
outputs an error message like "Illegal vector index", and then quits.

You can use any expression as an index, as long as it has type int. One of the most common ways to
index a vector is with a loop variable. For example:

int i = 0;

while (i < 4) {
cout << count[i] << endl;
i++;

}

This while loop counts from O to 4; when the loop variable i is 4, the condition fails and the loop
terminates. Thus, the body of the loop is only executed when i is 0, 1, 2 and 3.

Each time through the loop we use i as an index into the vector, outputting the ith element. This type
of vector traversal is very common. Vectors and loops go together like fava beans and a nice Chianti.

Chapter 10: Vectors

10.2 Copying vectors

There is one more constructor for vectors, which is called a copy constructor because it takes
one vector as an argument and creates a new vector that is the same size, with the same elements.

vector<int> copy (count);
Although this syntax is legal, it is almost never used for vectors because there is a better alternative:
vector<int> copy = count;

The = operator works on vectors in pretty much the way you would expect.

10.3 for loops

The loops we have written so far have a number of elements in common. All of them start by
initializing a variable; they have a test, or condition, that depends on that variable; and inside the loop
they do something to that variable, like increment it.

This type of loop is so common that there is an alternate loop statement, called for, that expresses it
more concisely. The general syntax looks like this:

for (INITIALIZER; CONDITION; INCREMENTOR) {
BODY

}
This statement is exactly equivalent to

INITIALIZER;

while (CONDITION) {
BODY
INCREMENTOR

}

except that it is more concise and, since it puts all the loop-related statements in one place, it is easier
to read. For example:

for (int i = 0; i < 4; i++) {
cout << count[i] << endl;

}
is equivalent to

int i = 0;

while (i < 4) {
cout << count[i] << endl;
i++;

}

Chapter 10: Vectors

10.4 Vector length

There are a number of functions you can invoke on a vector. One of them is especially useful: size.
Not surprisingly, it returns the size (length) of the vector (the number of elements).

It is a good idea to use this value as the upper bound of a loop, rather than a constant. That way, if the
size of the vector changes, you won't have to go through the program changing all the loops; they will
work correctly for any size vector.

for (int i = 0; i < count.size(); i++) {
cout << count[i] << endl;

}

The last time the body of the loop gets executed, the value of i is count.size() - 1, which is the
index of the last element. When i is equal to count.size(), the condition fails and the body is not
executed, which is a good thing, since it would cause a run-time error.

10.5 Random numbers

Most computer programs do the same thing every time they are executed, so they are said to be
deterministic. Usually, determinism is a good thing, since we expect the same calculation to yield the
same result. For some applications, though, we would like the computer to be unpredictable. Games
are an obvious example.

Making a program truly nondeterministic turns out to be not so easy, but there are ways to make it at
least seem nondeterministic. One of them is to generate pseudorandom numbers and use them to
determine the outcome of the program. Pseudorandom numbers are not truly random in the
mathematical sense, but for our purposes, they will do.

C++ provides a function called random that generates pseudorandom numbers. It is declared in the
header file cstdlib, which contains a variety of "standard library" functions, hence the name.

The return value from random is an integer between 0 and RAND_MAX, where RAND_MAX is a large
number (about 2 billion on my computer) also defined in the header file. Each time you call random
you get a different randomly-generated number. To see a sample, run this loop:

for (int i = 0; i < 4; i++) {
int x = random ();
cout << xX << endl;

}
On my machine I got the following output:

1804289383
846930886
1681692777

Chapter 10: Vectors

1714636915
You will probably get something similar, but different, on yours.

Of course, we don't always want to work with gigantic integers. More often we want to generate
integers between 0 and some upper bound. A simple way to do that is with the modulus operator. For
example:

int x
int y

random ();
X % upperBound;

Since y is the remainder when x is divided by upperBound, the only possible values for y are between
0 and upperBound - 1, including both end points. Keep in mind, though, that y will never be equal
to upperBound.

It is also frequently useful to generate random floating-point values. A common way to do that is by
dividing by RAND_MAX. For example:

int x = random ();
double y = double(x) / RAND_ MAX;

This code sets y to a random value between 0.0 and 1.0, including both end points. As an exercise,
you might want to think about how to generate a random floating-point value in a given range; for
example, between 100.0 and 200.0.

10.6 Statistics

The numbers generated by random are supposed to be distributed uniformly. That means that each
value in the range should be equally likely. If we count the number of times each value appears, it
should be roughly the same for all values, provided that we generate a large number of values.

In the next few sections, we will write programs that generate a sequence of random numbers and
check whether this property holds true.

10.7 Vector of random numbers

The first step is to generate a large number of random values and store them in a vector. By "large
number," of course, I mean 20. It's always a good idea to start with a manageable number, to help with
debugging, and then increase it later.

The following function takes a single argument, the size of the vector. It allocates a new vector of
ints, and fills it with random values between 0 and upperBound-1.

vector<int> randomVector (int n, int upperBound) {
vector<int> vec (n);

Chapter 10: Vectors

for (int i = 0; i<vec.size(); i++) {
vec[i] = random () % upperBound;

}

return vec;

}

The return type is vector<int>, which means that this function returns a vector of integers. To test
this function, it is convenient to have a function that outputs the contents of a vector.

void printVector (const vector<int>& vec) {
for (int i = 0; i<vec.size(); i++) {

non

cout << vec[i] << ;
}
}

Notice that it is legal to pass vectors by reference. In fact it is quite common, since it makes it
unnecessary to copy the vector. Since printvector does not modify the vector, we declare the
parameter const.

The following code generates a vector and outputs it:

int numValues = 20;

int upperBound = 10;

vector<int> Vector = randomVector (numValues, upperBound);
printVector (Vector);

On my machine the output is
3675356291270936062F6
which is pretty random-looking. Your results may differ.

If these numbers are really random, we expect each digit to appear the same number of times—twice
each. In fact, the number 6 appears five times, and the numbers 4 and 8 never appear at all.

Do these results mean the values are not really uniform? It's hard to tell. With so few values, the
chances are slim that we would get exactly what we expect. But as the number of values increases, the
outcome should be more predictable.

To test this theory, we'll write some programs that count the number of times each value appears, and
then see what happens when we increase numvalues.

10.8 Counting

A good approach to problems like this is to think of simple functions that are easy to write, and that
might turn out to be useful. Then you can combine them into a solution. This approach is sometimes
called bottom-up design. Of course, it is not easy to know ahead of time which functions are likely to
be useful, but as you gain experience you will have a better idea.

Chapter 10: Vectors

Also, it is not always obvious what sort of things are easy to write, but a good approach is to look for
subproblems that fit a pattern you have seen before.

Back in Section 7.9 we looked at a loop that traversed a string and counted the number of times a
given letter appeared. You can think of this program as an example of a pattern called "traverse and
count." The elements of this pattern are:

e A set or container that can be traversed, like a string or a vector.
e A test that you can apply to each element in the container.
e A counter that keeps track of how many elements pass the test.

In this case, I have a function in mind called howMany that counts the number of elements in a vector
that equal a given value. The parameters are the vector and the integer value we are looking for. The
return value is the number of times the value appears.

int howMany (const vector<int>& vec, int value) {
int count = 0;
for (int i=0; i< vec.size(); i++) {
if (vec[i] == value) count++;

}

return count;

}

10.9 Checking the other values

howMany only counts the occurrences of a particular value, and we are interested in seeing how many
times each value appears. We can solve that problem with a loop:

int numvValues = 20;
int upperBound = 10;
vector<int> Vector = randomVector (numValues, upperBound);

cout << "value\thowMany";
for (int i = 0; i<upperBound; i++) {

cout << i << '\t' << howMany (Vector, i) << endl;

}

Notice that it is legal to declare a variable inside a for statement. This syntax is sometimes
convenient, but you should be aware that a variable declared inside a loop only exists inside the loop.
If you try to refer to i later, you will get a compiler error.

This code uses the loop variable as an argument to howMany, in order to check each value between 0
and 9, in order. The result is:

value howMany

> WwWwiNh ko
OCWWEN

Chapter 10: Vectors

O oo Jo U
NODNMUOIN

Again, it is hard to tell if the digits are really appearing equally often. If we increase numvalues to
100,000 we get the following:

<
o
'—l
c
)

howMany
10130
10072
9990
9842
10174
9930
10059
9954
9891
9958

oo uUudbd WNhEO

In each case, the number of appearances is within about 1% of the expected value (10,000), so we
conclude that the random numbers are probably uniform.

10.10 A histogram

It is often useful to take the data from the previous tables and store them for later access, rather than
just print them. What we need is a way to store 10 integers. We could create 10 integer variables with
names like howManyOnes, howManyTwos, etc. But that would require a lot of typing, and it would be a
real pain later if we decided to change the range of values.

A better solution is to use a vector with length 10. That way we can create all ten storage locations at
once and we can access them using indices, rather than ten different names. Here's how:

int numValues = 100000;

int upperBound = 10;

vector<int> vector = randomVector (numValues, upperBound);
vector<int> histogram (upperBound);

for (int i = 0; i<upperBound; i++) {
int count = howMany (Vector, i);
histogram[i] = count;

}

I called the vector histogram because that's a statistical term for a vector of numbers that counts the
number of appearances of a range of values.

The tricky thing here is that I am using the loop variable in two different ways. First, it is an argument
to howMany, specifying which value I am interested in. Second, it is an index into the histogram,
specifying which location I should store the result in.

Chapter 10: Vectors

10.11 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time it calls howMany, it traverses
the entire vector. In this example we have to traverse the vector ten times!

It would be better to make a single pass through the vector. For each value in the vector we could find
the corresponding counter and increment it. In other words, we can use the value from the vector as an
index into the histogram. Here's what that looks like:

vector<int> histogram (upperBound, 0);

for (int i = 0; i<numValues; i++) {
int index = Vector[i];
histogram[index]++;

}

The first line initializes the elements of the histogram to zeroes. That way, when we use the increment
operator (++) inside the loop, we know we are starting from zero. Forgetting to initialize counters is a
common error.

As an exercise, encapsulate this code in a function called histogram that takes a vector and the range
of values in the vector (in this case 0 through 10), and that returns a histogram of the values in the
vector.

10.12 Random seeds

If you have run the code in this chapter a few times, you might have noticed that you are getting the
same "random" values every time. That's not very random!

One of the properties of pseudorandom number generators is that if they start from the same place
they will generate the same sequence of values. The starting place is called a seed; by default, C++
uses the same seed every time you run the program.

While you are debugging, it is often helpful to see the same sequence over and over. That way, when
you make a change to the program you can compare the output before and after the change.

If you want to choose a different seed for the pseudorandom number generator, you can use the srand
function (in cstdlib). It takes a single argument, which is an integer between 0 and RAND MAX.

For many applications, like games, you want to see a different random sequence every time the
program runs. A common way to do that is to use a function call like time (NULL) (in the ctime
library) to generate something reasonably unpredictable and unrepeatable (in this case, the number

of seconds since January 1, 1970), and use that number as a seed. The details of how to do that
depend on your development environment. Use srand (1) to reinitialize to the default pseudorandom

Chapter 10: Vectors

number sequence (the one you get if you don't do an srand).

10.13 Glossary

vector
A named collection of values, where all the values have the same type, and each value is
identified by an index.
element
One of the values in a vector. The [] operator selects elements of a vector.
index
An integer variable or value used to indicate an element of a vector.
constructor
A special function that creates a new object and initializes its instance variables.
deterministic
A program that does the same thing every time it is run.
pseudorandom
A sequence of numbers that appear to be random, but which are actually the product of a
deterministic computation.
seed
A value used to initialize a random number sequence. Using the same seed should yield the
same sequence of values.
bottom-up design
A method of program development that starts by writing small, useful functions and then
assembling them into larger solutions.
histogram
A vector of integers where each integer counts the number of values that fall into a certain
range.

Revised 2008-12-06.

- T €= How to Think Like a Computer Scientist INDEX]
i i i {

—_—

10

Chapter 11: Member functions

r—: /I\ /:— How to Think Like a Computer Scientist INDEJL%

Chapter 11

Member functions

11.1 Objects and functions

C++ is generally considered an object-oriented programming language, which means that it provides
features that support object-oriented programming.

It's not easy to define object-oriented programming, but we have already seen some features of it:

1. Programs are made up of a collection of structure definitions and function definitions, where
most of the functions operate on specific kinds of structures (or objecs).

2. Each structure definition corresponds to some object or concept in the real world, and the
functions that operate on that structure correspond to the ways real-world objects interact.

For example, the Time structure we defined in Chapter 9 obviously corresponds to the way people
record the time of day, and the operations we defined correspond to the sorts of things people do with
recorded times. Similarly, the Point and Rectangle structures correspond to the mathematical
concept of a point and a rectangle.

So far, though, we have not taken advantage of the features C++ provides to support object-oriented
programming. Strictly speaking, these features are not necessary. For the most part they provide an
alternate syntax for doing things we have already done, but in many cases the alternate syntax is more
concise and more accurately conveys the structure of the program.

For example, in the Time program, there is no obvious connection between the structure definition
and the function definitions that follow. With some examination, it is apparent that every function
takes at least one Time structure as a parameter.

This observation is the motivation for member functions. Member function differ from the other
functions we have written in two ways:

1. When we call the function, we invoke it on an object, rather than just call it. People sometimes
describe this process as "performing an operation on an object," or "sending a message to an
object."

2. The function is declared inside the struct definition, in order to make the relationship between
the structure and the function explicit.

Chapter 11: Member functions

In the next few sections, we will take the functions from Chapter 9 and transform them into member
functions. One thing you should realize is that this transformation is purely mechanical; in other
words, you can do it just by following a sequence of steps.

As I said, anything that can be done with a member function can also be done with a nonmember
function (sometimes called a free-standing function). But sometimes there is an advantage to one
over the other. If you are comfortable converting from one form to another, you will be able to choose
the best form for whatever you are doing.

11.2 print

In Chapter 9 we defined a structure named Time and wrote a function named printTime

struct Time {
int hour, minute;
double second;

}i

void printTime (const Time& time) {
cout << time.hour << ":" << time.minute <<

}

non
.

<< time.second << endl;

To call this function, we had to pass a Time object as a parameter.

Time currentTime = { 9, 14, 30.0 };
printTime (currentTime);

To make printTime into a member function, the first step is to change the name of the function from
printTime to Time: :print. The :: operator separates the name of the structure from the name of
the function; together they indicate that this is a function named print that can be invoked on a Time
structure.

The next step is to eliminate the parameter. Instead of passing an object as an argument, we are going
to invoke the function on an object.

As a result, inside the function, we no longer have a parameter named time. Instead, we have a
current object, which is the object the function is invoked on. We can refer to the current object
using the C++ keyword this.

One thing that makes life a little difficult is that this is actually a pointer to a structure, rather than a
structure itself. A pointer is similar to a reference, but I don't want to go into the details of using
pointers yet (see Chapter 16). The only pointer operation we need for now is the * operator, which
converts a structure pointer into a structure. In the following function, we use it to assign the value of
this to a local variable named time:

void Time::print () {
Time time = *this;
cout << time.hour <<

":" << time.minute << ":" << time.second << endl;

Chapter 11: Member functions

}

The first two lines of this function changed quite a bit as we transformed it into a member function,
but notice that the output statement itself did not change at all.

In order to invoke the new version of print, we have to invoke it on a Time object:

Time currentTime = { 9, 14, 30.0 };
currentTime.print ();

The last step of the transformation process is that we have to declare the new function inside the
structure definition:

struct Time {
int hour, minute;
double second;

void Time::print ();

}i

A function declaration looks just like the first line of the function definition, except that it has a
semi-colon at the end. The declaration describes the interface of the function; that is, the number and
types of the arguments, and the type of the return value.

When you declare a function, you are making a promise to the compiler that you will, at some point
later on in the program, provide a definition for the function. This definition is sometimes called the
implementation of the function, since it contains the details of how the function works. If you omit
the definition, or provide a definition that has an interface different from what you promised, the
compiler will complain.

11.3 Implicit variable access

Actually, the new version of Time: :print is more complicated than it needs to be. We don't really
need to create a local variable in order to refer to the instance variables of the current object.

If the function refers to hour, minute, or second, all by themselves with no dot notation, C++ knows
that it must be referring to the current object. So we could have written:

void Time::print ()

{

cout << hour <<

}

<< minute << << second << endl;

This kind of variable access is called "implicit" because the name of the object does not appear
explicitly. Features like this are one reason member functions are often more concise than nonmember
functions.

Chapter 11: Member functions

11.4 Another example

Let's convert increment to a member function. Again, we are going to transform one of the
parameters into the implicit parameter called this. Then we can go through the function and make all
the variable accesses implicit.

void Time::increment (double secs) {
second += secs;

while (second >= 60.0) {
second -= 60.0;
minute += 1;

¥

while (minute >= 60) {
minute -= 60.0;
hour += 1;

}

}

By the way, remember that this is not the most efficient implementation of this function. If you didn't
do it back in Chapter 9, you should write a more efficient version now.

To declare the function, we can just copy the first line into the structure definition:

struct Time {
int hour, minute;
double second;

void Time::print ();
void Time::increment (double secs);
}i
And again, to call it, we have to invoke it on a Time object:

Time currentTime = { 9, 14, 30.0 };
currentTime.increment (500.0);
currentTime.print ();

The output of this program is 9:22:50.

11.5 Yet another example

The original version of convertToSeconds looked like this:

double convertToSeconds (const Time& time) {
int minutes = time.hour * 60 + time.minute;
double seconds = minutes * 60 + time.second;
return seconds;

}

It is straightforward to convert this to a member function:

Chapter 11: Member functions

double Time::convertToSeconds () const {
int minutes = hour * 60 + minute;
double seconds = minutes * 60 + second;
return seconds;

}

The interesting thing here is that the implicit parameter should be declared const, since we don't
modify it in this function. But it is not obvious where we should put information about a parameter
that doesn't exist. The answer, as you can see in the example, is after the parameter list (which is
empty in this case).

The print function in the previous section should also declare that the implicit parameter is const.
The const keyword should also be included in the function declarations in the function definition.

11.6 A more complicated example

Although the process of transforming functions into member functions is mechanical, there are some
oddities. For example, after operates on two Time structures, not just one, and we can't make both of
them implicit. Instead, we have to invoke the function on one of them and pass the other as an
argument.

Inside the function, we can refer to one of the them implicitly, but to access the instance variables of
the other we continue to use dot notation.

bool Time::after (const Time& time2) const {
if (hour > time2.hour) return true;
if (hour < time2.hour) return false;

if (minute > time2.minute) return true;
if (minute < time2.minute) return false;

if (second > time2.second) return true;
return false;

}
To invoke this function:

if (doneTime.after (currentTime)) {
cout << "The bread will be done after it starts." << endl;

}

You can almost read the invocation like English: "If the done-time is after the current-time, then..."

11.7 Constructors

Another function we wrote in Chapter 9 was makeTime:

Time makeTime (double secs) {

Chapter 11: Member functions

Time time;
time.hour = int (secs / 3600.0);

secs -= time.hour * 3600.0;
time.minute = int (secs / 60.0);
secs -= time.minute * 60.0;

time.second = secs;
return time;

}

Of course, for every new type, we need to be able to create new objects. In fact, functions like
makeTime are so common that there is a special function syntax for them. These functions are called
constructors and the syntax looks like this:

Time::Time (double secs) {
hour = int (secs / 3600.0);

secs -= hour * 3600.0;
minute = int (secs / 60.0);
secs -= minute * 60.0;
second = secs;

}

First, notice that the constructor has the same name as the class, and no return type. The arguments
haven't changed, though. Don't forget to include the declaration of Time: : Time in the structure
definition of Time.

Second, notice that we don't have to create a new time object, and we don't have to return anything.
Both of these steps are handled automatically. We can refer to the new object—the one we are
constructing —using the keyword this, or implicitly as shown here. When we write values to hour,
minute and second, the compiler knows we are referring to the instance variables of the new object.

To invoke the constructor, you use syntax that is a cross between a variable declaration and a function
call:

Time time (seconds);

This statement declares that the variable time has type Time, and it invokes the constructor we just
wrote, passing the value of seconds as an argument. The system allocates space for the new object
and the constructor initializes its instance variables. The result is assigned to the variable time.

11.8 Initialize or construct?

Earlier we declared and initialized some Time structures using squiggly-braces:

Time currentTime 9

= { 14, 30.0 };
Time breadTime = { 3,

4
35, 0.0 };
Now, using constructors, we have a different way to declare and initialize:

Time time (seconds);

Chapter 11: Member functions

These two functions represent different programming styles, and different points in the history of
C++. Maybe for that reason, the C++ compiler requires that you use one or the other, and not both in
the same program.

If you define a constructor for a structure, then you have to use the constructor to initialize all new
structures of that type. The alternate syntax using squiggly-braces is no longer allowed.

Fortunately, it is legal to overload constructors in the same way we overloaded functions. In other
words, there can be more than one constructor with the same "name," as long as they take different
parameters. Then, when we initialize a new object the compiler will try to find a constructor that takes
the appropriate parameters.

For example, it is common to have a constructor that takes one parameter for each instance variable,
and that assigns the values of the parameters to the instance variables:

Time::Time (int h, int m, double s)

{

hour = h; minute = m; second = s;

}

To invoke this constructor, we use the same funny syntax as before, except that the arguments have to
be two integers and a double:

Time currentTime (9, 14, 30.0);

11.9 One last example

The final example we'll look at is addTime:

Time addTime2 (const Time& tl, const Time& t2) {
double seconds = convertToSeconds (tl) + convertToSeconds (t2);
return makeTime (seconds);

}

We have to make several changes to this function, including:

1. Change the name from addTime to Time: : add.
2. Replace the first parameter with an implicit parameter, which should be declared const.
3. Replace the use of makeTime with a constructor invocation.

Here's the result:

Time Time::add (const Time& t2) const {
double seconds = convertToSeconds () + t2.convertToSeconds ();
Time time (seconds);
return time;

}

The first time we invoke convertToSeconds, there is no apparent object! Inside a member function,
the compiler assumes that we want to invoke the function on the current object. Thus, the first

Chapter 11: Member functions

invocation acts on this; the second invocation acts on t2.

The next line of the function invokes the constructor that takes a single double as a parameter; the
last line returns the resulting object.

11.10 Header files

It might seem like a nuisance to declare functions inside the structure definition and then define the
functions later. Any time you change the interface to a function, you have to change it in two places,
even if it is a small change like declaring one of the parameters const.

There is a reason for the hassle, though, which is that it is now possible to separate the structure
definition and the functions into two files: the header file, which contains the structure definition, and
the implementation file, which contains the functions.

Header files usually have the same name as the implementation file, but with the suffix .h instead of
.cpp. For the example we have been looking at, the header file is called Time.h, and it contains the
following:

struct Time {
// instance variables
int hour, minute;
double second;

// constructors
Time (int hour, int min, double secs);
Time (double secs);

// modifiers
void increment (double secs);

// functions

void print () const;

bool after (const Time& time2) const;
Time add (const Time& t2) const;
double convertToSeconds () const;

}i

Notice that in the structure definition I don't really have to include the prefix Time: : at the beginning
of every function name. The compiler knows that we are declaring functions that are members of the
Time structure.

