
339	

	

	
 C++	

Overview	

Chapter	
 1

Note: All commands you type (including the Myro commands listed
elsewhere) are essentially C++ commands. Later, in this section we will list
those commands that are a part of the C++ language