Time.cpp contains the definitions of the member functions (I have elided the function bodies to save
space):

#include <iostream>

#include "Time.h"

using namespace std;

Time::Time (int h, int m, double s) ...

Chapter 11: Member functions

Time::Time (double secs)

void Time::increment (double secs)

void Time::print () const

bool Time::after (const Time& time2) const
Time Time::add (const Time& t2) const ...

double Time::convertToSeconds () const ...

In this case the definitions in Time.cpp appear in the same order as the declarations in Time.h,
although it is not necessary.

On the other hand, it is necessary to include the header file using an include statement. That way,
while the compiler is reading the function definitions, it knows enough about the structure to check
the code and catch errors.

Finally, main.cpp contains the function main along with any functions we want that are not members
of the Time structure (in this case there are none):

#include <iostream>
#include "Time.h"
using namespace std;

int main ()

{

Time currentTime (9, 14, 30.0);
currentTime.increment (500.0);
currentTime.print ();

Time breadTime (3, 35, 0.0);
Time doneTime = currentTime.add (breadTime);
doneTime.print ();

if (doneTime.after (currentTime)) {
cout << "The bread will be done after it starts." << endl;

}

return 0;

Again, main.cpp has to include the header file.

It may not be obvious why it is useful to break such a small program into three pieces. In fact, most of
the advantages come when we are working with larger programs:

Reuse
Once you have written a structure like Time, you might find it useful in more than one program.
By separating the definition of Time from main.cpp, you make is easy to include the Time
structure in another program.

Managing interactions

Chapter 11: Member functions

As systems become large, the number of interactions between components grows and quickly
becomes unmanageable. It is often useful to minimize these interactions by separating modules
like Time.cpp from the programs that use them.

Separate compilation
Separate files can be compiled separately and then linked into a single program later. The
details of how to do this depend on your programming environment. As the program gets large,
separate compilation can save a lot of time, since you usually need to compile only a few files
at a time.

For small programs like the ones in this book, there is no great advantage to splitting up programs.
But it is good for you to know about this feature, especially since it explains one of the statements that
appeared in the first program we wrote:

#include <iostream>

iostream.h is the header file that contains declarations for cin and cout and the functions that
operate on them. When you compile your program, you need the information in that header file.

The implementations of those functions are stored in a library, sometimes called the "Standard
Library" that gets linked to your program automatically. The nice thing is that you don't have to
recompile the library every time you compile a program. For the most part the library doesn't change,
so there is no reason to recompile it.

11.11 Glossary

member function
A function that operates on an object that is passed as an implicit parameter named this.
nonmember function
A function that is not a member of any structure definition. Also called a "free-standing"
function.
invoke
To call a function "on" an object, in order to pass the object as an implicit parameter.
current object
The object on which a member function is invoked. Inside the member function, we can refer to
the current object implicitly, or by using the keyword this.
this
A keyword that refers to the current object. this is a pointer, which makes it difficult to use,
since we do not cover pointers in this book.
interface
A description of how a function is used, including the number and types of the parameters and
the type of the return value.
function declaration
A statement that declares the interface to a function without providing the body. Declarations of
member functions appear inside structure definitions even if the definitions appear outside.
implementation

Chapter 11: Member functions

The body of a function, or the details of how a function works.
constructor
A special function that initializes the instance variables of a newly-created object.

Revised 2008-12-07.

= N
’

(|\ l %l How to Think Like a Computer Scientist

o

11

Chapter 12: Vectors of Objects

v—: (l\ /\— How to Think Like a Computer Scientist INDEJL%

Chapter 12

Vectors of Objects

12.1 Composition

By now we have seen several examples of composition (the ability to combine language features in a
variety of arrangements). One of the first examples we saw was using a function invocation as part of
an expression. Another example is the nested structure of statements: you can put an if statement
within a while loop, or within another if statement, etc.

Having seen this pattern, and having learned about vectors and objects, you should not be surprised to
learn that you can have vectors of objects. In fact, you can also have objects that contain vectors (as
instance variables); you can have vectors that contain vectors; you can have objects that contain
objects, and so on.

In the next two chapters we will look at some examples of these combinations, using card objects as
a case study.

12.2 card objects

If you are not familiar with common playing cards, now would be a good time to get a deck, or else
this chapter might not make much sense. There are 52 cards in a deck, each of which belongs to one
of four suits and one of 13 ranks. The suits are Spades, Hearts, Diamonds and Clubs (in descending
order in Bridge). The ranks are Ace, 2, 3,4, 5,6, 7,8, 9, 10, Jack, Queen and King. Depending on
what game you are playing, the rank of the Ace may be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is pretty obvious what the instance
variables should be: rank and suit. It is not as obvious what type the instance variables should be.
One possibility is strings, containing things like "Spade" for suits and "Queen" for ranks. One
problem with this implementation is that it would not be easy to compare cards to see which had
higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By "encode," I do not mean what some
people think, which is to encrypt, or translate into a secret code. What a computer scientist means by
"encode" is something like "define a mapping between a sequence of numbers and the things I want to

Chapter 12: Vectors of Objects

represent." For example,

Spades ->3
Hearts ->2
Diamonds -> 1
Clubs ->0

The symbol -> is mathematical notation for "maps to." The obvious feature of this mapping is that the
suits map to integers in order, so we can compare suits by comparing integers. The mapping for ranks
is fairly obvious; each of the numerical ranks maps to the corresponding integer, and for face cards:

Jack ->11
Queen —> 12
King ->13

The reason I am using mathematical notation for these mappings is that they are not part of the C++
program. They are part of the program design, but they never appear explicitly in the code. The class
definition for the card type looks like this:

struct Card

{

int suit, rank;

Card ();

Card (int s, int r);
}i
Card::Card () {

suit = 0; rank = 0;
}

Card::Card (int s, int r) {
suit = s; rank = r;

}

There are two constructors for cards. You can tell that they are constructors because they have no
return type and their name is the same as the name of the structure. The first constructor takes no
arguments and initializes the instance variables to a useless value (the zero of clubs).

The second constructor is more useful. It takes two parameters, the suit and rank of the card.

The following code creates an object named threeOfClubs that represents the 3 of Clubs:
Card threeOfClubs (0, 3);

The first argument, 0 represents the suit Clubs, the second, naturally, represents the rank 3.

Chapter 12: Vectors of Objects

12.3 The printcard function

When you create a new type, the first step is usually to declare the instance variables and write
constructors. The second step is often to write a function that prints the object in human-readable
form.

In the case of card objects, "human-readable" means that we have to map the internal representation
of the rank and suit onto words. A natural way to do that is with a vector of strings. You can create a
vector of strings the same way you create an vector of other types:

vector<string> suits (4);

Of course, in order to use vectors and strings, you will have to include the header files for both.

To initialize the elements of the vector, we can use a series of assignment statements.

suits[0] = "Clubs";
suits[1l] = "Diamonds";
suits[2] = "Hearts";
suits[3] = "Spades";

A state diagram for this vector looks like this:
suits

"Clubs"

"Diamonds"

"Hearts"

"Spades"

We can build a similar vector to decode the ranks. Then we can select the appropriate elements using
the suit and rank as indices. Finally, we can write a function called print that outputs the card on
which it is invoked:

void Card::print () const

{
vector<string> suits (4);
suits[0] = "Clubs";
suits[1l] = "Diamonds";
suits[2] = "Hearts";
suits[3] = "Spades";

vector<string> ranks (14);

ranks[1l] = "Ace";
ranks[2] = "2";
ranks[3] = "3";
ranks[4] = "4";
ranks[5] = "5";
ranks[6] = "6";
ranks[7] = "7";

Chapter 12: Vectors of Objects

ranks[8] = "8";
ranks[9] = "9";
ranks[10] = "10";
ranks[11] = "Jack";
ranks[12] = "Queen";
ranks[13] = "King";

cout << ranks[rank] << " of " << suits[suit] << endl;

}

The expression suits[suit] means "use the instance variable suit from the current object as an
index into the vector named suits, and select the appropriate string."

Because print is a Card member function, it can refer to the instance variables of the current object
implicitly (without having to use dot notation to specify the object). The output of this code

Card card (1, 11);
card.print ();

1S Jack of Diamonds.

You might notice that we are not using the zeroeth element of the ranks vector. That's because the
only valid ranks are 1-13. By leaving an unused element at the beginning of the vector, we get an
encoding where 2 maps to "2", 3 maps to "3", etc. From the point of view of the user, it doesn't matter
what the encoding is, since all input and output uses human-readable formats. On the other hand, it is
often helpful for the programmer if the mappings are easy to remember.

12.4 The equals function

In order for two cards to be equal, they have to have the same rank and the same suit. Unfortunately,
the == operator does not work for user-defined types like card, so we have to write a function that
compares two cards. We'll call it equals. It is also possible to write a new definition for the ==
operator, but we will not cover that in this book.

It is clear that the return value from equals should be a boolean that indicates whether the cards are
the same. It is also clear that there have to be two cards as parameters. But we have one more choice:
should equals be a member function or a free-standing function?

As a member function, it looks like this:

bool Card::equals (const Card& c2) const

{

return (rank == c2.rank && suit == c2.suit);

}
To use this function, we have to invoke it on one of the cards and pass the other as an argument:

Card cardl (1, 11);
Card card2 (1, 11);

Chapter 12: Vectors of Objects

if (cardl.equals(card2)) {
cout << "Yup, that's the same card." << endl;

}

This method of invocation always seems strange to me when the function is something like equals,
in which the two arguments are symmetric. What I mean by symmetric is that it does not matter
whether I ask "Is A equal to B?" or "Is B equal to A?" In this case, I think it looks better to rewrite
equals as a nonmember function:

bool equals (const Cardé& cl, const Card& c2)

{
}

return (cl.rank == c2.rank && cl.suit == c2.suit);

When we call this version of the function, the arguments appear side-by-side in a way that makes
more logical sense, to me at least.

if (equals (cardl, card2)) {
cout << "Yup, that's the same card." << endl;

}

Of course, this is a matter of taste. My point here is that you should be comfortable writing both
member and nonmember functions, so that you can choose the interface that works best depending on
the circumstance.

12.5 The isGreater function

For basic types like int and double, there are comparison operators that compare values and
determine when one is greater or less than another. These operators (< and > and the others) don't
work for user-defined types. Just as we did for the == operator, we will write a comparison function
that plays the role of the > operator. Later, we will use this function to sort a deck of cards.

Some sets are totally ordered, which means that you can compare any two elements and tell which is
bigger. For example, the integers and the floating-point numbers are totally ordered. Some sets are
unordered, which means that there is no meaningful way to say that one element is bigger than
another. For example, the fruits are unordered, which is why we cannot compare apples and oranges.
As another example, the bool type is unordered; we cannot say that true is greater than false.

The set of playing cards is partially ordered, which means that sometimes we can compare cards and
sometimes not. For example, I know that the 3 of Clubs is higher than the 2 of Clubs because it has
higher rank, and the 3 of Diamonds is higher than the 3 of Clubs because it has higher suit. But which
is better, the 3 of Clubs or the 2 of Diamonds? One has a higher rank, but the other has a higher suit.

In order to make cards comparable, we have to decide which is more important, rank or suit. To be
honest, the choice is completely arbitrary. For the sake of choosing, I will say that suit is more
important, because when you buy a new deck of cards, it comes sorted with all the Clubs together,
followed by all the Diamonds, and so on.

Chapter 12: Vectors of Objects

With that decided, we can write isGreater. Again, the arguments (two Cards) and the return type
(boolean) are obvious, and again we have to choose between a member function and a nonmember
function. This time, the arguments are not symmetric. It matters whether we want to know "Is A
greater than B?" or "Is B greater than A?" Therefore I think it makes more sense to write isGreater
as a member function:

bool Card::isGreater (const Cardé& c2) const

{
// first check the suits

if (suit > c2.suit) return true;
if (suit < c2.suit) return false;

// if the suits are equal, check the ranks
if (rank > c2.rank) return true;
if (rank < c2.rank) return false;

// if the ranks are also equal, return false
return false;

}

Then when we invoke it, it is obvious from the syntax which of the two possible questions we are
asking:

Card cardl (2, 11);
Card card2 (1, 11);

if (cardl.isGreater (card2)) {
cardl.print ();
cout << "is greater than" << endl;

card2.print ();
}

You can almost read it like English: "If card1 isGreater card2 ..." The output of this program is

Jack of Hearts
is greater than
Jack of Diamonds

According to isGreater, aces are less than deuces (2s). As an exercise, fix it so that aces are ranked
higher than Kings, as they are in most card games.

12.6 Vectors of cards

The reason I chose cards as the objects for this chapter is that there is an obvious use for a vector of
cards—a deck. Here is some code that creates a new deck of 52 cards:

vector<Card> deck (52);

Here is the state diagram for this object:

Chapter 12: Vectors of Objects

deck
Q ‘ 1 ‘ 2 51 »
sut O | sutt O | suit O ‘ suitt O
{ LA N J EEEEEE——
rank: O rank: O rank: O ‘ rank: O

The three dots represent the 48 cards I didn't feel like drawing. Keep in mind that we haven't
initialized the instance variables of the cards yet. In some environments, they will get initialized to
zero, as shown in the figure, but in others they could contain any possible value.

One way to initialize them would be to pass a Card as a second argument to the constructor:

Card aceOfSpades (3, 1);
vector<Card> deck (52, aceOfSpades);

This code builds a deck with 52 identical cards, like a special deck for a magic trick. Of course, it
makes more sense to build a deck with 52 different cards in it. To do that we use a nested loop.

The outer loop enumerates the suits, from O to 3. For each suit, the inner loop enumerates the ranks,
from 1 to 13. Since the outer loop iterates 4 times, and the inner loop iterates 13 times, the total
number of times the body is executed is 52 (13 times 4).

int i = 0;
for (int suit = 0; suit <= 3; suit++) {
for (int rank = 1; rank <= 13; rank++) {
deck[i].suit suit;
deck[i].rank rank;
i++;

}
}

I used the variable i to keep track of where in the deck the next card should go.

Notice that we can compose the syntax for selecting an element from an array (the [] operator) with
the syntax for selecting an instance variable from an object (the dot operator). The expression
deck[i].suit means "the suit of the ith card in the deck".

As an exercise, encapsulate this deck-building code in a function called buildDeck that takes no
parameters and that returns a fully-populated vector of cards.

12.7 The printbeck function

Whenever you are working with vectors, it is convenient to have a function that prints the contents of
the vector. We have seen the pattern for traversing a vector several times, so the following function
should be familiar:

Chapter 12: Vectors of Objects

void printDeck (const vector<Card>& deck) {
for (int i = 0; i < deck.size(); i++) {
deck[i].print ();
}
}

By now it should come as no surprise that we can compose the syntax for vector access with the
syntax for invoking a function.

Since deck has type vector<Card>, an element of deck has type card. Therefore, it is legal to
invoke print on deck[i].

12.8 Searching

The next function I want to write is £ind, which searches through a vector of cards to see whether it
contains a certain card. It may not be obvious why this function would be useful, but it gives me a
chance to demonstrate two ways to go searching for things, a 1inear search and a bisection search.

Linear search is the more obvious of the two; it involves traversing the deck and comparing each card
to the one we are looking for. If we find it we return the index where the card appears. If it is not in
the deck, we return —1.

int find (const Card& card, const vector<Card>& deck) {
for (int i = 0; i < deck.size(); i++) {
if (equals (deck[i], card)) return i;

}

return -1;

}

The loop here is exactly the same as the loop in printDeck. In fact, when I wrote the program, I
copied it, which saved me from having to write and debug it twice.

Inside the loop, we compare each element of the deck to card. The function returns as soon as it
discovers the card, which means that we do not have to traverse the entire deck if we find the card we
are looking for. If the loop terminates without finding the card, we know the card is not in the deck
and return -1.

To test this function, I wrote the following:

vector<Card> deck = buildDeck ();

int index = find (deck[17], deck);
cout << "I found the card at index = " << index << endl;

The output of this code is

I found the card at index = 17

Chapter 12: Vectors of Objects

12.9 Bisection search

If the cards in the deck are not in order, there is no way to search that is faster than the linear search.
We have to look at every card, since otherwise there is no way to be certain the card we want is not
there.

But when you look for a word in a dictionary, you don't search linearly through every word. The
reason is that the words are in alphabetical order. As a result, you probably use an algorithm that is
similar to a bisection search:

Start in the middle somewhere.

Choose a word on the page and compare it to the word you are looking for.

If you found the word you are looking for, stop.

If the word you are looking for comes after the word on the page, flip to somewhere later in the
dictionary and go to step 2.

5. If the word you are looking for comes before the word on the page, flip to somewhere earlier in
the dictionary and go to step 2.

bl o N e

If you ever get to the point where there are two adjacent words on the page and your word comes
between them, you can conclude that your word is not in the dictionary. The only alternative is that
your word has been misfiled somewhere, but that contradicts our assumption that the words are in
alphabetical order.

In the case of a deck of cards, if we know that the cards are in order, we can write a version of £ind
that is much faster. The best way to write a bisection search is with a recursive function. That's
because bisection is naturally recursive.

The trick is to write a function called findBisect that takes two indices as parameters, low and
high, indicating the segment of the vector that should be searched (including both 1ow and high).

1. To search the vector, choose an index between low and high, and call it mid. Compare the card
at mid to the card you are looking for.

2. If you found it, stop.

3. If the card at mid is higher than your card, search in the range from low to mid-1.

4. If the card at mid is lower than your card, search in the range from mid+1 to high.

Steps 3 and 4 look suspiciously like recursive invocations. Here's what this all looks like translated
into C++:

int findBisect (const Card& card, const vector<Card>& deck,
int low, int high) {
int mid = (high + low) / 2;

// if we found the card, return its index
if (equals (deck[mid], card)) return mid;

// otherwise, compare the card to the middle card
if (deck[mid].isGreater (card)) {
// search the first half of the deck

Chapter 12: Vectors of Objects

return findBisect (card, deck, low, mid-1);
} else {
// search the second half of the deck
return findBisect (card, deck, mid+1l, high);
}
}

Although this code contains the kernel of a bisection search, it is still missing a piece. As it is
currently written, if the card is not in the deck, it will recurse forever. We need a way to detect this
condition and deal with it properly (by returning -1).

The easiest way to tell that your card is not in the deck is if there are no cards in the deck, which is the
case if high is less than 1ow. Well, there are still cards in the deck, of course, but what I mean is that
there are no cards in the segment of the deck indicated by low and high.

With that line added, the function works correctly:

int findBisect (const Card& card, const vector<Card>& deck,
int low, int high) {

"

cout << low << " << high << endl;

if (high < low) return -1;
int mid = (high + low) / 2;
if (equals (deck[mid], card)) return mid;

if (deck[mid].isGreater (card)) {

return findBisect (card, deck, low, mid-1);
} else {

return findBisect (card, deck, mid+1l, high);

}
}

I added an output statement at the beginning so I could watch the sequence of recursive calls and
convince myself that it would eventually reach the base case. I tried out the following code:

cout << "I found the card at index = " << findBisect (deck[23], deck, 0, 51)
<< endl;

And got the following output:

0, 51
0, 24
13, 24
19, 24
22, 24
I found the card at index = 23

Then I made up a card that is not in the deck (the 15 of Diamonds), and tried to find it. I got the
following:

0, 51
0, 24

10

Chapter 12: Vectors of Objects

13, 24
13, 17
13, 14
13, 12
I found the card at index = -1

These tests don't prove that this program is correct. In fact, no amount of testing can prove that a
program is correct. On the other hand, by looking at a few cases and examining the code, you might
be able to convince yourself.

The number of recursive calls is fairly small, typically 6 or 7. That means we only had to call equals
and isGreater 6 or 7 times, compared to up to 52 times if we did a linear search. In general,
bisection is much faster than a linear search, especially for large vectors.

Two common errors in recursive programs are forgetting to include a base case and writing the
recursive call so that the base case is never reached. Either error will cause an infinite recursion, in
which case C++ will (eventually) generate a run-time error.

12.10 Decks and subdecks

Looking at the interface to findBisect

int findBisect (const Card& card, const vector<Card>& deck,
int low, int high) {

it might make sense to treat three of the parameters, deck, low and high, as a single parameter that
specifies a subdeck.

This kind of thing is quite common, and I sometimes think of it as an abstract parameter. What I
mean by "abstract," is something that is not literally part of the program text, but which describes the
function of the program at a higher level.

For example, when you call a function and pass a vector and the bounds low and high, there is
nothing that prevents the called function from accessing parts of the vector that are out of bounds. So
you are not literally sending a subset of the deck; you are really sending the whole deck. But as long
as the recipient plays by the rules, it makes sense to think of it, abstractly, as a subdeck.

There is one other example of this kind of abstraction that you might have noticed in Section 9.3,
when I referred to an "empty" data structure. The reason I put "empty" in quotation marks was to
suggest that it is not literally accurate. All variables have values all the time. When you create them,
they are given default values. So there is no such thing as an empty object.

But if the program guarantees that the current value of a variable is never read before it is written,
then the current value is irrelevant. Abstractly, it makes sense to think of such a variable as "empty."

This kind of thinking, in which a program comes to take on meaning beyond what is literally encoded,
is a very important part of thinking like a computer scientist. Sometimes, the word "abstract" gets

11

Chapter 12: Vectors of Objects

used so often and in so many contexts that it is hard to interpret. Nevertheless, abstraction is a central
idea in computer science (as well as many other fields).

A more general definition of "abstraction" is "The process of modeling a complex system with a
simplified description in order to suppress unnecessary details while capturing relevant behavior."

12.11 Glossary

encode
To represent one set of values using another set of values, by constructing a mapping between
them.

abstract parameter
A set of parameters that act together as a single parameter.

Revised 2008-12-06.

— =
’

=

How to Think Like a Computer Scientist END?

12

Chapter 13: Objects of Vectors

v—: (l\ /\— How to Think Like a Computer Scientist INDEJL%

Chapter 13

Objects of Vectors

13.1 Enumerated types

In the previous chapter I talked about mappings between real-world values like rank and suit, and
internal representations like integers and strings. Although we created a mapping between ranks and
integers, and between suits and integers, I pointed out that the mapping itself does not appear as part
of the program.

Actually, C++ provides a feature called and enumerated type that makes it possible to (1) include a
mapping as part of the program, and (2) define the set of values that make up the mapping. For
example, here is the definition of the enumerated types Suit and Rank:

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES };

enum Rank { ACE=1, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE,
TEN, JACK, QUEEN, KING };

By default, the first value in the enumerated type maps to 0, the second to 1, and so on. Within the
Suit type, the value CLUBS is represented by the integer 0, DIAMONDS is represented by 1, etc.

The definition of Rank overrides the default mapping and specifies that ACE should be represented by
the integer 1. The other values follow in the usual way.

Once we have defined these types, we can use them anywhere. For example, the instance variables
rank and suit are can be declared with type Rank and Suit:

struct Card

{

Rank rank;
Suit suit;

Card (Suit s, Rank r);
}i

That the types of the parameters for the constructor have changed, too. Now, to create a card, we can

Chapter 13: Objects of Vectors

use the values from the enumerated type as arguments:
Card card (DIAMONDS, JACK);

By convention, the values in enumerated types have names with all capital letters. This code is much
clearer than the alternative using integers:

Card card (1, 11);

Because we know that the values in the enumerated types are represented as integers, we can use them
as indices for a vector. Therefore the old print function will work without modification. We have to
make some changes in buildbDeck, though:

int index = 0;
for (Suit suit = CLUBS; suit <= SPADES; suit = Suit(suit+l)) {
for (Rank rank = ACE; rank <= KING; rank = Rank(rank+1l)) {
deck[index].suit = suit;
deck[index].rank rank;
index++;

}
}

In some ways, using enumerated types makes this code more readable, but there is one complication.
Strictly speaking, we are not allowed to do arithmetic with enumerated types, so suit++ is not legal.
On the other hand, in the expression suit+1, C++ automatically converts the enumerated type to
integer. Then we can take the result and typecast it back to the enumerated type:

suit
rank

Suit(suit+l);
Rank(rank+1);

Actually, there is a better way to do this—we can define the ++ operator for enumerated types—but
that is beyond the scope of this book.

13.2 switch statement

It's hard to mention enumerated types without mentioning switch statements, because they often go
hand in hand. A switch statement is an alternative to a chained conditional that is syntactically
prettier and often more efficient. It looks like this:

switch (symbol) {
case '+':
perform addition ();
break;
case '*':
perform multiplication ();
break;
default:
cout << "I only know how to perform addition and multiplication" << endl;
break;

}

Chapter 13: Objects of Vectors

This switch statement is equivalent to the following chained conditional:

if (symbol == "+") {
perform addition ();

} else if (symbol == '*") {
perform multiplication ();

} else {

cout << "I only know how to perform addition and multiplication" << endl;

}

The break statements are necessary in each branch in a switch statement because otherwise the flow
of execution "falls through" to the next case. Without the break statements, the symbol + would make
the program perform addition, and then perform multiplication, and then print the error message.
Occasionally this feature is useful, but most of the time it is a source of errors when people forget the
break statements.

switch statements work with integers, characters, and enumerated types. For example, to convert a
Suit to the corresponding string, we could use something like:

switch (suit) {

case CLUBS: return "Clubs";

case DIAMONDS: return "Diamonds";

case HEARTS: return "Hearts";

case SPADES: return "Spades";

default: return "Not a valid suit";
}

In this case we don't need break statements because the return statements cause the flow of
execution to return to the caller instead of falling through to the next case.

In general it is good style to include a default case in every switch statement, to handle errors or
unexpected values.

13.3 Decks

In the previous chapter, we worked with a vector of objects, but I also mentioned that it is possible to
have an object that contains a vector as an instance variable. In this chapter I am going to create a new
object, called a Deck, that contains a vector of Cards.

The structure definition looks like this

struct Deck {
vector<Card> cards;

Deck (int n);

}i

Deck::Deck (int size)

{
vector<Card> temp (size);
cards = temp;

Chapter 13: Objects of Vectors

}

The name of the instance variable is cards to help distinguish the Deck object from the vector of
Cards that it contains.

For now there is only one constructor. It creates a local variable named temp, which it initializes by
invoking the constructor for the vector class, passing the size as a parameter. Then it copies the
vector from temp into the instance variable cards.

Now we can create a deck of cards like this:
Deck deck (52);

Here is a state diagram showing what a Deck object looks like:

deck
cards:
Q 1 2 51
sut O | sut O | sut O suitt 0
- - - { eee -
rank: O | rank: O | rank: Q rank: 0

The object named deck has a single instance variable named cards, which is a vector of card
objects. To access the cards in a deck we have to compose the syntax for accessing an instance
variable and the syntax for selecting an element from an array. For example, the expression
deck.cards[1i] is the ith card in the deck, and deck.cards[i].suit is its suit. The following loop

for (int i = 0; i<52; i++) {
deck.cards[i].print();

}

demonstrates how to traverse the deck and output each card.

13.4 Another constructor

Now that we have a Deck object, it would be useful to initialize the cards in it. From the previous
chapter we have a function called buildDeck that we could use (with a few adaptations), but it might
be more natural to write a second Deck constructor.

Deck: :Deck ()
{

vector<Card> temp (52);
cards = temp;

int i = 0;
for (Suit suit = CLUBS; suit <= SPADES; suit = Suit(suit+l)) {

Chapter 13: Objects of Vectors

for (Rank rank = ACE; rank <= KING; rank = Rank(rank+1l)) {
cards[i].suit suit;
cards[i].rank rank;
i++;
}
}
}

Notice how similar this function is to buildbeck, except that we had to change the syntax to make it
a constructor. Now we can create a standard 52-card deck with the simple declaration Deck deck;

13.5 peck member functions

Now that we have a Deck object, it makes sense to put all the functions that pertain to Decks in the
Deck structure definition. Looking at the functions we have written so far, one obvious candidate is
printDeck (Section 12.7). Here's how it looks, rewritten as a Deck member function:

void Deck::print () const {
for (int i = 0; i < cards.size(); i++) {
cards[i].print ();
}
}

As usual, we can refer to the instance variables of the current object without using dot notation.

For some of the other functions, it is not obvious whether they should be member functions of card,
member functions of Deck, or nonmember functions that take cards and Decks as parameters. For
example, the version of £ind in the previous chapter takes a Card and a Deck as arguments, but you
could reasonably make it a member function of either type. As an exercise, rewrite £ind as a Deck
member function that takes a Card as a parameter.

Writing £ind as a Card member function is a little tricky. Here's my version:

int Card::find (const Decké& deck) const {
for (int i = 0; i < deck.cards.size(); i++) {
if (equals (deck.cards[i], *this)) return i;

}

return -1;

}

The first trick is that we have to use the keyword this to refer to the card the function is invoked on.

The second trick is that C++ does not make it easy to write structure definitions that refer to each
other. The problem is that when the compiler is reading the first structure definition, it doesn't know
about the second one yet.

One solution is to declare Deck before card and then define Deck afterwards:

// declare that Deck is a structure, without defining it
struct Deck;

Chapter 13: Objects of Vectors

// that way we can refer to it in the definition of Card
struct Card

{

int suit, rank;

Card ();
Card (int s, int r);

void print () const;
bool isGreater (const Cardé& c2) const;
int find (const Decké& deck) const;

}i

// and then later we provide the definition of Deck
struct Deck {
vector<Card> cards;

Deck ();

Deck (int n);

void print () const;

int find (const Card& card) const;

}i

13.6 Shuffling

For most card games you need to be able to shuffle the deck; that is, put the cards in a random order.
In Section 10.5 we saw how to generate random numbers, but it is not obvious how to use them to
shuffle a deck.

One possibility is to model the way humans shuffle, which is usually by dividing the deck in two and
then reassembling the deck by choosing alternately from each deck. Since humans usually don't
shuffle perfectly, after about 7 iterations the order of the deck is pretty well randomized. But a
computer program would have the annoying property of doing a perfect shuffle every time, which is
not really very random. In fact, after 8 perfect shuffles, you would find the deck back in the same
order you started in. For a discussion of that claim, see http://www.wiskit.com/marilyn/craig.html or
do a web search with the keywords "perfect shuffle."

A better shuffling algorithm is to traverse the deck one card at a time, and at each iteration choose two
cards and swap them.

Here is an outline of how this algorithm works. To sketch the program, I am using a combination of
C++ statements and English words that is sometimes called pseudocode:

for (int i=0; i<cards.size(); i++) {
// choose a random number between i and cards.size()
// swap the ith card and the randomly-chosen card

}

The nice thing about using pseudocode is that it often makes it clear what functions you are going to
need. In this case, we need something like randomInt, which chooses a random integer between the
parameters low and high, and swapCards which takes two indices and switches the cards at the

Chapter 13: Objects of Vectors

indicated positions.

You can probably figure out how to write randomInt by looking at Section 10.5, although you will
have to be careful about possibly generating indices that are out of range.

You can also figure out swapCards yourself. I will leave the remaining implementation of these
functions as an exercise to the reader.

13.7 Sorting

Now that we have messed up the deck, we need a way to put it back in order. Ironically, there is an
algorithm for sorting that is very similar to the algorithm for shuffling.

Again, we are going to traverse the deck and at each location choose another card and swap. The only
difference is that this time instead of choosing the other card at random, we are going to find the
lowest card remaining in the deck.

By "remaining in the deck," I mean cards that are at or to the right of the index i.

for (int i=0; i<cards.size(); i++) {
// find the lowest card at or to the right of i
// swap the ith card and the lowest card

}

Again, the pseudocode helps with the design of the helper functions. In this case we can use
swapCards again, so we only need one new one, called findLowestCard, that takes a vector of cards
and an index where it should start looking.

This process, using pseudocode to figure out what helper functions are needed, is sometimes called
top-down design, in contrast to the bottom-up design I discussed in Section 10.8.

Once again, I am going to leave the implementation up to the reader.

13.8 Subdecks

How should we represent a hand or some other subset of a full deck? One easy choice is to make a
Deck object that has fewer than 52 cards.

We might want a function, subdeck, that takes a vector of cards and a range of indices, and that
returns a new vector of cards that contains the specified subset of the deck:

Deck Deck::subdeck (int low, int high) const {
Deck sub (high-low+1l);

for (int i = 0; i<sub.cards.size(); i++) {
sub.cards[i] = cards[low+i];

Chapter 13: Objects of Vectors

}

return sub;

}

To create the local variable named subdeck we are using the Deck constructor that takes the size of
the deck as an argument and that does not initialize the cards. The cards get initialized when they are
copied from the original deck.

The length of the subdeck is high-low+1 because both the low card and high card are included. This
sort of computation can be confusing, and lead to "off-by-one" errors. Drawing a picture is usually the
best way to avoid them.

As an exercise, write a version of findBisect that takes a subdeck as an argument, rather than a deck
and an index range. Which version is more error-prone? Which version do you think is more
efficient?

13.9 Shuffling and dealing

In Section 13.6 I wrote pseudocode for a shuffling algorithm. Assuming that we have a function called
shuffleDeck that takes a deck as an argument and shuffles it, we can create and shuffle a deck:

Deck deck; // create a standard 52-card deck
deck.shuffle (); // shuffle it

Then, to deal out several hands, we can use subdeck:

Deck handl deck.subdeck (0, 4);
Deck hand2 deck.subdeck (5, 9);
Deck pack = deck.subdeck (10, 51);

This code puts the first 5 cards in one hand, the next 5 cards in the other, and the rest into the pack.

When you thought about dealing, did you think we should give out one card at a time to each player

in the round-robin style that is common in real card games? I thought about it, but then realized that it
is unnecessary for a computer program. The round-robin convention is intended to mitigate imperfect
shuffling and make it more difficult for the dealer to cheat. Neither of these is an issue for a computer.

This example is a useful reminder of one of the dangers of engineering metaphors: sometimes we
impose restrictions on computers that are unnecessary, or expect capabilities that are lacking, because
we unthinkingly extend a metaphor past its breaking point. Beware of misleading analogies.

13.10 Mergesort

In Section 13.7, we saw a simple sorting algorithm that turns out not to be very efficient. In order to
sort n items, it has to traverse the vector n times, and each traversal takes an amount of time that is

Chapter 13: Objects of Vectors

proportional to n. The total time, therefore, is proportional to n?.

In this section I will sketch a more efficient algorithm called mergesort. To sort n items, mergesort
takes time proportional to n log n. That may not seem impressive, but as n gets big, the difference
between n? and n log n can be enormous. Try out a few values of n and see.

The basic idea behind mergesort is this: if you have two subdecks, each of which has been sorted, it is
easy (and fast) to merge them into a single, sorted deck. Try this out with a deck of cards:

1. Form two subdecks with about 10 cards each and sort them so that when they are face up the
lowest cards are on top. Place both decks face up in front of you.

2. Compare the top card from each deck and choose the lower one. Flip it over and add it to the
merged deck.

3. Repeat step two until one of the decks is empty. Then take the remaining cards and add them to
the merged deck.

The result should be a single sorted deck. Here's what this looks like in pseudocode:

Deck merge (const Deck& dl, const Deck& d2) {
// create a new deck big enough for all the cards
Deck result (dl.cards.size() + d2.cards.size());

// use the index i to keep track of where we are in

// the first deck, and the index j for the second deck
int i = 0;

int j = 0;

// the index k traverses the result deck
for (int k = 0; k<result.cards.size(); k++) {

// if dl is empty, d2 wins; if d2 is empty, dl wins;
// otherwise, compare the two cards

// add the winner to the new deck

}

return result;

}

I chose to make merge a nonmember function because the two arguments are symmetric.

The best way to test merge is to build and shuffle a deck, use subdeck to form two (small) hands, and
then use the sort routine from the previous chapter to sort the two halves. Then you can pass the two
halves to merge to see if it works.

If you can get that working, try a simple implementation of mergeSort:

Deck Deck::mergeSort () const {
// find the midpoint of the deck
// divide the deck into two subdecks
// sort the subdecks using sort
// merge the two halves and return the result

Chapter 13: Objects of Vectors

Notice that the current object is declared const because mergeSort does not modify it. Instead, it
creates and returns a new Deck object.

If you get that version working, the real fun begins! The magical thing about mergesort is that it is
recursive. At the point where you sort the subdecks, why should you invoke the old, slow version of
sort? Why not invoke the spiffy new mergesort you are in the process of writing?

Not only is that a good idea, it is necessary in order to achieve the performance advantage I promised.

In order to make it work, though, you have to add a base case so that it doesn't recurse forever. A
simple base case is a subdeck with O or 1 cards. If mergesort receives such a small subdeck, it can
return it unmodified, since it is already sorted.

The recursive version of mergesort should look something like this:

Deck Deck::mergeSort (Deck deck) const {
// if the deck is 0 or 1 cards, return it

// find the midpoint of the deck

// divide the deck into two subdecks

// sort the subdecks using mergesort

// merge the two halves and return the result

}

As usual, there are two ways to think about recursive programs: you can think through the entire flow
of execution, or you can make the "leap of faith." I have deliberately constructed this example to
encourage you to make the leap of faith.

When you were using sort to sort the subdecks, you didn't feel compelled to follow the flow of
execution, right? You just assumed that the sort function would work because you already debugged
it. Well, all you did to make mergeSort recursive was replace one sort algorithm with another. There
is no reason to read the program differently.

Well, actually you have to give some thought to getting the base case right and making sure that you
reach it eventually, but other than that, writing the recursive version should be no problem. Good
luck!

13.11 Glossary

pseudocode
A way of designing programs by writing rough drafts in a combination of English and C++.
helper function
Often a small function that does not do anything enormously useful by itself, but which helps
another, more useful, function.
bottom-up design
A method of program development that uses pseudocode to sketch solutions to large problems
and design the interfaces of helper functions.
mergesort

10

Chapter 13: Objects of Vectors

An algorithm for sorting a collection of values. Mergesort is faster than the simple algorithm in
the previous chapter, especially for large collections.

Revised 2008-12-06.

= N
’

(|\ l %l How to Think Like a Computer Scientist INDTJ

11

Chapter 14: Classes and invariants

v—: (l\ /\— How to Think Like a Computer Scientist INDEJL%

Chapter 14

Classes and invariants

14.1 Private data and classes

I have used the word "encapsulation" in this book to refer to the process of wrapping up a sequence of
instructions in a function, in order to separate the function's interface (how to use it) from its
implementation (how it does what it does).

This kind of encapsulation might be called "functional encapsulation," to distinguish it from "data
encapsulation," which is the topic of this chapter. Data encapsulation is based on the idea that each
structure definition should provide a set of functions that apply to the structure, and prevent
unrestricted access to the internal representation.

One use of data encapsulation is to hide implementation details from users or programmers that don't
need to know them.

For example, there are many possible representations for a card, including two integers, two strings
and two enumerated types. The programmer who writes the Card member functions needs to know
which implementation to use, but someone using the card structure should not have to know anything
about its internal structure.

As another example, we have been using string and vector objects without ever discussing their
implementations. There are many possibilities, but as "clients" of these libraries, we don't need to
know.

In C++, the most common way to enforce data encapsulation is to prevent client programs from
accessing the instance variables of an object. The keyword private is used to protect parts of a
structure definition. For example, we could have written the card definition:

struct Card

{
private:
int suit, rank;

public:
Card ();

Chapter 14: Classes and invariants

Card (int s, int r);

int getRank () const
int getSuit () const
void setRank (int r)
void setSuit (int s)

}i

return rank; }
return suit; }
rank r; }

suit

e)

There are two sections of this definition, a private part and a public part. The functions are public,
which means that they can be invoked by client programs. The instance variables are private, which
means that they can be read and written only by card member functions.

It is still possible for client programs to read and write the instance variables using the accessor
functions (the ones beginning with get and set). On the other hand, it is now easy to control which
operations clients can perform on which instance variables. For example, it might be a good idea to
make cards "read only" so that after they are constructed, they cannot be changed. To do that, all we
have to do is remove the set functions.

Another advantage of using accessor functions is that we can change the internal representations of
cards without having to change any client programs.

14.2 What is a class?

In most object-oriented programming languages, a class is a user-defined type that includes a set of
functions. As we have seen, structures in C++ meet the general definition of a class.

But there is another feature in C++ that also meets this definition; confusingly, it is called a class. In
C++, a class 1s just a structure whose instance variables are private by default. For example, I could
have written the card definition:

class Card

{

int suit, rank;

public:
Card ();
Card (int s, int r);

int getRank () const { return rank; }
int getSuit () const { return suit; }
int setRank (int r) { rank = r; }
int setSuit (int s) { suit = s; }

}i

I replaced the word struct with the word class and removed the private: label. This result of the
two definitions is exactly the same.

In fact, anything that can be written as a struct can also be written as a class, just by adding or
removing labels. There is no real reason to choose one over the other, except that as a stylistic choice,
most C++ programmers use class.

Chapter 14: Classes and invariants

Also, it is common to refer to all user-defined types in C++ as "classes," regardless of whether they
are defined as a struct or a class.

14.3 Complex numbers

As a running example for the rest of this chapter we will consider a class definition for complex
numbers. Complex numbers are useful for many branches of mathematics and engineering, and many
computations are performed using complex arithmetic. A complex number is the sum of a real part
and an imaginary part, and is usually written in the form x + yi, where x is the real part, y is the
imaginary part, and i represents the square root of —1.

The following is a class definition for a user-defined type called complex:

class Complex

{

double real, imag;

public:

Complex () { }

Complex (double r, double i) { real = r; imag = i; }
}i

Because this is a class definition, the instance variables real and imag are private, and we have to
include the label public: to allow client code to invoke the constructors.

As usual, there are two constructors: one takes no parameters and does nothing; the other takes two
parameters and uses them to initialize the instance variables.

So far there is no real advantage to making the instance variables private. Let's make things a little
more complicated; then the point might be clearer.

There is another common representation for complex numbers that is sometimes called "polar form"
because it is based on polar coordinates. Instead of specifying the real part and the imaginary part of a
point in the complex plane, polar coordinates specify the direction (or angle) of the point relative to
the origin, and the distance (or magnitude) of the point.

The following figure shows the two coordinate systems graphically.

Chapter 14: Classes and invariants

Cartasian coordinatas Polar coordinates

imaginary axis

magnitude
. - .

}

_angle

real axis

Complex numbers in polar coordinates are written r e* theta

theta is the angle in radians.

, where r is the magnitude (radius), and

Fortunately, it is easy to convert from one form to another. To go from Cartesian to polar,

r = w/(x2 + yz)
theta = arctan (y / X)

To go from polar to Cartesian,

r cos theta

o]
]

r sin theta

So which representation should we use? Well, the whole reason there are multiple representations is
that some operations are easier to perform in Cartesian coordinates (like addition), and others are
easier in polar coordinates (like multiplication). One option is that we can write a class definition that
uses both representations, and that converts between them automatically, as needed.

class Complex

{

double real, imag;
double mag, theta;
bool cartesian, polar;

public:
Complex () { cartesian = false; polar = false; }

Complex (double r, double i)
{

real = r; imag = i;
cartesian = true; polar = false;

}
}i

There are now six instance variables, which means that this representation will take up more space
than either of the others, but we will see that it is very versatile.

Four of the instance variables are self-explanatory. They contain the real part, the imaginary part, the
angle and the magnitude of the complex number. The other two variables, cartesian and polar are

Chapter 14: Classes and invariants

flags that indicate whether the corresponding values are currently valid.

For example, the do-nothing constructor sets both flags to false to indicate that this object does not
contain a valid complex number (yet), in either representation.

The second constructor uses the parameters to initialize the real and imaginary parts, but it does not
calculate the magnitude or angle. Setting the polar flag to false warns other functions not to access
mag or theta until they have been set.

Now it should be clearer why we need to keep the instance variables private. If client programs were
allowed unrestricted access, it would be easy for them to make errors by reading uninitialized values.
In the next few sections, we will develop accessor functions that will make those kinds of mistakes
impossible.

14.4 Accessor functions

By convention, accessor functions have names that begin with get and end with the name of the
instance variable they fetch. The return type, naturally, is the type of the corresponding instance
variable.

In this case, the accessor functions give us an opportunity to make sure that the value of the variable is
valid before we return it. Here's what getReal looks like:

double Complex::getReal ()
{

if (cartesian == false) calculateCartesian ();
return real;

}

If the cartesian flag is true then real contains valid data, and we can just return it. Otherwise, we
have to call calculateCartesian to convert from polar coordinates to Cartesian coordinates:

void Complex::calculateCartesian ()

{
real = mag * cos (theta);
imag = mag * sin (theta);
cartesian = true;

}

Assuming that the polar coordinates are valid, we can calculate the Cartesian coordinates using the
formulas from the previous section. Then we set the cartesian flag, indicating that real and imag
now contain valid data.

As an exercise, write a corresponding function called calculatePolar and then write getMag and
getTheta. One unusual thing about these accessor functions is that they are not const, because
invoking them might modify the instance variables.

Chapter 14: Classes and invariants

14.5 Output

As usual when we define a new class, we want to be able to output objects in a human-readable form.
For complex objects, we could use two functions:

void Complex::printCartesian ()

{

cout << getReal() << " + " << getImag() << "i" << endl;
}
void Complex::printPolar ()
{

cout << getMag() << " e” " << getTheta() << "i" << endl;
}

The nice thing here is that we can output any Complex object in either format without having to worry
about the representation. Since the output functions use the accessor functions, the program will
compute automatically any values that are needed.

The following code creates a Complex object using the second constructor. Initially, it is in Cartesian
format only. When we invoke printCartesian it accesses real and imag without having to do any
conversions.

Complex cl (2.0, 3.0);

cl.printCartesian();
cl.printPolar();

When we invoke printPolar, and printPolar invokes getMag, the program is forced to convert to
polar coordinates and store the results in the instance variables. The good news is that we only have to
do the conversion once. When printPolar invokes getTheta, it will see that the polar coordinates
are valid and return theta immediately.

The output of this code is:

2 + 31
3.60555 e” 0.9827941i

14.6 A function on Complex numbers

A natural operation we might want to perform on complex numbers is addition. If the numbers are in
Cartesian coordinates, addition is easy: you just add the real parts together and the imaginary parts
together. If the numbers are in polar coordinates, it is easiest to convert them to Cartesian coordinates
and then add them.

Again, it is easy to deal with these cases if we use the accessor functions:

Complex add (Complex& a, Complex& b)

{
double real = a.getReal() + b.getReal();

Chapter 14: Classes and invariants

double imag = a.getImag() + b.getImag();
Complex sum (real, imag);
return sum;

}

Notice that the arguments to add are not const because they might be modified when we invoke the
accessors. To invoke this function, we would pass both operands as arguments:

Complex cl (2.0, 3.0);
Complex c2 (3.0, 4.0);

Complex sum = add (cl, c2);
sum.printCartesian();

The output of this program is

5 + 71

14.7 Another function on Complex numbers

Another operation we might want is multiplication. Unlike addition, multiplication is easy if the
numbers are in polar coordinates and hard if they are in Cartesian coordinates (well, a little harder,
anyway).

In polar coordinates, we can just multiply the magnitudes and add the angles. As usual, we can use the
accessor functions without worrying about the representation of the objects.

Complex mult (Complex& a, Complex& b)

{
double mag = a.getMag() * b.getMag();

double theta = a.getTheta() + b.getTheta();
Complex product;

product.setPolar (mag, theta);

return product;

}

A small problem we encounter here is that we have no constructor that accepts polar coordinates. It
would be nice to write one, but remember that we can only overload a function (even a constructor) if
the different versions take different parameters. In this case, we would like a second constructor that
also takes two doubles, and we can't have that.

An alternative it to provide an accessor function that sets the instance variables. In order to do that
properly, though, we have to make sure that when mag and theta are set, we also set the polar flag.
At the same time, we have to make sure that the cartesian flag is unset. That's because if we change
the polar coordinates, the cartesian coordinates are no longer valid.

void Complex::setPolar (double m, double t)

{
mag = m; theta = t;
cartesian = false; polar = true;

}

Chapter 14: Classes and invariants

As an exercise, write the corresponding function named setCartesian.

To test the mult function, we can try something like:

Complex cl1 (2.0, 3.0);
Complex c2 (3.0, 4.0);

Complex product = mult (cl, c2);
product.printCartesian();

The output of this program is
-6 + 171

There is a lot of conversion going on in this program behind the scenes. When we call mult, both
arguments get converted to polar coordinates. The result is also in polar format, so when we invoke
printCartesian it has to get converted back. Really, it's amazing that we get the right answer!

14.8 Invariants

There are several conditions we expect to be true for a proper Complex object. For example, if the
cartesian flag is set then we expect real and imag to contain valid data. Similarly, if polar is set,
we expect mag and theta to be valid. Finally, if both flags are set then we expect the other four
variables to be consistent; that is, they should be specifying the same point in two different formats.

These kinds of conditions are called invariants, for the obvious reason that they do not vary —they
are always supposed to be true. One of the ways to write good quality code that contains few bugs is
to figure out what invariants are appropriate for your classes, and write code that makes it impossible
to violate them.

One of the primary things that data encapsulation is good for is helping to enforce invariants. The first
step is to prevent unrestricted access to the instance variables by making them private. Then the only
way to modify the object is through accessor functions and modifiers. If we examine all the accessors
and modifiers, and we can show that every one of them maintains the invariants, then we can prove
that it is impossible for an invariant to be violated.

Looking at the complex class, we can list the functions that make assignments to one or more
instance variables:

the second constructor
calculateCartesian
calculatePolar
setCartesian

setPolar

In each case, it is straightforward to show that the function maintains each of the invariants I listed.
We have to be a little careful, though. Notice that I said "maintain" the invariant. What that means is
"If the invariant is true when the function is called, it will still be true when the function is complete."

Chapter 14: Classes and invariants

That definition allows two loopholes. First, there may be some point in the middle of the function
when the invariant is not true. That's ok, and in some cases unavoidable. As long as the invariant is
restored by the end of the function, all is well.

The other loophole is that we only have to maintain the invariant if it was true at the beginning of the
function. Otherwise, all bets are off. If the invariant was violated somewhere else in the program,
usually the best we can do is detect the error, output an error message, and exit.

14.9 Preconditions

Often when you write a function you make implicit assumptions about the parameters you receive. If
those assumptions turn out to be true, then everything is fine; if not, your program might crash.

To make your programs more robust, it is a good idea to think about your assumptions explicitly,
document them as part of the program, and maybe write code that checks them.

For example, let's take another look at calculateCartesian. Is there an assumption we make about
the current object? Yes, we assume that the polar flag is set and that mag and theta contain valid
data. If that is not true, then this function will produce meaningless results.

One option is to add a comment to the function that warns programmers about the precondition.

void Complex::calculateCartesian ()
// precondition: the current object contains valid polar coordinates
// and the polar flag is set
// postcondition: the current object will contain valid Cartesian
// coordinates and valid polar coordinates, and both the cartesian
// flag and the polar flag will be set
{
real = mag * cos (theta);
imag = mag * sin (theta);
cartesian = true;

}

At the same time, I also commented on the postconditions, the things we know will be true when the
function completes.

These comments are useful for people reading your programs, but it is an even better idea to add code
that checks the preconditions, so that we can print an appropriate error message:

void Complex::calculateCartesian ()

{
if (polar == false) {
cout <<
"calculateCartesian failed because the polar representation is invalid"
<< endl;
exit (1);
}

real = mag * cos (theta);
imag = mag * sin (theta);

Chapter 14: Classes and invariants

cartesian = true;

}

The exit function causes the program to quit immediately. The return value is an error code that tells
the system (or whoever executed the program) that something went wrong.

This kind of error-checking is so common that C++ provides a built-in function to check
preconditions and print error messages. If you include the assert.h header file, you get a function
called assert that takes a boolean value (or a conditional expression) as an argument. As long as the
argument is true, assert does nothing. If the argument is false, assert prints an error message and
quits. Here's how to use it:

void Complex::calculateCartesian ()

{

assert (polar);

real = mag * cos (theta);
imag = mag * sin (theta);
cartesian = true;

assert (polar && cartesian);

}

The first assert statement checks the precondition (actually just part of it); the second assert
statement checks the postcondition.

In my development environment, I get the following message when I violate an assertion:

Complex.cpp:63: void Complex::calculatePolar(): Assertion “cartesian' failed.
Abort

There is a lot of information here to help me track down the error, including the file name and line
number of the assertion that failed, the function name and the contents of the assert statement.

14.10 Private functions

In some cases, there are member functions that are used internally by a class, but that should not be
invoked by client programs. For example, calculatePolar and calculateCartesian are used by
the accessor functions, but there is probably no reason clients should call them directly (although it
would not do any harm). If we wanted to protect these functions, we could declare them private the
same way we do with instance variables. In that case the complete class definition for Complex would
look like:

class Complex

{ .

private:
double real, imag;
double mag, theta;
bool cartesian, polar;

void calculateCartesian ();
void calculatePolar ();

10

Chapter 14: Classes and invariants

public:
Complex () { cartesian = false; polar = false; }

Complex (double r, double i)
{

real = r; imag = i;
cartesian = true; polar = false;

}

void printCartesian ();
void printPolar ();

double getReal ();
double getImag ();
double getMag ();

double getTheta ();

void setCartesian (double r, double i);
void setPolar (double m, double t);

}i

The private label at the beginning is not necessary, but it is a useful reminder.

14.11 Glossary

class
In general use, a class is a user-defined type with member functions. In C++, a class is a
structure with private instance variables.

accessor function
A function that provides access (read or write) to a private instance variable.

invariant
A condition, usually pertaining to an object, that should be true at all times in client code, and
that should be maintained by all member functions.

precondition
A condition that is assumed to be true at the beginning of a function. If the precondition is not
true, the function may not work. It is often a good idea for functions to check their
preconditions, if possible.

postcondition
A condition that is true at the end of a function.

Revised 2008-12-06.

v—:\ How to Think Like a Computer Scientist !NDTJ

7€

11

Chapter 15: Object-oriented programming

r—: /I\ /:— How to Think Like a Computer Scientist INDEJL%

Chapter 15

Object-oriented programming

Jonah Cohen
15.1 Programming languages and styles

There are many programming languages in the world, and almost as many programming styles
(sometimes called paradigms). Three styles that have appeared in this book are procedural, functional,
and object-oriented. Although C++ is usually thought of as an object-oriented language, it is possible
to write C++ programs in any style. The style I have demonstrated in this book is pretty much
procedural. Existing C++ programs and C++ system libraries are written in a mixture of all three
styles, but they tend to be more object-oriented than the programs in this book.

It's not easy to define what object-oriented programming is, but here are some of its characteristics:

o Object definitions (classes) usually correspond to relevant real-world objects. For example, in
Chapter 13.3, the creation of the Deck class was a step toward object-oriented programming.

o The majority of functions are member functions (the kind you invoke on an object) rather than
nonmember functions (the kind you just invoke). So far all the functions we have written have
been nonmember functions. In this chapter we will write some member functions.

» The language feature most associated with object-oriented programming is inheritance. I will
cover inheritance later in this chapter.

Recently object-oriented programming has become quite popular, and there are people who claim that
it is superior to other styles in various ways. I hope that by exposing you to a variety of styles I have
given you the tools you need to understand and evaluate these claims.

15.2 Member and nonmember functions

There are two types of functions in C++, called nonmember functions and member functions. So
far, every function we have written has been a nonmember function. Member functions are declared
inside class defintions. Any function declared outside of a class is a nonmember function.

Although we have not written any member functions, we have invoked some. Whenever you invoke a
function "on" an object, it's a member function. Also, the functions we invoked on strings in
Chapter 7 were member functions.

Anything that can be written as a nonmember function can also be written as a member function, and

Chapter 15: Object-oriented programming

vice versa. Sometimes it is just more natural to use one or the other. For reasons that will be clear
soon, member functions are often shorter than the corresponding nonmember functions.

15.3 The current object

When you invoke a function on an object, that object becomes the current object. Inside the
function, you can refer to the instance variables of the current object by name, without having to
specify the name of the object.

You can also refer to the current object through the keyword this. We have already seen this in an
assignment operator in Section 11.2. However, the this keyword is implicit most of the time, so you
will rarely find any need for it.

15.4 Complex numbers

Continuing the example from the previous chapter, we will consider a class definition for complex
numbers. Complex numbers are useful for many branches of mathematics and engineering, and many
computations are performed using complex arithmetic. A complex number is the sum of a real part
and an imaginary part, and is usually written in the form x + yi, where x is the real part, y is the
imaginary part, and i represents the square root of —1. Thus,i « i = -1.

The following is a class definition for a new object type called Complex:

class Complex
{
public:
double real, imag;

Complex () {
real = 0.0; imag = 0.0;

Complex (double r, double i) {
real = r; imag = i;
}
}i

There should be nothing surprising here. The instance variables are two doubles that contain the real
and imaginary parts. The two constructors are the usual kind: one takes no parameters and assigns
default values to the instance variables, the other takes parameters that are identical to the instance
variables.

In main, or anywhere else we want to create Complex objects, we have the option of creating the
object and then setting the instance variables, or doing both at the same time:

Chapter 15: Object-oriented programming

Complex x;

X.real = 1.0;

X.imag = 2.0;

Complex y (3.0, 4.0);

15.5 A function on complex numbers

Let's look at some of the operations we might want to perform on complex numbers. The absolute

value of a complex number is defined to be v (x? + y?). Our abs function will be a pure function that
computes the absolute value of a Complex object. Written as a nonmember function, it looks like this:

// nonmember function
double abs (Complex c) {
return sqgrt (c.real * c.real + c.imag * c.imag);

}

This version of abs calculates the absolute value of ¢, the Complex object it receives as a parameter.
The next version of abs is a member function; it calculates the absolute value of the current object
(the object the function was invoked on). Thus, it does not receive any parameters:

class Complex

{
public:
double real, imag;

// ...constructors

// member function
double abs () {
return sqrt (real*real + imag*imag);
}
}i

I removed the unnecessary parameter to indicate that this is a member function. Inside the function, I
can refer to the instance variables real and imag by name without having to specify an object. C++
knows implicitly that I am referring to the instance variables of the current object. If I wanted to make
it explicit, I could have used the keyword this:

class Complex

{
public:
double real, imag;

// ...constructors

// member function
double abs () {

Chapter 15: Object-oriented programming

return sqrt (this->real * this->real + this->imag * this->imag);
}
}i

But that would be longer and not really any clearer. To invoke this function, we invoke it on an object,
for example

Complex y (3.0, 4.0);
double result = y.abs ();

15.6 Another function on complex numbers

Another operation we might want to perform on complex numbers is addition. You can add complex
numbers by adding the real parts and adding the imaginary parts. Written as a nonmember function,
that looks like:

Complex Add (Complex& a, Complex& b) {
return Complex (a.real + b.real, a.imag + b.imag);

}
To invoke this function, we would pass both operands as arguments:
Complex sum = Add (%, Y);

Written as a member function, it would take only one argument, which it would add to the current
object:

Complex Add (Complex& b) {
return Complex (real + b.real, imag + b.imag);

}

Again, we can refer to the instance variables of the current object implicitly, but to refer to the
instance variables of b we have to name b explicitly using dot notation. To invoke this function, you
invoke it on one of the operands and pass the other as an argument.

Complex sum = x.Add (y);

From these examples you can see that the current object (this) can take the place of one of the
parameters. For this reason, the current object is sometimes called an implicit parameter.

15.7 A modifier

As yet another example, we'll look at conjugate, which is a modifier function that transforms a
Complex number into its complex conjugate. The complex conjugate of x + yiisx - yi.

As a nonmember function, this looks like:

Chapter 15: Object-oriented programming

void conjugate (Complex& c) {
c.imag = -c.imag;

}

As a member function, it looks like

void conjugate () {
imag = -imag;

}

By now you should be getting the sense that converting a function from one kind to another is a
mechanical process. With a little practice, you will be able to do it without giving it much thought,
which is good because you should not be constrained to writing one kind of function or the other. You
should be equally familiar with both so that you can choose whichever one seems most appropriate
for the operation you are writing.

For example, I think that Add should be written as a nonmember function because it is a symmetric
operation of two operands, and it makes sense for both operands to appear as parameters. It just seems
odd to invoke the function on one of the operands and pass the other as an argument. (Actually, in the
next section you'll learn of a method called operator overloading which eliminates the need for
explicitly calling functions like Add.)

On the other hand, simple operations that apply to a single object can be written most concisely as
member functions (even if they take some additional arguments).

15.8 Operator overloading and <<

There are two operators that are common to many object types: << and =. << converts the object to
some reasonable string representation so it can be outputted, and = is used to copy objects.

When you output an object using cout, C++ checks to see whether you have provided a << definition
for that object. If it can't find one, it will refuse to compile and give an error such as

~

complex.cpp:1l: no match for ~_ IO ostream withassign & << Complex &'

Here is what << might look like for the complex class:

ostream& operator << (ostream& os, Complex& num) {
os << num.real << " + " << num.imag << "i";
return os;

}

(This definition should not be within the Complex class, since it is not a member function of Complex
objects. However, as for all nonmember functions, for this to work, the real and imag fields would
have to be made public or corresponding accessor functions would need to be defined.) Whenever you
pass an object to an output stream such as cout, C++ invokes the << operator on that object and
outputs the result. In this case, the outputis 1 + 2i.

Chapter 15: Object-oriented programming

The return type for << is ostreams, which is the datatype of a cout object. By returning the os object
(which, like ostream, is just an abbreviation of output stream), you can string together multiple <<
commands such as

cout << "Your two numbers are " << numl << " and " << num2 << endl;

To illustrate why that's a good thing, consider what you would be forced to do if you didn't return the
ostream object:

"

cout << "Your two numbers are ";
cout << numl;

cout << " and ";

cout << num2;

cout << endl;

Because the first example allows stringing << statements together, all the display code fits easily on
one line. The output from both statements is the same, displaying "Your two numbers are 3 + 2i and 1
+ 5i".

This version of << does not look good if the imaginary part is negative. As an exercise, fix it.

15.9 The = operator

Unlike the << operator, which refuses to output classes that haven't defined their own definition of that
function, every class comes with its own =, or assignment, operator. This default operator simply
copies every data member from one class instance to the other by using the = operator on each
member variable.

When you create a new object type, you can provide your own definition of = by including a member
function called operator =. For the Complex class, this looks like:

const Complex& operator = (const Complex& b) {
real = b.real;
imag = b.imag;
return *this;

}

By convention, = is always a member function. It returns the current object. (Remember this from
Section 11.27) This is similar to how << returns the ostream object, because it allows you to string
together several = statements:

Complex a, b, c;
c.real = 1.0;
c.imag = 2.0;
a=>b =c;

In the above example, c is copied to b, and then b is copied to a. This is because = associates to the

Chapter 15: Object-oriented programming

right, and so "a = b = ¢" is an abbreviation for "a = (b = c¢)". The result is that all three variables
contain the data originally stored in c. While not used as often as stringing together << statements, this
is still a useful feature of C++.

The purpose of the const in the return type is to prevent assignments such as:
(a = b) =c;

This is a tricky statement, because you may think it should just assign c to a and b like the earlier
example. However, in this case the parentheses actually mean that the result of the statement a = b is
being assigned a new value, which would actually assign it to a and bypass b altogether. By making
the return type const, we prevent this from happening.

15.10 Invoking one member function from another

As you might expect, it is legal and common to invoke one member function from another. For
example, to normalize a complex number, you divide through (both parts) by the absolute value. It
may not be obvious why this is useful, but it is.

Let's write the function normalize as a member function, and let's make it a modifier.

void normalize () {
double d = this->abs();

real/d;

imag/d;

real

imag

}

The first line finds the absolute value of the current object by invoking abs on the current object. In
this case I named the current object explicitly, but I could have left it out. If you invoke one member
function within another, C++ assumes that you are invoking it on the current object.

As an exercise, rewrite normalize as a pure function. Then rewrite it as a nonmember function.

15.11 Oddities and errors

If you have both member functions and nonmember functions in the same class definition, it is easy to
get confused. A common way to organize a class definition is to put all the constructors at the
beginning, followed by all the member functions and then all the nonmember functions.

You can have a member function and a nonmember function with the same name, as long as they do
not have the same number and types of parameters. As with other kinds of overloading, C++ decides
which version to invoke by looking at the arguments you provide.

Since there is no current object in a nonmember function, it is an error to use the keyword this. If
you try, you might get an error message like: "Undefined variable: this." Also, you cannot refer to

Chapter 15: Object-oriented programming

instance variables without using dot notation and providing an object name. If you try, you might get
"Can't make a static reference to nonstatic variable..." This is not one of the better error messages,
since it uses some non-standard language. For example, by "nonstatic variable" it means "instance
variable." But once you know what it means, you know what it means.

15.12 Inheritance

The language feature that is most often associated with object-oriented programming is inheritance.
Inheritance is the ability to define a new class that is a modified version of a previously-defined class
(including built-in classes).

The primary advantage of this feature is that you can add new functions or instance variables to an
existing class without modifying the existing class. This is particularly useful for built-in classes,
since you can't modify them even if you want to.

The reason inheritance is called "inheritance" is that the new class inherits all the instance variables
and functions of the existing class. Extending this metaphor, the existing class is sometimes called the
parent class and the new class is called the subclass.

15.13 Message class

An an example of inheritance, we are going to take a message class and create a subclass of error
messages. That is, we are going to create a new class called ErrorMessage that will have all the
instance variables and functions of a Message, plus an additional member variable, errorCode,
which will be displayed when the object is outputted.

The Message class definition looks like this:

class Message

{
protected:
string source; //source of message
string message; //text in message
public:
//constructor

Message(const string& src, const string& msg) {
source = src; //initialize source

message = msg; //initialize message

//convert message to string
virtual string getMessage() const {

"o, "
.

return source + + message;

Chapter 15: Object-oriented programming

}i

And that's all there is in the whole class definition. A Message has two protected member variables:
the source of the message and the text of the message. (Protected variables will be explained in a
moment.) The constructor initializes these member variables from the two strings passed as
arguments.

You probably noticed that there is a const floating in free-space after the getMessage function
declaration. When variables are declared const (such as in the Message constructor), it indicates that
the function can't modify their values. However, a const after a function declaration means that the
function itself is const! Only member functions can use this feature, because what it means is that the
function can't modify any member variables of its class. Think of it as if *this is marked const.

The virtual indicator at the beginning of getMessage is a very important feature of inheritance.
When a function is marked virtual, it allows that function to be redefined in subclasses. We will use
this feature to change the behavior of getMessage in the ErrorMessage class.

Now here is an example of an ErrorMessage class which extends the functionality of a basic

Message:

class ErrorMessage : public Message

{
protected:
string errorCode; //error messages have error codes
public:
//constructor
ErrorMessage(const string& ec, const string& src, const string& msg)
: Message (src, msg)
{
errorCode = ec; //initialize error code
}
//convert message to string
virtual string getMessage() const {
return "ERROR " + errorCode + ": " + source + ": " + message;
}
}i

The class declaration indicates that ErrorMessage inherits from Message. A colon followed by the
keyword public is used to identify the parent class.

The ErrorMessage class has one additional member variable for an error code, which is added to the
string returned from the getMessage function. It would serve to notify a user of the error code
associated with whatever message they received. The constructor of ErrorMessage initializes
errorCode after it initializes both the original member variables, source and message using the
Message constructor of the parent class. This is the meaning of ": Message (src, msg)" at the end
of first line of the ErrorMessage constructor. That is, the ErrorMessage constructor first calls
Message (src, msg) to initialize the variables of the parent class and then executes errorCode =

Chapter 15: Object-oriented programming

ec to initialize the additional member variable.

An important thing to note is that the getMessage function has been redefined in ErrorMessage.
Now the returned string includes the error code of the message, as well as source and message
strings from the parent class. This is why source and message were declared protected variables;
this makes them visible to subclasses of Message but not in other parts of the program. That is, they
are public to classes descended from Message, but otherwise they are like private variables.

Suppose we want to overload the << operator to call getMessage in order to display messages.

ostream& operator << (ostream& os, const Message& msg) {
return os << msg.getMessage();

}

This function will take any Message object and display it by calling its getMessage function. Since
the ErrorMessage class is inherited from the Message class, what that means is that every
ErrorMessage object is also a Message object! This allows you to use displayMessage like this:

ErrorMessage error ("1234", "Hard drive", "Out of space");
cout << error << endl;

The code first creates an ErrorMessage object with three strings for the source, message, and error
code. Then the error message is passed to <<. Inside <<, the Message object's getMessage function is
called in order to get a string representation of the object for output. The resulting output is:

ERROR 1234: Hard drive: Out of space

Even though the function thinks the object is a Message, and has probably never even heard of the
ErrorMessage class, it is still calling a function defined in ErrorMessage. This is all because of the
virtual keyword used in the getMessage declaration. All functions that are ever going to be
redefined in subclasses must be declared virtual. Otherwise, << would not realize the object is an
ErrorMessage and would go ahead and call the getMessage defined in Message instead.

As an excercise, remove the virtuals and recompile the program. See if you can predict the output
before running it.

15.14 Object-oriented design

Inheritance is a powerful feature. Some programs that would be complicated without inheritance can
be written concisely and simply with it. Also, inheritance can facilitate code reuse, since you can
customize the behavior of build-in classes without having to modify them.

On the other hand, inheritance can make programs difficult to read, since it is sometimes not clear,
when a function is invoked, where to find the definition. For example, in a GUI environment you
could call the Redraw function on a Scrollbar object, yet that particular function was defined in
WindowObject, the parent of the parent of the parent of the parent of Scrollbar.

Also, many of the things that can be done using inheritance can be done almost as elegantly (or more

10

Chapter 15: Object-oriented programming

s0) without it.

15.15 Glossary

dot notation
The method C++ uses to refer to member variables and functions. The format is
className.memberName.

member function
A function that is declared within the class defintion of an object. It is invoked directly on an
object using dot notation.

nonmember function
A function defined outside any class definition. Nonmember functions are not invoked on
objects and they do not have a current object.

current object
The object on which a member function is invoked. Inside the function, the current object is
referred to by the pointer this.

this
The keyword that refers to a pointer to the current object.

virtual
The keyword that is used by any function defined in a parent class that can be overloaded in
subclasses.

implicit

Anything that is left unsaid or implied. Within a member function, you can refer to the instance

variables implicitly (without naming the object).

explicit
Anything that is spelled out completely. Within a nonmember function, all references to the
instance variables have to be explicit.

Revised 2009-11-04.

- T €= How to Think Like a Computer Scientist INDEX]
| | i {

—_—

11

Chapter 16: Pointers and References

v—: (l\ /\— How to Think Like a Computer Scientist INDEJL%

Chapter 16

Pointers and References

(original text by Paul Bui)

I suppose the easiest way to explain pointers and references is to jump right into an example. Let's
first take a look at some algebra:

In algebra, when you use a variable, it is essentially a letter or designation that you use to refer to
some number. In programming, the variable in the equation above must be on the left side. You've
probably noticed by now that the compiler won't let you do something like this:

1 = x;

And if you didn't know this...now you know, and knowing is half the battle. The reason why you
receive a compile-time error like "lvalue required in..." is because the left-hand side of the equation,
traditionally referred to as the lvalue, must be an address in memory. Think about it for a second. If
you wanted to store some data somewhere, you first need to know where you're going to store it
before the action can take place. The lvalue is the address of the place in memory where you're going
to store the information and/or data of the right-hand side of the equation, also known as the rvalue.

In C++, you will most likely at one point or another, deal with memory management. To manipulate
addresses, C++ has two mechanisms: pointers and references.

16.1 What are pointers and references?

Pointers and references are essentially variables that hold memory addresses as their values. You
learned before about the various different data types such as: int, double, and char. Pointers and
references hold the addresses in memory of where you find the data of the various data types that you
have declared and assigned. The two mechanisms, pointers and references, have different syntax and
different traditional uses.

16.2 Declaring pointers and references

Chapter 16: Pointers and References

When declaring a pointer to an object or data type, you basically follow the same rules of declaring
variables and data types that you have been using, only now, to declare a pointer of SOMETYPE, you
put an asterisk * in front of the variable:

SOMETYPE* somevar;
int* x;

To declare a reference, you do the exact same thing you did to declare a pointer, only this time, rather
than using an asterisk *, use instead an ampersand &:

SOMETYPE& somevar;
int& x;

This is most commonly used for reference parameters (Section 8.7), but as you will learn in a
moment, there are also reference variables.

You have already learned that spacing in C++ does not matter, so the following pointer declarations
are identical:

SOMETYPE* somevar;
SOMETYPE * somevar;
SOMETYPE *somevar;

The following reference declarations are identical as well:

SOMETYPE& somevar;
SOMETYPE & somevar;
SOMETYPE &somevar;

Different programmers write the declarations in different ways. In many respects, it makes more sense
to think of the * or & as going with the type. For example, we can think of

int* x;

as declaring x to be an "integer pointer," that is, a pointer to an integer. However, the * or & actually
goes with the variable, as we can see from a declaration such as:

int* x, y;

This declares x to be a pointer to an integer but y to be an ordinary integer variable, as is more
obvious if we write it:

int *x, y;

Usually I will write the * or & next to the type, since it's easier to understand, but it's important to
remember that it really goes with the variable or parameter name.

Chapter 16: Pointers and References

16.3 The "address of" and "value at address" operators

Although declaring pointers and references look similar, assigning them is a whole different story. In
C++, there is another operator that you'll get to know intimately, the "address of" operator, which is
also denoted by the ampersand & symbol. The "address of" operator does exactly what it says, it
returns the "address of" a variable, a symbolic constant, or a element in an array, in the form of a
pointer of the corresponding type. (In effect, it converts an lvalue into an rvalue.) To use the "address
of" operator, you tack it on in front of the variable that you wish to have the address of.

SOMETYPE* x = &somevar; // must be used as rvalue

This puts the address of somevar into the pointer variable x. Don't confuse the "address of" operator
with the declaration of a reference. Because use of operators is restricted to rvalues, or to the right
hand side of the assignment, the compiler knows that asomevar is the "address of" operator being
used to denote the address of somevar as a pointer value.

The * operator also has a second use: to fetch the contents of a memory location pointed at by a
pointer variable. For example, if you declare:

int x = 17;

int* xp = &x;

The value of variable xp is a pointer to memory location, name that is which x is stored. To find the
contents of the location to which xp points, we need to "dereference" it with the * operator. For
example,

cout << *xp << endl;
prints 17. Thus "*xp" may be verbalized, "the value at address xp."

If you have a function which has a pointer as an argument, you may use the "address of" operator on a
variable that you want to pass to the function. You do not necessarily have to declare a separate
pointer variable just to use it as an argument in a function; the "address of" operator returns a pointer
and thus can be used in that case too:

SOMETYPE MyFunc (SOMETYPE *x)
{

cout << *x << endl;

}

int main()

{ SOMETYPE 1i;
MyFunc (&i);

return 0;

}

Chapter 16: Pointers and References

16.4 Assigning to pointers and references

As you saw in the syntax of the "address of" operator, a pointer be assigned the value returned by the
"address of" operator, which is a pointer. To assign to a pointer variable, it must be given an address in
memory as the rvalue, or the compiler will give you an error.

int x;
int* px = &x;

The above piece of code declares a variable x of type int and then declares an int pointer variable
px, which is initialized to the address in memory of x. The pointer px essentially "points" to x by
storing its address in memory. Keep in mind that when declaring a pointer, the pointer needs to be of
the same base type as the variable or constant from which you take the address.

Now here is where you begin to see the differences between pointers and references. To assign to a
pointer variable an address in memory, you had to have used the "address of" operator to return the
address in memory of the variable as a pointer. A reference however, does not need to use the "address
of" operator to be assigned to an address in memory. To assign an address in memory of a variable to
a reference, you just need to use the variable as the rvalue.

int x;
int& rx = x;

The above piece of code declares a variable x of type int and then declares an int reference rx,
which is defined to "refer to" x. Notice how the address of x is stored in rx, or "referred to" by rx
without the use of any operators, just the variable. In effect rx is an alias for x, and can be used in any
way x can be used. For example,

X = 43;
rx = 17;
cout << rx << "=" << x << endl;

prints "17=17". You must also follow the same rule as pointers, wherein you must declare the same
type reference as the variable or constant to which you refer.

Hypothetically, if you wanted to see what output a pointer would be...

#include <iostream>
using namespace std;

int main()

{
int someNumber = 12345;
int* ptrSomeNumber = &someNumber;
cout << "someNumber = "

cout << "ptrSomeNumber =

<< someNumber << endl;
" << ptrSomeNumber << endl;

return 0;

Chapter 16: Pointers and References

If you compiled and ran the above code, you would have the variable someNumber output 12345
while ptrsomeNumber would output some hexadecimal number (addresses in memory are represented
in hexadecimal notation). Now, if you wanted to output the value pointed to by ptrSomeNumber, you
would use this code:

#include <iostream>

int main()

{

int someNumber = 12345;
int* ptrSomeNumber = &someNumber;

cout << "someNumber = << someNumber << endl;
cout << "ptrSomeNumber points to " << *ptrSomeNumber << endl;

return 0;

}

So basically, when you want to use, modify, or manipulate the value pointed to by pointer x, you
denote the value/variable with *x.

Here is a quick list of things you can do with pointers and references:

Pointer variables can "point to" addresses in memory

Reference variables can "refer to" variables or constants

You can copy the values of pointers to other pointers

You can modify the values stored in the memory pointed to or referred to by pointers and/or
references, respectively

You can also increment or decrement the addresses stored in pointers

You can pass pointers and/or references to functions (see Section 8.7 for more on "passing by
reference")

16.5 The NULL pointer

If a pointer is assigned the null pointer, it points to nothing. The null pointer is denoted by 0 or—more
readably —by NULL (a name that is defined in several of the standard C++ libraries, including
iostream). The NULL pointer is often used in conditions and/or in logical operations.

#include <iostream>

int main()

{
int x = 12345;
int* px = &x;

while (px != NULL) {
cout << "Pointer px points to something\n";
px = NULL;

}

Chapter 16: Pointers and References

cout << "Pointer px points to null, nothing, nada!\n";

return 0;

}

If pointer px is not NULL, then it is pointing to something, however, if the pointer is NULL, then it is
pointing to nothing. The null pointer becomes very useful when you must test the state of a pointer,
whether it has a value or not.

16.6 Dynamic Memory Allocation

You may have wondered how programmers allocate memory efficiently without knowing, prior to
running the program, how much memory will be necessary. This is accomplished with dynamic
memory allocation.

You have learned about assigning to pointers using the "address of" operator, which returns the
address of a variable or constant in the form of a pointer, but C++ has another operator that returns a
pointer, the new operator. The new operator allows the programmer to allocate memory for a specific
data type, structure, class, etc, and gives the programmer the address of that allocated area of memory
in the form of a pointer. The new operator is used as an rvalue, similar to the "address of" operator.
Take a look at the code below to see how the new operator works.

int n = 10;

SOMETYPE *pS;

int *pint;
vector<double> *pvec;

pS = new SOMETYPE;

pint = new int;

pvec = new vector<double> (1000);
*pint = n;

(*pvec)[0] = *pint;

By assigning to a pointers the address of an allocated area of memory, rather than having to use a
variable declaration, you basically override the "middleman" (the variable declaration). Now, you can
allocate memory dynamically without having to know the number of variables you should declare. If
you looked at the above piece of code, you can use the new operator to allocate memory for vectors
too, which comes quite in handy when we need to manipulate efficiently the sizes of large vectors,
structures, classes, or other objects. Notice that to index a vector pointer, you have to surround the
vector value in parentheses.

The memory that your pointer points to (as a result of a new operator) can also be "deallocated," not
destroyed but rather, freed up so that it can be used for other purposes (e.g., reallocated by subsequent
new operations). The delete operator frees up the address in memory to which the pointer is
pointing:

delete pvec;
delete pint;

Chapter 16: Pointers and References

The memory pointed to by pvec and pint have been freed up, which is good, because if you do not
free up memory when you are done with it, then it cannot be allocated for other purposes. Failure to
deallocate unused memory is called a memory leak, and can cause a program to run out of memory;
the program's space will be filled with unusable "garbage." (So, you can see that recycling is as
important in programs as in the environment!) Essentially, every time you use the new operator on
something, you should use the delete operator to free that memory when it is no longer needed. On
the other hand, it is important that you do not delete an object that it still in use. This can happen if
you have two or more pointers to the same memory area and you delete one of them. Now the system
thinks this memory area is available for reuse, but you still have another, "dangling" pointer to it. As
a result, two parts of your program may end up using the same memory for two different,
incompatible purposes. This is a common source of obscure, hard to diagnose program errors, and
often to programs that crash. Avoiding memory leaks on one side and dangling pointers on the other
requires careful program design and documentation, so that you know for sure when you can and
should delete a pointer.

The new and delete operators do not have to be used in conjunction with each other within the same
function or block of code. It is proper and often advised to write functions that allocate memory and
other functions that deallocate memory.

16.7 Returning pointers and/or references from functions

When declaring a function, you must declare it in terms of the type that it will return, for example:

int MyFunc(); // returns an int
SOMETYPE MyFunc(); // returns a SOMETYPE

int* MyFunc(); // returns a pointer to an int

SOMETYPE *MyFunc(); // returns a pointer to a SOMETYPE
SOMETYPE &MyFunc(); // returns a reference to a SOMETYPE

The above code shows how to declare a function that will return a reference or a pointer. Next
consider:

SOMETYPE *MyFunc(int *p)
{

return p;
}

SOMETYPE &MyFunc(int &r)
{

return r;
}

Within the body of the function, the return statement should not return a pointer or a reference that

Chapter 16: Pointers and References

has the address of a local variable that was declared within the function, because as soon as the
function exits, all local variables are destroyed and your pointer or reference will be pointing to some
place in memory that has been deallocated. Having a dangling pointer like that is quite dangerous.

However, within the body of your function, if your pointer or reference has the address in memory of
a data type, structure, or class that you dynamically allocated the memory for, using the new operator,
then returning said pointer or reference would be reasonable.

SOMETYPE *MyFunc() //returning a pointer that has a dynamically
{ //allocated memory address is proper code
int *p = new SOMETYPE;

return p;

16.8 Pointers to structures and objects

It is frequently useful to dynamically allocate structures or objects (instances of classes). For
example, recall that in Section 13.1 I defined a card structure to have two fields, rank and suit. You
can get a pointer to a new Card object with an assignment such as this:

Card* cardPtr = new Card (DIAMONDS, ACE);

Suppose we want to increase the rank of the card pointed to by cardptr. You cannot use
cardPtr.rank, because cardPtr is of type Card*, not Card. Rather, you must dereference the
pointer, which follows the pointer to the card to which it points:

(*cardPtr).rank = Rank((*cardPtr).rank + 1);

This is correct, but it is much more common to use the arrow operator, a special abbreviation that
C++ has for an instance variable in a structure pointed to by a pointer:

cardPtr->rank = Rank(cardPtr->rank + 1);

In general, ptrvar->field is the lvalue of the instance variable £ield in the structure or object
pointed to by pointer ptrvar. Similarly, if func is a member function of ptrvar, it is invoked by
ptrvar->func(..). Thus, to print the card at cardptr you would write cardPtr->print().

16.9 Glossary

pointer
a variable that holds an address in memory. Similar to a reference, however, pointers have
different syntax and traditional uses from references.

reference
a variable that holds an address in memory. Similar to a pointer, however, references have
different syntax and traditional uses from pointers.

"address of" operator

Chapter 16: Pointers and References

an operator that returns the address in memory of a variable.
"value at address" operator
an operator that returns the contents of an address in memory.
"arrow" operator
selects an instance variable or member function of a structure or object at an address.
dynamic memory allocation
the explicit allocation of contiguous blocks of memory at any time in a program.
new
an operator that returns a pointer, of the appropriate data type, to newly allocated memory.
delete
an operator that returns the memory pointed to by a pointer to the free store (a special pool of
free memory).

Revised 2008-12-16.

—
’

7€

How to Think Like a Computer Scientist mnz

Chapter 17: Templates

v—:\ /l\ j /\— How to Think Like a Computer Scientist INDExf

Chapter 17

Templates

(original text by Paul Bui)

Have you noticed how many functions that perform the same tasks look similar? For example, if you
wrote a function that swaps two int variables, you would have to have to declare an int temporary
variable first. Swapping two double variables follows the same pattern, but you have to declare

a double temporary. The possibility of error in your code is reduced by repeatin the same pattern, but
it gets somewhat annoying to have to create different versions of functions just to handle all the
different data types you use. Fortunately, C++ provides remplates to automate this process.

Parameterized types, better known as templates, allow the programmer (you) to create one function
that can handle many different types. Instead of having to take into account every data type, you have
one arbitrary parameter name that the compiler then replaces with the different data types that you
wish the function to use, manipulate, etc.

17.1 Syntax for templates

Templates are pretty easy to use, just look at the syntax:
template <class TYPEPARAMTER>

TYPEPARAMETER is just the arbitrary type-parameter name that you want to use in your function. Put
this template specification in front of any definition you want to parameterize. Let's say you want to
create a swap function that can handle more than one data type; you can do it this way:

template <class SOMETYPE>
void swapvars (SOMETYPE &x, SOMETYPE &y)

{
SOMETYPE temp = X;
X =y;
y = temp;

}

The function you see above looks really similar to any other swap function, with the differences being

Chapter 17: Templates

the template <class SOMETYPE> line before the function definition and the instances of SOMETYPE
in the code. Everywhere you would normally need to have the name or class of the datatype that
you're using, you now replace with the arbitrary name that you used in the template <class
SOMETYPE> specification. For example, if you had "SUPERDUPERTYPE" instead of "SOMETYPE,"
the code would look something like this:

template <class SUPERDUPERTYPE>
void swapvars (SUPERDUPERTYPE &x, SUPERDUPERTYPE &y)

{
SUPERDUPERTYPE temp = X;
X = y;
y = temp;

}

As you can see, you can use whatever label you wish for the template type-parameter, as long as it is
not a reserved word.

If you want to have more than one template type-parameter, then the syntax would be:

template <class SOMETYPEl, class SOMETYPEZ2, ...>

17.2 Templates and classes

Let's say that, rather than creating a simple templated function, you would rather use templates in a
class, so that the class may handle more than one datatype. If you've noticed, vector is able to handle
creating vectors of int, double, string, etc. This is because there is a line, template <class
SOMETYPE> in the line preceding the declaration of the vector class. It looks something like this:

template <class SOMETYPE>
class vector {

}i
If you want to declare a function that will return your type-parameter then specify the return type to
be your type-parameter name:

template <class SOMETYPE>
SOMETYPE printFunction();

17.3 The Pitfalls of Templates

Templates are very convenient, but there is one pitfall you should avoid. The templated aspects of
your function will only work if the type that you are using has already defined the constructors,
operators, etc. that your function uses. For example, suppose you were to use the += operator with

Chapter 17: Templates

your type-parameter:

SOMETYPE X, Y;

X += y;

If the datatype, class, or structure that you use SOMETYPE to represent does not have a += operator
defined, then the compiler (specifically, the linker) will give you an error, because it doesn't know how
to do += on that type of variable. You may have to rewrite your templated function so that it uses only
the operators and functions defined for all the types of objects that make sense to use with the
function. For example, instead of x += y you could write x = x + y if all the relevant types have a
+ operation.

17.4 Glossary

templates
Also known as parameterized types, templates allow the programmer to save time and space in
source code by simplifying code through overloading functions with an arbitrary
type-parameter.

type-parameter
The type-parameter is the arbitrary label or name that you use in your template to represent the
various datatypes, structures, or classes.

Revised 2008-12-08.

"_:\3 (|\ 3 /\—3 How to Think Like a Computer Scientist moaé

i —

Chapter 18: Linked lists

v—:\ /l\ j /\— How to Think Like a Computer Scientist INDExf

Chapter 18

Linked lists

18.1 References in objects

One of the more interesting qualities of an object is that an object can contain a reference to another
object of the same type. There is a common data structure, the linked list, that takes advantage of this
feature.

Lists are made up of nodes, where each node contains a pointer or reference to the next node in the
list. In addition, each node usually contains a unit of data called the cargo. In our first example, the
cargo will be a single integer, but later (Section 18.12) we will write a generic list that can contain
objects of any type.

18.2 Revenge of the Node

As usual when we write a new class, we'll start with the instance variables, one or two constructors
and toString so that we can test the basic mechanism of creating and displaying the new type.

class Node {
public:

int cargo;
Node* next;

Node () {
cargo = 0;
next = NULL;

Node (int Cargo, Node* Next) {
cargo = Cargo;
next = Next;

}i

Chapter 18: Linked lists

The declarations of the instance variables follow naturally from the specification, and the rest follows
mechanically from the instance variables.

To test the implementation so far, we would put something like this in main:

Node* node = new Node (1, NULL);
cout << node->cargo << endl;

The result is simply
1
To make it interesting, we need a list with more than one node!

Node* nodel
Node* node2
Node* node3

new Node (1, NULL);
new Node (2, NULL);
new Node (3, NULL);

This code creates three nodes, but we don't have a list yet because the nodes are not linked. The state
diagram looks like this:

node node2 node3
Ll Ll o
Y v Y
cargo: 1 carqo: 2 cargo: 3
next. @ next. @ next. @

To link up the nodes, we have to make the first node refer to the second and the second node refer to
the third.

nodel->next = node2;
node2->next = node3;
node3->next = NULL;

The reference of the third node is NULL, which indicates that it is the end of the list. Now the state
diagram looks like this:

node node2 node3
o o] Ll
cargo: 1 cargo: 2 cargo: 3

next. @— next. @ next. @

Chapter 18: Linked lists

Now we know how to create nodes and link them into lists. What might be less clear at this point is
why.

18.3 Lists as collections

The thing that makes lists useful is that they are a way of assembling multiple objects into a single
entity, sometimes called a collection. In the example, the first node of the list serves as a reference to
the entire list.

If we want to pass the list as a parameter, all we have to pass is a reference to the first node. For
example, the method printList takes a single node as an argument. Starting with the head of the list,
it prints each node until it gets to the end (indicated by the NULL reference).

void printList (Node* list) {
Node* node = list;

while (node != NULL) {

cout << node->cargo;
node = node->next;

}
To invoke this method we just have to pass a reference to the first node:
printList (nodel);

Inside printList we have a reference to the first node of the list, but there is no variable that refers
to the other nodes. We have to use the next value from each node to get to the next node.

This diagram shows the value of 1ist and the values that node takes on:

L]

cargo: 1 cargo: 2 cargo: 3
next Lo | = next. @ | = next. @
i 4 4

[e

node

This way of moving through a list is called a traversal, just like the similar pattern of moving through
the elements of an vector. It is common to use a loop variable like node to refer to each of the nodes
in the list in succession.

Chapter 18: Linked lists

The output of this method is
123

By convention, lists are printed in parentheses with commas between the elements, as in (1, 2, 3).
As an exercise, modify printList so that it generates output in this format.

As another exercise, rewrite printList using a for loop instead of a while loop.

18.4 Lists and recursion

Recursion and lists go together like fava beans and a nice Chianti. For example, here is a recursive
algorithm for printing a list backwards:

1. Separate the list into two pieces: the first node (called the head) and the rest (called the tail).
2. Print the tail backwards.
3. Print the head.

Of course, Step 2, the recursive call, assumes that we have a way of printing a list backwards. But if
we assume that the recursive call works—the leap of faith—then we can convince ourselves that this
algorithm works.

All we need is a base case, and a way of proving that for any list we will eventually get to the base
case. A natural choice for the base case is a list with a single element, but an even better choice is the
empty list, represented by NULL.

void printBackward (Node* list) {
if (list == NULL) return;

Node* head
Node* tail

list;
list->next;

printBackward (tail);
cout << head->cargo;

}

The first line handles the base case by doing nothing. The next two lines split the list into head and
tail. The last two lines print the list.

We invoke this method exactly as we invoked printList:
printBackward (nodel);
The result is a backwards list: 321.

Can we prove that this method will always terminate? In other words, will it always reach the base
case? In fact, the answer is no. There are some lists that will make this method crash.

Chapter 18: Linked lists

18.5 Infinite lists

There is nothing to prevent a node from referring back to an earlier node in the list, including itself.
For example, this figure shows a list with two nodes, one of which refers to itself:

list
o]

cargo: 1 carqo: 2

next: O*r——* next. @—+—_

If we invoke printList on this list, it will loop forever. If we invoke printBackward it will recurse
infinitely. This sort of behavior makes infinite lists difficult to work with.

Nevertheless, they are occasionally useful. For example, we might represent a number as a list of
digits and use an infinite list to represent a repeating fraction (e.g., 1/6 = 0.1666...).

Regardless, it is problematic that we cannot prove that printList and printBackward terminate.
The best we can do is the hypothetical statement, "If the list contains no loops, then these methods
will terminate." This sort of claim is called a precondition. It imposes a constraint on one of the
parameters and describes the behavior of the method if the constraint is satisfied. We will see more
examples soon.

18.6 The fundamental ambiguity theorem

There is a part of printBackward that might have raised an eyebrow:

Node* head
Node* tail

list;
list->next;

After the first assignment, head and 1ist have the same type and the same value. So why did I create
a new variable?

The reason is that the two variables play different roles. We think of head as a reference to a single
node, and we think of 1ist as a reference to the first node of a list. These "roles" are not part of the
program; they are in the mind of the programmer.

Chapter 18: Linked lists

The second assignment creates a new reference to the second node in the list, but in this case we think
of it as a list. So, even though head and tail have the same type, they play different roles.

This ambiguity is useful, but it can make programs with lists difficult to read. I often use variable
names like node and 1ist to document how I intend to use a variable, and sometimes I create
additional variables to disambiguate.

I could have written printBackward without head and tail, but I think it makes it harder to
understand:

void printBackward (Node* list) {
if (list == NULL) return;

printBackward (list->next);
cout << list->cargo;

Looking at the two function calls, we have to remember that printBackward treats its argument as a
list and cout << list->cargo treats it as a single object.

Always keep in mind the fundamental ambiguity theorem:

A variable that refers to a node might treat the node as a single object or as the first in a list
of nodes.

18.7 Member functions for nodes

You might have wondered why printList and printBackward are nonmember functions. I have
made the claim that anything that can be done with nonmember functions (class methods) can also be
done with member functions (object methods); it's just a question of which form is cleaner.

In this case there is a legitimate reason to choose nonmember functions. It is legal to send NULL as an
argument to a class method, but it is not legal to invoke an object method on a null object.

Node* node = NULL;
printList (node); // legal
node->printList (); // NullPointerException

This limitation makes it awkward to write list-manipulating code in a clean, object-oriented style. A
little later we will see a way to get around this, though.

18.8 Modifying lists

Obviously one way to modify a list is to change the cargo of one on the nodes, but the more
interesting operations are the ones that add, remove, or reorder the nodes.

Chapter 18: Linked lists

As an example, we'll write a method that removes the second node in the list and returns a reference
to the removed node.

Node* removeSecond (Node* list) {
Node* first = list;
Node* second = list->next;

// make the first node refer to the third
first->next = second->next;

// separate the second node from the rest of the list
second->next = NULL;
return second;

}

Again, I am using temporary variables to make the code more readable. Here is how to use this
method.

printList (nodel);

Node* removed = removeSecond (nodel);
printList (removed);

printList (nodel);

The output is

(1, 2, 3) the original list
(2) the removed node
(1, 3) the modified list

Here is a state diagram showing the effect of this operation:

first second
L] Cl
4 |
cargo: 1 cargo: 2 cargo: 3

next: q;;}x{- next: OAW>K2> next: @

J

What happens if we invoke this method and pass a list with only one element (a singleton)? What
happens if we pass the empty list as an argument? Is there a precondition for this method?

18.9 Wrappers and helpers

For some list operations it is useful to divide the labor into two functions. For example, to print a list
backwards in the conventional list format, (3, 2, 1) we can use the printBackwards function to

Chapter 18: Linked lists

print "3, 2, " but we need a separate function to print the parentheses and the first node. We'll call it
printBackwardNicely.

void printBackwardNicely (Node* list) {
cout << "(';

if (list != NULL) {
Node* head = list;
Node* tail = list->next;
printBackward (tail);
cout << head->cargo;

}

cout << ')';

}

Again, it is a good idea to check functions like this to see if they work with special cases like an
empty list or a singleton.

Elsewhere in the program, when we use this function, we will invoke printBackwardNicely directly
and it will invoke printBackward on our behalf. In that sense, printBackwardNicely acts as a
wrapper, and it uses printBackward as a helper.

18.10 The LinkedList class

There are a number of subtle problems with the way we have been implementing lists. In a reversal of
cause and effect, I will propose an alternative implementation first and then explain what problems it
solves.

First, we will create a new class called LinkedList. Its instance variables are an integer that contains
the length of the list and a reference to the first node in the list. LinkedList objects serve as handles
for manipulating lists of Node objects.

class LinkedList {
public:
int length;
Node* head;
LinkedList () {

length = 0;
head = NULL;

}i

One nice thing about the LinkedList class is that it gives us a natural place to put wrapper functions
like printBackwardNicely, which we can make a public member function in the LinkedList class.

void printBackward () {
cout << '(';

if (head != NULL) {

Chapter 18: Linked lists

Node* tail = head->next;
tail->printBackward (tail);
cout << head->cargo;

}

cout << ") ';

}

Just to make things confusing, I renamed printBackwardNicely. Now there are two functions
named printBackward: one in the Node class (the helper) and one in the LinkedList class (the
wrapper). In order for the wrapper to invoke the helper, it has to select the member function of Nodes
(tail->printBackward).

So, one of the benefits of the LinkedList class is that it provides a nice place to put wrapper
functions. Another is that it makes it easier to add or remove the first element of a list. For example,
push front is a member function for LinkedLists; it takes an int as an argument and puts it at the
beginning of the list.

void push front (int i) {
Node* node = new Node (i, head);
head = node;
length++;

}

As always, to check code like this it is a good idea to think about the special cases. For example, what
happens if the list is initially empty?

18.11 Invariants

Some lists are "well-formed"; others are not. For example, if a list contains a loop, it will cause many
of our functions to crash, so we might want to require that lists contain no loops. Another requirement
is that the length value in the LinkedList object should be equal to the actual number of nodes in
the list.

Requirements like this are called invariants because, ideally, they should be true of every object all
the time. Specifying invariants for objects is a useful programming practice because it makes it easier
to prove the correctness of code, check the integrity of data structures, and detect errors.

One thing that is sometimes confusing about invariants is that there are some times when they are
violated. For example, in the middle of addFirst, after we have added the node, but before we have
incremented length, the invariant is violated. This kind of violation is acceptable; in fact, it is often
impossible to modify an object without violating an invariant for at least a little while. Normally the
requirement is that every function that violates an invariant must restore the invariant.

If there is any significant stretch of code in which the invariant is violated, it is important for the
comments to make that clear, so that no operations are performed that depend on the invariant.

Chapter 18: Linked lists

18.12 Generic linked lists

The LinkedList class implements linked lists of integers, carried in the cargo field of Nodes. It
would be more useful to be able to have linked lists of any type of data, and this is easy to do by
making the LinkedList class generic. In this case all you have to do is (1) put template <class
ITEMTYPE> in front of the declarations of Node and LinkedList, (2) replace int (when it refers to
cargo) with ITEMTYPE, and (3) replace Node with Node<ITEMTYPE> and LinkedList with
LinkedList<ITEMTYPE>. Do this, and chack it with linked lists of strings and doubles.

18.13 Glossary

list
A data structure that implements a collection using a sequence of linked nodes.
node
An element of a list, usually implemented as an object that contains a reference to another
object of the same type.
cargo
An item of data contained in a node.
link
An object reference embedded in an object.
generic data structure
A kind of data structure that can contain data of any type.
precondition
An assertion that must be true in order for a method to work correctly.
invariant

An assertion that should be true of an object at all times (except maybe while the object is being

modified).

wrapper method
A method that acts as a middle-man between a caller and a helper method, often offering an
interface that is cleaner than the helper method's.

Revised 2008-12-11.

- T €= How to Think Like a Computer Scientist iwDEX

| | e

10

Chapter 19: Stacks

E- /\— How to Think Like a Computer Scientist INDEJL%

-
1
7| |

Chapter 19

Stacks

19.1 Abstract data types

The data types we have looked at so far are all concrete, in the sense that we have completely
specified how they are implemented. For example, the card class represents a card using two integers.
As I discussed at the time, that is not the only way to represent a card; there are many alternative
implementations.

An abstract data type, or ADT, specifies a set of operations (or methods) and the semantics of the
operations (what they do) but it does not not specify the implementation of the operations. That's what
makes it abstract.

Why is that useful?

o It simplifies the task of specifying an algorithm if you can denote the operations you need
without having to think at the same time about how the operations are performed.

o Since there are usually many ways to implement an ADT, it might be useful to write an
algorithm that can be used with any of the possible implementations.

o Well-known ADTs, like the stack ADT in this chapter, are often implemented in standard
libraries so they can be written once and used by many programmers.

o The operations on ADTs provide a common high-level language for specifying and talking
about algorithms.

When we talk about ADTs, we often distinguish the code that uses the ADT, called the client code,
from the code that implements the ADT, called provider code because it provides a standard set of
services.

19.2 The stack ADT

In this chapter we will look at one common ADT, the stack. A stack is a collection, meaning that it is
a data structure that contains multiple elements. Other collections we have seen include vectors and
lists.

Chapter 19: Stacks

As I said, an ADT is defined by the operations you can perform on it. Stacks can perform only the
following operations:

constructor

Create a new, empty stack.
push

Add a new item to the stack.
pop

Remove an item from the stack. The item that is removed is always the last one that was added.
top

Return an item from the stack. The item that is returned is always the last one that was added.
empty

Check whether the stack is empty.

A stack is sometimes called a "last in, first out," or LIFO data structure, because the last item added is
the first to be removed.

19.3 The stack class

There is a standard C++ class called stack that implements the Stack ADT (you can use it by
including <stack>), but in this chapter I will use a simplified version of it to illustrate the
implementation of an ADT.

Then the syntax for constructing a new stack 1s
stack<ITEMTYPE> mystack;

Initially the stack is empty, as we can confirm with the empty method, which returns a boolean:
cout << mystack.empty ();

A stack is a generic data structure, which means that we can add to it any type of item (ITEMTYPE).
For our first example, we'll use Node<ITEMTYPE> objects, as defined in the previous chapter. Let's
start by creating and printing a short list.

LinkedList<int> list;
list.push front (3);
list.push front (2);
list.push front (1);
list.print ();

The outputis (1, 2, 3).To put a Node object onto the stack, use the push method (assuming
Node* node):

mystack.push (*node);

The following loop traverses the list and pushes all the nodes onto the stack:

Chapter 19: Stacks

stack<Node> mystack;
for (Node* node = list.head; node != NULL; node = node->next) {
mystack.push (*node);

}
We can remove an element from the stack with the pop () function.
mystack.pop ();

The return type from pop () is void. That's because the stack implementation doesn't need to keep the
item around because it is to be removed from the stack.

To inspect the last-added element of a stack without removing it, we use the top () function. The
following loop is a common idiom for printing and popping all the elements from a stack, stopping
when it is empty:

while (!mystack.empty ()) {
cout << mystack.top().cargo << " ";
mystack.pop();

The output is 3 2 1. In other words, we just used a stack to print the elements of a list backwards!
Granted, it's not the standard format for printing a list, but using a stack it was remarkably easy to do.

You should compare this code to the implementations of printBackward in the previous chapter.
There is a natural parallel between the recursive version of printBackward and the stack algorithm
here. The difference is that printBackward uses the run-time stack to keep track of the nodes while it
traverses the list, and then prints them on the way back from the recursion. The stack algorithm does
the same thing, just using a stack object instead of the run-time stack.

19.4 Postfix expressions

In most programming languages, mathematical expressions are written with the operator between the
two operands, as in 1+2. This format is called infix. An alternate format used by some calculators is
called postfix. In postfix, the operator follows the operands, asin 1 2 +.

The reason postfix is sometimes useful is that there is a natural way to evaluate a postfix expression
using a stack.

o Starting at the beginning of the expression, get one term (operator or operand) at a time.
o If the term is an operand, push it on the stack.
o If the term is an operator, pop two operands off the stack, perform the operation on them,
and push the result back on the stack.
o When we get to the end of the expression, there should be exactly one operand left on the stack.
That operand is the result.

As an exercise, apply this algorithm to the expression 1 2 + 3 *,

Chapter 19: Stacks

This example demonstrates one of the advantages of postfix: there is no need to use parentheses to
control the order of operations. To get the same result in infix, we would have to write (1 + 2) * 3.
As an exercise, write a postfix expression that is equivalentto 1 + 2 * 3?

19.5 Parsing

In order to implement the algorithm from the previous section, we need to be able to traverse a string
and break it into operands and operators. This process is an example of parsing

If we were to break the string up into smaller parts, we would need a specific character to use as a
boundary between the chucks. A character that marks a boundary is called a delimiter.

So let's quickly build a parsing function that will store the various chunks of a string into
a vector<string>.

vector<string> parse(string inString, char delim) {
vector<string> stringParsed (1l);
if (inString.length() == 0) {

stringParsed.resize(0);
return stringParsed;

}
for (int 1 = 0, j = 0; i < inString.size(); i++)
{
if (inString[i] != delim)
stringParsed[j] += inString[i];
else
{
cout << stringParsed[]j] << endl;
Jt+;
stringParsed.resize(j+1);
}
}

return stringParsed;

}

The function above accepts a string to be parsed and a char to be used as a delimiter, so that
whenever the delim character appears in the string, the chunk is saved as a new string element in
the vector<string>.

Passing a string through the function with a space delimiter would look like this:

string inString = "Here are four tokens.";

vector<string> = parse(inString, ' ');

The output of the parser is:

Chapter 19: Stacks

Here
are
four
tokens.

For parsing expressions, we have the option of specifying additional characters that will be used as
delimiters:

bool checkDelim(char ch, string delim) {

for (int i = 0; i < delim.size(); i++)
{
if (ch == delim[i])
return true;

}

return false;

}
vector<string> parse(string inString, string delim) {
vector<string> stringParsed (1);

if (inString.size() == 0) {
stringParsed.resize(0);
return stringParsed;

}

for (int 1 = 0, j = 0; i < inString.size(); i++)
{
if (!checkDelim(inString[i], delim))
stringParsed[j] += inString[i];
else

{

cout << stringParsed[]j] << endl;
Jt+;
stringParsed.resize(j+1);

}
}

return stringParsed;

}
An example of using the above functions can be seen below:

string inString = "11 22+33%";
string delim = " +-*/";
vector<string> stringParsed = parse(inString, delim);

The new function checkDelim checks for whether or not a given char is a delimiter. Now the output
is:

11
22
33

Chapter 19: Stacks

19.6 Implementing ADTs

One of the fundamental goals of an ADT is to separate the interests of the provider, who writes the
code that implements the ADT, and the client, who uses the ADT. The provider only has to worry
about whether the implementation is correct—in accord with the specification of the ADT —and not
how it will be used.

Conversely, the client assumes that the implementation of the ADT is correct and doesn't worry about
the details. When you are using one of C++'s built-in classes, you have the luxury of thinking
exclusively as a client.

When you implement an ADT, on the other hand, you also have to write client code to test it. In that
case, you sometimes have to think carefully about which role you are playing at a given instant.

In the next few sections we will switch gears and look at one way of implementing the Stack ADT,
using an array. Start thinking like a provider.

19.7 Array implementation of the Stack ADT

The instance variables for this implementation is a templated array, which is why we will use

the vector class. It will contain the items on the stack, and an integer index which will keep track of
the next available space in the array. Initially, the array is empty and the index is 0. (Notice that index
reflects both the next available location and the number of items in the stack.)

To add an element to the stack (push), we'll copy a reference to it onto the stack and increment the
index. To remove an element (pop) we have to decrement the index first and then copy the element
out.

Here is the class definition:

template <class ITEMTYPE>
class Stack {

vector<ITEMTYPE> array;
int index;

public:
Stack () {
array.resize(128);
index = 0;
}
}i

The above code contains the type ITEMTYPE because vectors are templated and can handle various
types. ITEMTYPE is not in actuality a type, just so you know; it's the type-parameter of the template.

As usual, once we have chosen the instance variables, it is a mechanical process to write a constructor.

Chapter 19: Stacks

For now, the default size is 128 items. Later we will consider better ways of handling this.

Checking for an empty stack is trivial.

bool empty () {
return index == 0;

}

It it important to remember, though, that the number of elements in the stack is not the same as the
size of the array. Initially the size is 128, but the number of elements is 0.

The implementations of push, pop, and top follow naturally from the specification.

void push (ITEMTYPE item) {

array[index] = item;
index++;
}
void pop () {
index--;
}
ITEMTYPE top () {
return array[index-1];
}

To test these methods, we can take advantage of the client code we used to exercise stack.

If everything goes according to plan, the program should work without any additional changes. Again,
one of the strengths of using an ADT is that you can change implementations without changing client
code.

19.8 Resizing arrays

A weakness of this implementation is that it chooses an arbitrary size for the vector when the Stack is
created. If the user pushes more than 128 items onto the stack, it will cause an
ArrayIndexOutOfBounds exception (if you are lucky; more likely it will simply access memory
outside of the vector and cause a difficult-to-diagnose error!).

An alternative is to let the client code specify the size of the vector. This alleviates the problem, but it
requires the client to know ahead of time how many items are needed, and that is not always possible.

A better solution is to check whether the vector is full and make it bigger when necessary. Since we
have no idea how big the vector needs to be, it is a reasonable strategy to start with a small size and
increase the size by 1 each time it overflows.

Here's the improved version of push:

void push (ITEMTYPE item) {

Chapter 19: Stacks

if (full()) resize ();
// at this point we can prove that index < array.size()

array[index] = item;
index++;

}

Before putting the new item in the vector, we check if the array is full. If so, we invoke resize. After
the if statement, we know that either (1) there was room in the vector, or (2) the vector has been
resized and there is room. If full and resize are correct, then we can prove that index <
array.size() and therefore the next statement cannot cause an exception.

Now all we have to do is implement full and resize.

private:
bool full () {
return index == array.size();
}

void resize () {
array.resize(array.size()+1);

}

Both functions are declared private, which means that they cannot be invoked from another class,
only from within this one. This is acceptable, since there is no reason for client code to use these
functions, and desirable, since it enforces the boundary between the implementation and the client.

The implementation of full is trivial; it just checks whether the index has gone beyond the range of
valid indices.

The implementation of resize is straightforward, with the caveat that it assumes that the old vector is
full. In other words, that assumption is a precondition of this function. It is easy to see that this
precondition is satisfied, since the only way resize is invoked is if full returns true, which can
only happen if index == array.size().

At the end of resize, we replace the old vector with the new one (causing the old to be garbage
collected). The new array.size() is one bigger than the old, and index hasn't changed, so now it
must be true that index < array.size(). This assertion is a postcondition of resize: something
that must be true when the function is complete (as long as its preconditions were satisfied).

Preconditions, postconditions, and invariants are useful tools for analyzing programs and
demonstrating their correctness. In this example I have demonstrated a programming style that
facilitates program analysis and a style of documentation that helps demonstrate correctness.

19.9 Glossary

abstract data type (ADT)
A data type (usually a collection of objects) that is defined by a set of operations, but that can be

Chapter 19: Stacks

implemented in a variety of ways.
client
A program that uses an ADT (or the person who wrote the program).
provider
The code that implements an ADT (or the person who wrote it).
private
A C++ keyword that indicates that a function or instance variable cannot be accessed from
outside the current class definition.
infix
A way of writing mathematical expressions with the operators between the operands.
postfix
A way of writing mathematical expressions with the operators after the operands.
parse
To read a string of characters or tokens and analyze their grammatical structure.
delimiter
A character that is used to separate tokens, like the punctuation in a natural language.
predicate
A mathematical statement that is either true or false.
postcondition
A predicate that must be true at the end of a method (provided that the preconditions were true
at the beginning).

Revised 2008-12-10.

|
'—:\ How to Think Like a Computer Scientist INDEX,

e

7€

Chapter 20: Queues and Priority Queues

v—: (l\ /\— How to Think Like a Computer Scientist INDEJL%

Chapter 20

Queues and Priority Queues

This chapter presents two ADTs: Queues and Priority Queues. In real life a queue is a line of
customers waiting for service of some kind. In most cases, the first customer in line is the next
customer to be served. There are exceptions, though. For example, at airports customers whose flight
is leaving imminently are sometimes taken from the middle of the queue. Also, at supermarkets a
polite customer might let someone with only a few items go first.

The rule that determines who goes next is called a queueing discipline. The simplest queueing
discipline is called FIFO, for "first-in-first-out." The most general queueing discipline is priority
queueing, in which each customer is assigned a priority, and the customer with the highest priority
goes first, regardless of the order of arrival. The reason I say this is the most general discipline is that
the priority can be based on anything: what time a flight leaves, how many groceries the customer has,
or how important the customer is. Of course, not all queueing disciplines are "fair," but fairness is in
the eye of the beholder.

The Queue ADT and the Priority Queue ADT have the same set of operations and their interfaces are
the same. The difference is in the semantics of the operations: a Queue uses the FIFO policy, and a
Priority Queue (as the name suggests) uses the priority queueing policy. Both queue and

priority queue classes are provided in the C++ standard libraries, but with a different interface
from the example classes I will develop here.

As with most ADTs, there are a number of ways to implement queues Since a queue is a collection of
items, we can use any of the basic mechanisms for storing collections: arrays, lists, or vectors. Our
choice among them will be based in part on their performance —how long it takes to perform the
operations we want to perform—and partly on ease of implementation.

20.1 The queue ADT

The queue ADT is defined by the following operations:

constructor

Create a new, empty queue.
insert

Add a new item to the queue.
remove

Chapter 20: Queues and Priority Queues

Remove and return an item from the queue. The item that is returned is the first one that was
added.

empty
Check whether the queue is empty.

To demonstrate a queue implementation, I will take advantage of the LinkedList class from Chapter
18. Also, I will assume that we have a class named customer that defines all the information about
each customer, and the operations we can perform on customers.

As far as our implementation goes, it does not matter what kind of object is in the Queue, so we can
make it generic. Here is what the implementation looks like.

template <class ITEMTYPE>
class Queue {
public:

LinkedList<ITEMTYPE> list;

Queue () {
list = LinkedList<ITEMTYPE> ();

}

bool empty () {
return list.empty ();

}

void insert (ITEMTYPE item) {
list.push back (item);

}
ITEMTYPE remove () {

return list.removeFirst ();
}

}i

A queue object contains a single instance variable, which is the list that implements it. For each of the
other methods, all we have to do is invoke one of the methods from the LinkedList class.

20.2 Veneer

An implementation like this is called a veneer. In real life, veneer is a thin coating of good quality
wood used in furniture-making to hide lower quality wood underneath. Computer scientists use this
metaphor to describe a small piece of code that hides the details of an implementation and provides a
simpler, or more standard, interface.

This example demonstrates one of the nice things about a veneer, which is that it is easy to
implement, and one of the dangers of using a veneer, which is the performance hazard!

Normally when we invoke a method we are not concerned with the details of its implementation. But
there is one "detail" we might want to know —the performance characteristics of the method. How

Chapter 20: Queues and Priority Queues

long does it take, as a function of the number of items in the list?

First let's look at removeFirst.

ITEMTYPE removeFirst () {
Node<ITEMTYPE>* result = head;
if (head != NULL) {

head = head->next;

}

return result->cargo;

}

There are no loops or function calls here, so that suggests that the run time of this method is the same
every time. Such a method is called a constant time operation. In reality, the method might be
slightly faster when the list is empty, since it skips the body of the conditional, but that difference is
not significant.

The performance of push_back is very different.

void push back (ITEMTYPE item) {
Node<ITEMTYPE>* node = new Node<ITEMTYPE> (item, NULL);
// special case: empty list
if (head == NULL) {
head = node;
node->next = NULL;
return;
}
Node<ITEMTYPE>* last;
// traverse the list to find the last node

for (last = head; last->next != NULL; last = last->next) {
}

last->next = node;

node->next = NULL;

length++;
}

The first conditional handles the special case of adding a new node to an empty list. In this case,
again, the run time does not depend on the length of the list. In the general case, though, we have to
traverse the list to find the last element so we can make it refer to the new node.

This traversal takes time proportional to the length of the list. Since the run time is a linear function of
the length, we would say that this method is linear time. Compared to constant time, that's very bad.

20.3 Linked Queue

We would like an implementation of the Queue ADT that can perform all operations in constant time.
One way to accomplish that is to implement a linked queue, which is similar to a linked list in the
sense that it is made up of zero or more linked Node objects. The difference is that the queue
maintains a reference to both the first and the last node, as shown in the figure:

Chapter 20: Queues and Priority Queues

first: @ st @

W

cargo. @ cargo. @ cargo. @

nextt @—1——= next @

next. @

Here's what a linked Queue implementation looks like:

template <class ITEMTYPE>
class Queue {
public:
Node<ITEMTYPE> *first, *last;

Queue () {
first = NULL;
last = NULL;
}

bool empty () {
return first == NULL;
}
}i

So far it is straightforward. In an empty queue, both first and last are null. To check whether a list
is empty, we only have to check one of them.

insert is a little more complicated because we have to deal with several special cases.

void insert (ITEMTYPE item) {
Node<ITEMTYPE>* node = new Node<ITEMTYPE> (item, NULL);
if (last != NULL) {
last->next = node;

}

last = node;

if (first == NULL) {
first = last;

}

}

The first condition checks to make sure that 1ast refers to a node; if it does then we have to make it
refer to the new node.

The second condition deals with the special case where the list was initially empty. In this case both
first and last refer to the new node.

remove also deals with several special cases.

ITEMTYPE remove () {
Node<ITEMTYPE>* result = first;
if (first != NULL) {

Chapter 20: Queues and Priority Queues

first = first->next;

}

if (first == NULL) {
last = NULL;

}

return result->cargo;

}

The first condition checks whether there were any nodes in the queue. If so, we have to copy the next
node into first. The second condition deals with the special case that the list is now empty, in which
case we have to make last null.

As an exercise, draw diagrams showing both operations in both the normal case and in the special
cases, and convince yourself that they are correct.

Clearly, this implementation is more complicated than the veneer implementation, and it is more
difficult to demonstrate that it is correct. The advantage is that we have achieved the goal: both
insert and remove are constant time.

20.4 Circular buffer

Another common implementation of a queue is a circular buffer. "Buffer" is a general name for a
temporary storage location, although it often refers to an array, as it does in this case. What it means
to say a buffer is "circular" should become clear in a minute.

The implementation of a circular buffer is similar to the array implementation of a stack, as in Section
19.7. The queue items are stored in an array, and we use indices to keep track of where we are in the
array. In the stack implementation, there was a single index that pointed to the next available space. In
the queue implementation, there are two indices: £irst points to the space in the array that contains
the first customer in line and next points to the next available space.

The following figure shows a queue with two items (represented by dots):

first next

o o 0 2
first next

There are two ways to think of the variables first and last. Literally, they are integers, and their
values are shown in boxes on the right. Abstractly, though, they are indices of the array, and so they
are often drawn as arrows pointing to locations in the array. The arrow representation is convenient,
but you should remember that the indices are not references; they are just integers.

Chapter 20: Queues and Priority Queues

Here is an incomplete array implementation of a queue:

template <class ITEMTYPE>
class Queue {
public:

vector<ITEMTYPE> array;

int first, next;

Queue () {
array.resize (128);
first = 0;
next = 0;

}

bool empty () {
return first == next;

}
}i

The instance variables and the constructor are straightforward, although again we have the problem
that we have to choose an arbitrary size for the array. Later we will solve that problem, as we did with
the stack, by resizing the array if it gets full.

The implementation of empty is a little surprising. You might have thought that first == 0 would
indicate an empty queue, but that neglects the fact that the head of the queue is not necessarily at the
beginning of the array. Instead, we know that the queue is empty if head equals next, in which case
there are no items left. Once we see the implementation of insert and remove, that situation will
more more sense.

void insert (ITEMTYPE item) {

array[next] = item;
next++;
}
ITEMTYPE remove () {
first++;
return array[first-1];
}

insert looks very much like push in Section 19.7; it puts the new item in the next available space
and then increments the index.

remove is similar. It takes the first item from the queue and then increments first so it refers to the
new head of the queue. The following figure shows what the queue looks like after both items have
been removed:

Chapter 20: Queues and Priority Queues

first next

2| |2

first next

It is always true that next points to an available space. If first catches up with next and points to
the same space, then first is referring to an "empty" location, and the queue is empty. I put "empty"
in quotation marks because it is possible that the location that £irst points to actually contains a
value (we do nothing to ensure that empty locations are initialized); on the other hand, since we know
the queue is empty, we will never read this location, so we can think of it, abstractly, as empty.

The next problem with this implementation is that eventually it will run out of space. When we add an
item we increment next and when we remove an item we increment first, but we never decrement
either. What happens when we get to the end of the array?

The following figure shows the queue after we add four more items:

first next

first next

The array is now full. There is no "next available space," so there is nowhere for next to point. One
possibility is that we could resize the array, as we did with the stack implementation. But in that case
the array would keep getting bigger regardless of how many items were actually in queue. A better
solution is to wrap around to the beginning of the array and reuse the spaces there. This "wrap
around" is the reason this implementation is called a circular buffer.

One way to wrap the index around is to add a special case whenever we increment an index:

next++;
if (next == array.size()) next = 0;

A fancy alternative is to use the modulus operator:
next = (next + 1) % array.size();

Either way, we have one last problem to solve. How do we know if the queue is really full, meaning
that we cannot insert another item? The following figure shows what the queue looks like when it is
"full":

Chapter 20: Queues and Priority Queues

first next

[} [} s} °® s} 2 0

next first

There is still one empty space in the array, but the queue is full because if we insert another item, then
we have to increment next such that next == first, and in that case it would appear that the queue
was empty!

To avoid that, we sacrifice one space in the array. So how can we tell if the queue is full?
if ((next + 1) % array.size() == first)
And what should we do if the array is full? In that case resizing the array is probably the only option.

As an exercise, put together all the code from this section and write an implementation of a queue
using a circular buffer that resizes itself when necessary.

20.5 Priority queue

The Priority Queue ADT has the same interface as the Queue ADT, but different semantics. The
interface is:

constructor
Create a new, empty queue.
insert
Add a new item to the queue.
remove
Remove and return an item from the queue. The item that is returned is the one with the highest
priority.
empty
Check whether the queue is empty.

The semantic difference is that the item that is removed from the queue is not necessarily the first one
that was added. Rather, it is whatever item in the queue has the highest priority. What the priorities
are, and how they compare to each other, are not specified by the Priority Queue implementation. It
depends on what the items are that are in the queue.

For example, if the items in the queue have names, we might choose them in alphabetical order. If
they are bowling scores, we might choose from highest to lowest, but if they are golf scores, we
would go from lowest to highest.

Chapter 20: Queues and Priority Queues

So we face a new problem. We would like an implementation of Priority Queue that is generic —it
should work with any kind of object—but at the same time the code that implements Priority Queue
needs to have the ability to compare the objects it contains.

We have seen a way to implement generic data structures using template <class ITEMTYPE>, but
that does not solve this problem, because there is no way to compare ITEMTYPES unless we know their
type. So basically, to implement a priority queue, we will have to create compare functions that will
compare items in the queue. Although we could do this by overloading a compare function, in
Section 20.7 you will see how to do it by overloading the > oeprator.

20.6 Array implementation of Priority Queue

In the implementation of the Priority Queue, every time we specify the type of the items in the queue,
we specify the type-parameter ITEMTYPE. For example, the instance variables are a vector of
ITEMTYPEs and an integer:

template <class ITEMTYPE>
class PriorityQueue {
private:
vector<ITEMTYPE> array;
int index;

}i

As usual, index is the index of the next available location in the array. The instance variables are
declared private so that other classes cannot have direct access to them.

The constructor and empty are similar to what we have seen before. I chose the initial size for the
array arbitrarily.

public:
PriorityQueue () {
array.resize(16);
index = 0;

}

bool empty () {
return index == 0;
}
insert is similar to push:

void insert (ITEMTYPE item) {

if (index == array.size()) {
resize ();

}

array[index] = item;

index++;

}

I omitted the implementation of resize. The only substantial method in the class is remove, which

Chapter 20: Queues and Priority Queues

has to traverse the array to find and remove the largest item:

ITEMTYPE remove () {
int maxIndex = 0;

// find the index of the item with the highest priority
for (int i=1; i<index; i++) {
if (array[i] > array[maxIndex]) {
maxIndex = ij;

}
}

// move the last item into the empty slot
ITEMTYPE maxItem = array[maxIndex];
index--;

array[maxIndex] = array[index];

return maxItem;

}

As we traverse the array, maxIndex keeps track of the index of the largest element we have seen so
far. What it means to be the "largest" is determined by the operator >.

20.7 The Golfer class

As an example of something with an unusual definition of "highest" priority, we'll use golfers:

class Golfer {
public:

string name;
int score;

Golfer (string name, int score) {
this->name = name;
this->score = score;

}

Golfer () { }
}i

The class definition and the constructors are pretty much the same as always.

Since priority queues require some comparisons, we'll have to overload the > operator. So let's write
one:

bool operator > (Golfer gl, Golfer g2) {
// for golfers, low is good!
return (gl.score < g2.score);

}

Finally, we can create some golfers:

Chapter 20: Queues and Priority Queues

Golfer tiger = Golfer ("Tiger Woods", 61);
Golfer phil = Golfer ("Phil Mickelson", 72);
Golfer hal = Golfer ("Hal Sutton", 69);

And put them in the queue:

PriorityQueue<Golfer> pq;
pg.insert (tiger);
pg.insert (phil);
pg.insert (hal);

When we pull them out:

while (!pg.empty ()) {
Golfer golfer = pg.remove ();
cout << golfer.name << " " << golfer.score << endl;

}
They appear in descending order (for golfers):

Tiger Woods 61
Hal Sutton 69
Phil Mickelson 72

When we declared a Priority Queue of Golfers, we didn’t have to make any changes in class
PriorityQueue at all. So we succeeded in maintaining a barrier between PriorityQueue and the
clients that use it, allowing us to reuse the code

without modification. Furthermore, we were able to give the client code control over the definition of
the > operator, making this implementation of PriorityQueue more versatile.

20.8 Glossary

queue
An ordered set of objects waiting for a service of some kind.

queueing discipline
The rules that determine which member of a queue is removed next.

FIFO
"first in, first out," a queueing discipline in which the first member to arrive is the first to be
removed.

priority queue
A queueing discipline in which each member has a priority determined by external factors. The
member with the highest priority is the first to be removed.

Priority Queue
An ADT that defines the operations one might perform on a priority queue.

veneer
A class definition that implements an ADT with method definitions that are invocations of other
methods, sometimes with simple transformations. The veneer does no significant work, but it
improves or standardizes the interface seen by the client.

11

Chapter 20: Queues and Priority Queues

performance hazard
A danger associated with a veneer that some of the methods might be implemented inefficiently
in a way that is not apparent to the client.
constant time
An operation whose run time does not depend on the size of the data structure.
linear time
An operation whose run time is proportional to (a linear function of) the size of the data
structure.
linked queue
An implementation of a queue using a linked list and references to the first and last nodes.
circular buffer
An implementation of a queue using an array and indices of the first element and the next
available space.
abstract class
A set of classes. The abstract class specification lists the requirements a class must satisfy to be
included in the set.

Revised 2008-12-11.

|
'—:\ How to Think Like a Computer Scientist INDEX,

e

7€

12

Chapter 21: Trees

| | {
v—\\1 | | = How to Think Like a Computer Scientist INDEX

Chapter 21

Trees

This chapter presents a new data structure called a tree, some of its uses and two ways to implement
it.

A possible source of confusion is the distinction between an ADT, a data structure, and an
implementation of an ADT or data structure. There is no universal answer, because something that is
an ADT at one level might in turn be the implementation of another ADT.

To help keep some of this straight, it is sometimes useful to draw a diagram showing the relationship
between an ADT and its possible implementations. This figure shows that there are two
implementations of a tree:

Tree

linked array
implementation | implementation

The horizontal line in the figure represents the barrier of abstraction between the ADT and its
implementations.

21.1 A tree node

Like lists, trees are made up of nodes. A common kind of tree is a binary tree, in which each node
contains a reference to two other nodes (possibly null). The class definition looks like this:

class Tree {

int cargo;

Tree *left, *right;
}i

Like list nodes, tree nodes contain cargo: in this case an int. However, trees may consist of any type
of cargo, so in the future you could prefix the definition with template <class ITEMTYPE> and
substitute ITEMTYPE for int and it should work, that is, if the rest of your program code does not go
awry. The other instance variables are named left and right, in accordance with a standard way to
represent trees graphically:

Chapter 21: Trees

tree

L]

cargo: 1

left: @ right:

'x::"v ‘ ‘ “":./‘
cargo: 2 cargo: 3

left: @ right: @ left: @ right: @

The top of the tree (the node referred to by tree) is called the root. In keeping with the tree metaphor,
the other nodes are called branches and the nodes at the tips with null references are called leaves. It
may seem odd that we draw the picture with the root at the top and the leaves at the bottom, but that is
not the strangest thing.

To make things worse, computer scientists mix in yet another metaphor: the family tree. The top node
is sometimes called a parent and the nodes it refers to are its children. Nodes with the same parent
are called siblings, and so on.

Finally, there is also a geometric vocabulary for taking about trees. I already mentioned left and right,
but there is also "up" (toward the parent/root) and down (toward the children/leaves). Also, all the
nodes that are the same distance from the root comprise a level of the tree.

I don't know why we need three metaphors for talking about trees, but there it is.

21.2 Building trees

The process of assembling tree nodes is similar to the process of assembling lists. We have a
constructor for tree nodes that initializes the instance variables.

public:
Tree (int cargo, Tree* left, Tree* right) {
this->cargo = cargo;
this->left = left;
this->right = right;
}

We allocate the child nodes first:

Tree* left = new Tree (2, NULL, NULL);
Tree* right = new Tree (3, NULL, NULL);

We can create the parent node and link it to the children at the same time:

Chapter 21: Trees

Tree* tree = new Tree (1, left, right);

This code produces the state shown in the previous figure.

21.3 Traversing trees

By now, any time you see a new data structure, your first question should be, "How can I traverse it?"
The most natural way to traverse a tree is recursively. For example, to add up all the integers in a tree,
we could write this class method:

int total (Tree* tree) {
if (tree == NULL) return 0;
int cargo = tree->cargo;
return cargo + total (tree->left) + total (tree->right);

}

This is a nonmember function because we would like to use NULL to represent the empty tree, and
make the empty tree the base case of the recursion. If the tree is empty, the method returns 0.
Otherwise it makes two recursive calls to find the total value of its two children. Finally, it adds in its
own cargo and returns the total.

Although this method works, there is some difficulty fitting it into an object-oriented design. It should
not appear in the Tree class because it requires the cargo to be int objects. If we make that
assumption then we lose the advantages of a generic data structure.

On the other hand, this code accesses the instance variables of the Tree nodes, so it "knows" more
than it should about the implementation of the tree. If we changed that implementation later (and we
will) this code would break.

Later in this chapter we will develop ways to solve this problem, allowing client code to traverse trees
containing any kinds of objects without breaking the abstraction barrier between the client code and
the implementation. Before we get there, let's look at an application of trees.

21.4 Expression trees

A tree is a natural way to represent the structure of an expression. Unlike other notations, it can
represent the computation unambiguously. For example, the infix expression 1 + 2 * 3 is
ambiguous unless we know that the multiplication happens before the addition.

The following figure represents the same computation:

Chapter 21: Trees

cargo: +
left: @ right: Q
4 X
cargo: 1 carqo:
left: ® right: @ left: ® right: @
rd X
cargo: 2 cargo: 3
left: ® right. @ left: ® right: @

The nodes can be operands like 1 and 2 or operators like + and * (and so the type of the cargo might
be string). Operands are leaf nodes; operator nodes contain references to their operands (all of these
operators are binary, meaning they have exactly two operands).

Looking at this figure, there is no question what the order of operations is: the multiplication happens
first in order to compute the first operand of the addition.

Expression trees like this have many uses. The example we are going to look at is translation from
one format (postfix) to another (infix). Similar trees are used inside compilers to parse, optimize and
translate programs.

21.5 Traversal

I already pointed out that recursion provides a natural way to traverse a tree. We can print the contents
of an expression tree like this:

void print (Tree* tree) {
if (tree == NULL) return;

cout << tree->cargo << ;
print (tree->left);
print (tree->right);

}

In other words, to print a tree, first print the contents of the root, then print the entire left subtree, then
print the entire right subtree. This way of traversing a tree is called a preorder, because the contents
of the root appear before the contents of the children.

For the example expression the outputis + 1 * 2 3. This is different from both postfix and infix; it is
a new notation called prefix, in which the operators appear before their operands.

You might suspect that if we traverse the tree in a different order we get the expression in a different

Chapter 21: Trees

notation. For example, if we print the subtrees first, and then the root node:

void printPostorder (Tree* tree) {
if (tree == NULL) return;
printPostorder (tree->left);
printPostorder (tree->right);

cout << tree->cargo << ;

}

We get the expression in postfix (1 2 3 * +)! As the name of the previous method implies, this order
of traversal is called postorder. Finally, to traverse a tree inorder, we print the left tree, then the root,
then the right tree:

void printInorder (Tree* tree) {
if (tree == NULL) return;
printInorder (tree->left);

cout << tree->cargo << ;
printInorder (tree->right);

}

The resultis 1 + 2 * 3, which is the expression in infix.

To be fair, I have to point out that I have omitted an important complication. Sometimes when we
write an expression in infix we have to use parentheses to preserve the order of operations. So an
inorder traversal is not quite sufficient to generate an infix expression.

Nevertheless, with a few improvements, the expression tree and the three recursive traversals provide
a general way to translate expressions from one format to another.

21.6 Encapsulation

As I mentioned before, there is a problem with the way we have been traversing trees: it breaks down
the barrier between the client code (the application that uses the tree) and the provider code (the Tree
implementation). Ideally, tree code should be general; it shouldn't know anything about expression
trees. And the code that generates and traverses the expression tree shouldn't know about the
implementation of the trees. This design criterion is called object encapsulation to distinguish it from
the encapsulation we saw in Section 6.6, which we might call function encapsulation.

In the current version, the Tree code knows too much about the client. Instead, the Tree class should
provide the general capability of traversing a tree in various ways. As it traverses, it should perform
operations on each node that are specified by the client.

To facilitate this separation of interests, we will create a new abstract class, called visitable. The
items stored in a tree will be required to be visitable, which means that they define a method named
visit that does whatever the client wants done to each node. That way the Tree can perform the
traversal and the client can perform the node operations.

Here are the steps we have to perform to wedge an abstract class between a client and a provider:

Chapter 21: Trees

1. Define an abstract class that specifies the methods the provider code will need to invoke on its
components.

2. Write the provider code in terms of the new abstract class, as opposed to a generic ITEMTYPE.

3. Define a concrete class that belongs to the abstract class and that implements the required
methods as appropriate for the client.

4. Write the client code to use the new concrete class.

The next few sections demonstrate these steps.

21.7 Defining an abstract class

An abstract class definition looks a lot like an ordinary definition, except that it only specifies the
interface of each function and not an implementation. The definition of visitable is

class Visitable {
public:
virtual void visit () = 0;

}i

That's it! An abstract class is a class that contains at least one pure virtual function, such as visit,
whereas a concrete class provides an implementation for every function. The definition of visit
looks like any other function definition, except that its body is the pure specifier = 0. This definition
specifies that any class that implements Visitable has to have a function named visit that takes no
parameters and that returns void.

21.8 Implementing an abstract class

If we are using an expression tree to generate infix, then "visiting" a node means printing its contents.
Since the contents of an expression tree are tokens, we'll create a new concrete class called Token that
is derived from visitable:

class Token : public Visitable {
string str;

public:
Token (string str) {
this->str = str;

}

void visit () {
cout << str << " ";

}
}i

When we compile this class definition, the compiler checks whether the functions provided satisfy the
requirements specified by the abstract class. For example, if we misspell the name of the function that

Chapter 21: Trees

is supposed to be visit, the resulting class Token would still be abstract (since it doesn't define
visit).

The next step is to modify the parser to put Token objects into the tree instead of strings. Here is a
small example:

string expr = "1 2 3 * +";

string delim = " +-%/";

vector<string> stringParsed = parse(expr, delim);

Tree tree = new Tree (new Token (stringParsed[0]), NULL, NULL));

This code takes the first token in the string and wraps it in a Token object, then puts the Token into a
tree node. If the Tree requires the cargo to be visitable, it will convert the Token to be a
Visitable object. When we remove the visitable from the tree, we will have to cast it back into a
Token.

As an exercise, write a version of printPreorder called visitPreorder that traverses the tree and
invokes visit on each node in preorder.

21.9 Array implementation of trees

What does it mean to "implement" a tree? So far we have only seen one implementation of a tree, a
linked data structure similar to a linked list. But there are other structures we would like to identify as
trees. Anything that can perform the basic set of tree operations should be recognized as a tree.

So what are the tree operations? In other words, how do we define the Tree ADT?

constructor

Build an empty tree.
empty

Is this tree the empty tree?
left

Return the left child of this node, or an empty tree if there is none.
right

Return the left child of this node, or an empty tree if there is none.
parent

Return the parent of this node, or an empty tree if this node is the root.

In the implementation we have seen, the empty tree is represented by the special value NULL. left
and right are performed by accessing the instance variables of the node. We have not implemented
parent yet (you might think about how to do it).

There is another implementation of trees that uses arrays and indices instead of objects and references.
To see how it works, we will start by looking at a hybrid implementation that uses both arrays and
objects.

Chapter 21: Trees

This figure shows a tree like the ones we have been looking at, although it is laid out sideways, with
the root at the left and the leaves on the right. At the bottom there is an array of references that refer to
the objects in the trees.

—a eft: ®
y 4 ight @
left: @7 A
2 right: @ 15 ‘?“3 it
7 '~ right: @
.]l / ‘)])
left: @+ left: @
~ left: ®
1 right: O’J‘:_,;— ’\3 right: @4 7T ‘{6 right: @
left: ®
——— 7 right: ®
e T e o] T e o] e
0 1 2 3 4 5 6 7

In this tree the cargo of each node is the same as the array index of the node, but of course that is not
true in general. You might notice that array index 1 refers to the root node and array index 0 is empty.
The reason for that will become clear soon.

So now we have a tree where each node has a unique index. Furthermore, the indices have been
assigned to the nodes according to a deliberate pattern, in order to achieve the following results:

1. The left child of the node with index i has index 2i.
2. The right child of the node with index i has index 2i + 1.
3. The parent of the node with index i has index i/2 (rounded down).

Using these formulas, we can implement left, right and parent just by doing arithmetic; we don't
have to use the references at all!

Since we don't use the references, we can get rid of them, which means that what used to be a tree
node is now just cargo and nothing else. That means we can implement the tree as an array of cargo
objects; we don't need tree nodes at all.

Here's what one implementation looks like:

template <class Object>
class Tree {
vector<Object*> array;

public:
Tree () {
array = vector<Object*> (128);
}
}i

No surprises so far. The instance variable is an array of Objects. The constructor initializes this array
with an arbitrary initial size (we can always resize it later).

Chapter 21: Trees

To check whether a tree is empty, we check whether the root node is null. Again, the root node is
located at index 1.

bool empty () {
return (array[l] == NULL);

}
The implementation of left, right and parent is just arithmetic:

int left (int i) { return 2*i; }
int right (int i) { return 2*i + 1; }
int parent (int i) { return i/2; }

Only one problem remanins. The node "references" we have are not really references; they are integer
indices. To access the cargo itself, we have to get or set an element of the array. For that kind of
operation, it is often a good idea to provide methods that perform simple error checking before
accessing the data structure.

Object* getCargo (int i) {
if (1 < 0 || 1 >= array.size()) return NULL;
return array[i];

}

void setCargo (int i, Object* obj) {
if (1 < 0 || 1 >= array.size()) return;
array[i] = obj;

}

Methods like this are often called accessor methods because they provide access to a data structure
(the ability to get and set elements) without letting the client see the details of the implementation.

Finally we are ready to build a tree. In another class (the client), we would write:

Tree<string> tree = new Tree<string> ();
int root = 1;
tree.setCargo (root, new "cargo for root");

The constructor builds an empty tree. In this case we assume that the client knows that the index of
the root is 1 although it would be preferable for the tree implementation to provide that information.
Anyway, invoking setCargo puts the string "cargo for root" into the root node.

To add children to the root node:

tree.setCargo (tree.left (root), new "cargo for left");
tree.setCargo (tree.right (root), new "cargo for right");

In the tree class we could provide a method that prints the contents of the tree in preorder.

void printPreorder (int i) {
if (getCargo(i) == NULL) return;
cout << * getCargo(i) << endl;
printPreorder (left(i));
printPreorder (right(i));

Chapter 21: Trees

We invoke this method from the client by passing the root as a parameter.
tree.print (root);
The output is

cargo for root
cargo for left
cargo for right

This implementation provides the basic operations required to be a tree, but it leaves a lot to be
desired. As I pointed out, we expect the client to have a lot of information about the implementation,
and the interface the client sees, with indices and all, is not very pretty.

Also, we have the usual problem with array implementations, which is that the initial size of the array
is arbitrary and it might have to be resized.

21.10 The vector class

As you've seen, vector<T> is a Standard C++ class provided in the vector package. It is an
implementation of an array of items of a specified type T, with the added feature that it can resize
itself automatically, so we don't have to.

The vector class provides a function named at () that is similar to the square brackets [], but signals
an error if you attempt to subscript outside of the vectors bounds. Thus v.at (i) can be used as either
an lvalue or an rvalue, just like v[i]. You should review the other vector operations by consulting
the online documentation for the C++ Standard Template Library (STL) for vector containers.

Before using the vector class, you should understand a few concepts. Every vector has a capacity,
which is the amount of space that has been allocated to store values, and a size, which is the number
of values that are actually in the vector.

The following figure is a simple diagram of a vector<int> that contains three elements, but it has a
capacity of seven.

count

In general, it is the responsibility of the client code to make sure that the vector has sufficient size
before invoking at. If you try to access an element that does not exist (in this case the elements with
indices 4 through 6), you will get an out_of range exception.

The vector member functions include push back and insert, which automatically increase the size

10

Chapter 21: Trees

of the vector, but at does not. The resize method adds elements to the end of the vector to get to
the given size; they are initialized by the default constructor for the item type, T().

Most of the time the client doesn't have to worry about capacity. Whenever the size of the vector
changes, the capacity is automatically updated, if necessary. For performance reasons, some
applications might want to take control of this function, which is why there are additional member
functions for increasing and decreasing capacity.

Because the client code has no access to the implementation of a vector, it is not clear how we should
traverse one. Of course, one possibility is to use a loop variable as an index into the vector:

for (int i=0; i<v.size(); i++) {
cout << v.at(i) << endl;

}

There's nothing wrong with that, but there is another way that serves to demonstrate the iterator
class. Vectors provide a member functions named begin () and end () that return iterator objects
that makes it possible to traverse the vector.

21.11 The iterator class

The iterator type is defined for the vector library. It specifies three member functions (among
others) for vectors:

begin()
Returns a pointer to the beginning (first element) of the vector.
end()
Returns a pointer to the end (after the last element) of the vector.
vector<T>::iterator
The type of an iterator for vectors of type T. It is possible to increment and decrement iterators
and to compare them.

The following example uses an iterator to traverse and print the elements of a vector vec.

vector<int>::iterator it;
for (it = vector.begin(); it != vec.end(); it++) {
cout << *it << endl;

}

Once the iterator is created, it is a separate object from the original vector. Subsequent changes in
the vector are not reflected in the iterator. In fact, if you modify the vector after creating an
iterator, the iterator becomes invalid. If you access the iterator again, it will cause an error.

In a previous section we used the visitable abstract class to allow a client to traverse a data
structure without knowing the details of its implementation. Iterators provide another way to do the
same thing. In the first case, the provider performs the iteration and invokes client code to "visit" each
element. In the second case the provider gives the client an object that it can use to select elements

11

Chapter 21: Trees

one at a time (albeit in an order controlled by the provider).

As an exercise, write a concrete class named preIterator that implements the iterator interface,
and write a function named preorderIterator for the Tree class that returns a PreIterator that
selects the elements of the Tree in preorder.

21.12 Glossary

binary tree
A tree in which each node refers to 0, 1, or 2 dependent nodes.
root
The top-most node in a tree, to which no other nodes refer.
leaf
A bottom-most node in a tree, which refers to no other nodes.
parent
The node that refers to a given node.
child
One of the nodes referred to by a node.
level
The set of nodes equidistant from the root.
prefix notation
A way of writing a mathematical expression with each operator appearing before its operands.
preorder
A way to traverse a tree, visiting each node before its children.
postorder
A way to traverse a tree, visiting the children of each node before the node itself.
inorder
A way to traverse a binary tree, visiting the left subtree, then the root, then the right subtree.
class variable
A static variable declared outside of any function. It is accessible from any function.
binary operator
An operator that takes two operands.
object encapsulation
The design goal of keeping the implementations of two objects as separate as possible. Neither
class should have to know the details of the implementation of the other.
function encapsulation
The design goal of keeping the interface of a function separate from the details of its
implementation.

Revised 2008-12-12.

- T €= How to Think Like a Computer Scientist iNDEX

12

Chapter 22: Heap

v—:\ m /— How to Think Like a Computer Scientist INDEJL%

Chapter 22

Heap

22.1 The Heap

A heap is a special kind of tree that happens to be an efficient implementation of a priority queue. This
figure shows the relationships among the data structures in this chapter.

PriorityQueue

Heap

tree

linked array
implementation | implementation

Ordinarily we try to maintain as much distance as possible between an ADT and its implementation,
but in the case of the Heap, this barrier breaks down a little. The reason is that we are interested in the
performance of the operations we implement. For each implementation there are some operations that
are easy to implement and efficient, and others that are clumsy and slow.

It turns out that the array implementation of a tree works particularly well as an implementation of a
Heap. The operations the array performs well are exactly the operations we need to implement a
Heap.

To understand this relationship, we will proceed in a few steps. First, we need to develop ways of
comparing the performance of various implementations. Next, we will look at the operations Heaps
perform. Finally, we will compare the Heap implementation of a Priority Queue to the others (arrays
and lists) and see why the Heap is considered particularly efficient.

22.2 Performance analysis

When we compare algorithms, we would like to have a way to tell when one is faster than another, or
takes less space, or uses less of some other resource. It is hard to answer those questions in detail,

Chapter 22: Heap

because the time and space used by an algorithm depend on the implementation of the algorithm, the
particular problem being solved, and the hardware the program runs on.

The objective of this section is to develop a way of talking about performance that is independent of
all of those things, and only depends on the algorithm itself. To start, we will focus on run time; later
we will talk about other resources.

Our decisions are guided by a series of constraints:

1. First, the performance of an algorithm depends on the hardware it runs on, so we usually don't
talk about run time in absolute terms like seconds. Instead, we usually count the number of
abstract operations the algorithm performs.

2. Second, performance often depends on the particular problem we are trying to solve—some
problems are easier than others. To compare algorithms, we usually focus on either the
worst-case scenario or an average (or common) case.

3. Third, performance depends on the size of the problem (usually, but not always, the number of
elements in a collection). We address this dependence explicitly by expressing run time as a
function of problem size.

4. Finally, performance depends on details of the implementation like object allocation overhead
and function invocation overhead. We usually ignore these details because they don't affect the
rate at which the number of abstract operations increases with problem size.

To make this process more concrete, consider two algorithms we have already seen for sorting an
array of integers. The first is selection sort, which we saw in Section 13.7. Here is the pseudocode we
used there.

void selectionsort (vector<card> array) {
for (int i=0; i<array.size(); i++) {
// find the lowest card at or to the right of i
// swap the ith card and the lowest card
}

}

To perform the operations specified in the pseudocode, we wrote helper methods named
findLowest () and swap. In pseudocode, findLowest () looks like this

// f£find the index of the lowest item between
// i and the end of the array

int findLowest (vector<Card> array, int i) {
// lowest contains the index of the lowest item so far
int lowest = i;
for (int j=i+l; j<array.size(); j++) {
// compare the jth item to the lowest item so far
// if the jth item is lower, replace lowest with j
}

return lowest;

}

And swap looks like this:

Chapter 22: Heap

void swap (int& i, int& j) {
// store a reference to the ith card in temp
// make the ith element of the array refer to the jth card
// make the jth element of the array refer to temp

}

To analyze the performance of this algorithm, the first step is to decide what operations to count.
Obviously, the program does a lot of things: it increments i, compares it to the length of the deck, it
searches for the largest element of the array, etc. It is not obvious what the right thing is to count.

It turns out that a good choice is the number of times we compare two items. Many other choices
would yield the same result in the end, but this is easy to do and we will find that it allows us to
compare most easily with other sort algorithms.

The next step is to define the "problem size." In this case it is natural to choose the size of the array,
which we'll call n.

Finally, we would like to derive an expression that tells us how many abstract operations (specifically,
comparisons) we have to do, as a function of n.

We start by analyzing the helper methods. swap copies several references, but it doesn't perform any
comparisons, so we ignore the time spent performing swaps. findLowest starts at i and traverses the
array, comparing each item to lowest. The number of items we look at is n-i, so the total number of
comparisons is n-i-1.

Next we consider how many times findLowest gets invoked and what the value of i is each time.
The last time it is invoked, i is n-2 so the number of comparisons is 1. The previous iteration
performs 2 comparisons, and so on. During the first iteration, i is 0 and the number of comparisons is

n-1.

So the total number of comparisonsis 1 + 2 + --+ + n-1. This sum is equal to n?/2 - n/2. To
describe this algorithm, we would typically ignore the lower order term (n/2) and say that the total
amount of work is proportional to n?. Since the leading order term is quadratic, we might also say that
this algorithm is quadratic time.

22.3 Analysis of mergesort

In Section 13.10 I claimed that mergesort takes time that is proportional to n log n, but I didn't
explain how or why. Now I will.

Again, we start by looking at pseudocode for the algorithm. For mergesort, it's

vector<Card> mergeSort (vector<Card> array) {
// find the midpoint of the array
// divide the array into two halves
// sort the halves recursively
// merge the two halves and return the result

Chapter 22: Heap

At each level of the recursion, we split the array in half, make two recursive calls, and then merge the
halves. Graphically, the process looks like this:

items per comparisons
arrays array # merges per merge total work
) 1 n 1 n-1 ~Nn
| | | 2 n/2 2 n/2-1 ~n
OO0 000E n/2 2 n/2 21 ~n
Ul 0t oo oo oo oo ot n 1 0 0

Each line in the diagram is a level of the recursion. At the top, a single array divides into two halves.
At the bottom, n arrays (with one element each) are merged into n/2 arrays (with 2 elements each).

The first two columns of the table show the number of arrays at each level and the number of items in
each array. The third column shows the number of merges that take place at each level of recursion.
The next column is the one that takes the most thought: it shows the number of comparisons each
merge performs.

If you look at the pseudocode (or your implementation) of merge, you should convince yourself that
in the worst case it takes m-1 comparisons, where m is the total number items being merged.

The next step is to multiply the number of merges at each level by the amount of work (comparisons)
per merge. The result is the total work at each level. At this point we take advantage of a small trick.
We know that in the end we are only interested in the leading-order term in the result, so we can go
ahead and ignore the -1 term in the comparisons per merge. If we do that, then the total work at each
level is simply n.

Next we need to know the number of levels as a function of n. Well, we start with an array of n items
and divide it in half until it gets to 1. That's the same as starting at 1 and multiplying by 2 until we get
to n. In other words, we want to know how many times we have to multiply 2 by itself before we get
to n. The answer is that the number of levels, 1, is the logarithm, base 2, of n.

Finally, we multiply the amount of work per level, n, by the number of levels, 1og, nto getn log,

n, as promised. There isn't a good name for this functional form; most of the time people just say, "en
log en."

It might not be obvious at first that n log, n is better than n?, but for large values of n, it is. As an

exercise, write a program that prints n log, n and n? for a range of values of n.

22.4 Overhead

Chapter 22: Heap

Performance analysis takes a lot of handwaving. First we ignored most of the operations the program
performs and counted only comparisons. Then we decided to consider only worst case performance.
During the analysis we took the liberty of rounding a few things off, and when we finished, we
casually discarded the lower-order terms.

When we interpret the results of this analysis, we have to keep all this hand-waving in mind. Because
mergesort is n log, n, we consider it a better algorithm than selection sort, but that doesn't mean that

mergesort is always faster. It just means that eventually, if we sort bigger and bigger arrays, mergesort
will win.

How long that takes depends on the details of the implementation, including the additional work,
besides the comparisons we counted, that each algorithm performs. This extra work is sometimes
called overhead. It doesn't affect the performance analysis, but it does affect the run time of the
algorithm.

For example, our implementation of mergesort actually allocates subarrays before making the
recursive calls and then lets them get garbage collected after they are merged. Looking again at the
diagram of mergesort, we can see that the total amount of space that gets allocated is proportional to n
log, n,and the total number of objects that get allocated is about 2n. All that allocating takes time.

Even so, it is most often true that a bad implementation of a good algorithm is better than a good
implementation of a bad algorithm. The reason is that for large values of n the good algorithm is
better and for small values of n it doesn't matter because both algorithms are good enough.

As an exercise, write a program that prints values of 1000 n log, nand n? for a range of values of n.

For what value of n are they equal?

22.5 Priority Queue implementations

In Chapter 20 we looked at an implementation of a Priority Queue based on an array. The items in the
array are unsorted, so it is easy to add a new item (at the end), but harder to remove an item, because
we have to search for the item with the highest priority.

An alternative is an implementation based on a sorted list. In this case when we insert a new item we
traverse the list and put the new item in the right spot. This implementation takes advantage of a
property of lists, which is that it is easy to insert a new node into the middle. Similarly, removing the
item with the highest priority is easy, provided that we keep it at the beginning of the list.

Performance analysis of these operations is straightforward. Adding an item to the end of an array or
removing a node from the beginning of a list takes the same amount of time regardless of the number
of items. So both operations are constant time.

Any time we traverse an array or list, performing a constant-time operation on each element, the run
time is proportional to the number of items. Thus, removing something from the array and adding

Chapter 22: Heap

something to the list are both linear time.

So how long does it take to insert and then remove n items from a Priority Queue? For the array
implementation, n insertions takes time proportional to n, but the removals take longer. The first
removal has to traverse all n items; the second has to traverse n-1, and so on, until the last removal,
which only has to look at 1 item. Thus, the total time is 1 + 2 + -+ + n, which is (still) n?/2 -
n/2. So the total for the insertions and the removals is the sum of a linear function and a quadratic
function. The leading term of the result is quadratic.

The analysis of the list implementation is similar. The first insertion doesn't require any traversal, but
after that we have to traverse at least part of the list each time we insert a new item. In general we
don't know how much of the list we will have to traverse, since it depends on the data and what order
they are inserted, but we can assume that on average we have to traverse half of the list.
Unfortunately, even traversing half of the list is still a linear operation.

So, once again, to insert and remove n items takes time proportional to n?. Thus, based on this
analysis we cannot say which implementation is better; both the array and the list yield quadratic run
times.

If we implement a Priority Queue using a heap, we can perform both insertions and removals in time
proportional to log n. Thus the total time for n items is n log n, which is better than n?. That's why,
at the beginning of the chapter, I said that a heap is a particularly efficient implementation of a
Priority Queue.

22.6 Definition of a Heap

A heap is a special kind of tree. It has two properties that are not generally true for other trees:

completeness
The tree is complete, which means that nodes are added from top to bottom, left to right,
without leaving any spaces.

heapness
The item in the tree with the highest priority is at the top of the tree, and the same is true for
every subtree.

Both of these properties bear a little explaining. This figure shows a number of trees that are
considered complete or not complete:

Chapter 22: Heap

Complete trees Not complete trees

An empty tree is also considered complete. We can define completeness more rigorously by
comparing the height of the subtrees. Recall that the height of a tree is the number of levels.

Starting at the root, if the tree is complete, then the height of the left subtree and the height of the right
subtree should be equal, or the left subtree may be taller by one. In any other case, the tree cannot be
complete.

Furthermore, if the tree is complete, then the height relationship between the subtrees has to be true
for every node in the tree.

It is natural to write these rules as a recursive function:

int height(Tree* head)

{

}

if (head==NULL) return 0;

int right = height(head->right), left = height(head->left);
if(right > left) return right + 1;

return left + 1;

bool isComplete (Tree *tree) {

}

// the null tree is complete
if (tree == NULL) return true;

int leftHeight = height (tree->left);
int rightHeight = height (tree->right);
int diff = leftHeight - rightHeight

// check the root node
if (diff < 0 || diff > 1) return false;

// check the children
if (!isComplete (tree->left)) return false;
return isComplete (tree->right);

For this example I used the linked implementation of a tree. As an exercise, write the same function
for the array implementation. Also as an exercise, write the height function. The height of a NULL
tree 1s 0 and the height of a leaf node 1s 1.

Chapter 22: Heap

The heap property is similarly recursive. In order for a tree to be a heap, the largest value in the tree
has to be at the root, and the same has to be true for each subtree. As another exercise, write a
function that checks whether a tree has the heap property.

22.7 Heap remove

It might seem odd that we are going to remove things from the heap before we insert any, but I think
removal is easier to explain.

At first glance, we might think that removing an item from the heap is a constant time operation, since
the item with the highest priority is always at the root. The problem is that once we remove the root
node, we are left with something that is no longer a heap. Before we can return the result, we have to
restore the heap property. We call this operation reheapify.

The situation is shown in the following figure:

Subtree A | / Subtree B

The root node has priority r and two subtrees, A and B. The value at the root of Subtree A is a and the
value at the root of Subtree B is b.

We assume that before we remove r from the tree, the tree is a heap. That implies that r is the largest
value in the heap and that a and b are the largest values in their respective subtrees.

Once we remove r, we have to make the resulting tree a heap again. In other words we need to make
sure it has the properties of completeness and heapness.

The best way to ensure completeness is to remove the bottom-most, right-most node, which we'll call
c and put its value at the root. In a general tree implementation, we would have to traverse the tree to

find this node, but in the array implementation, we can find it in constant time because it is always the
last (non-null) element of the array.

Of course, the chances are that the last value is not the highest, so putting it at the root breaks the

Chapter 22: Heap
heapness property. Fortunately it is easy to restore. We know that the largest value in the heap is either
a or b. Therefore we can select whichever is larger and swap it with the value at the root.

Arbitrarily, let's say that b is larger. Since we know it is the highest value left in the heap, we can put
it at the root and put c at the top of Subtree B. Now the situation looks like this:

Subtree A | / SubtreeB

Again, c 1s the value we copied from the last entry in the array and b is the highest value left in the
heap. Since we haven't changed Subtree A at all, we know that it is still a heap. The only problem is
that we don't know if Subtree B is a heap, since we just stuck a (probably low) value at its root.

Wouldn't it be nice if we had a method that could reheapify Subtree B? Wait... we do!

22.8 Heap insert

Inserting a new item in a heap is a similar operation, except that instead of trickling a value down
from the top, we trickle it up from the bottom.

Again, to guarantee completeness, we add the new element at the bottom-most, rightmost position in
the tree, which is the next available space in the array.

Then to restore the heap property, we compare the new value with its neighbors. The situation looks
like this:

Chapter 22: Heap

The new value is c. We can restore the heap property of this subtree by comparing c to a. If ¢ is
smaller, then the heap property is satisfied. If ¢ is larger, then we swap ¢ and a. The swap satisfies the
heap property because we know that ¢ must also be bigger than b, because ¢ > aand a > b.

Now that the subtree is reheapified, we can work our way up the tree until we reach the root.

22.9 Performance of heaps

For both insert and remove, we perform a constant time operation to do the actual insertion and
removal, but then we have to reheapify the tree. In one case we start at the root and work our way
down, comparing items and then recursively reheapifying one of the subtrees. In the other case we
start at a leaf and work our way up, again comparing elements at each level of the tree.

As usual, there are several operations we might want to count, like comparisons and swaps. Either
choice would work; the real issue is the number of levels of the tree we examine and how much work
we do at each level. In both cases we keep examining levels of the tree until we restore the heap
property, which means we might only visit one, or in the worst case we might have to visit them all.
Let's consider the worst case.

At each level, we perform only constant time operations like comparisons and swaps. So the total
amount of work is proportional to the number of levels in the tree, a.k.a. the height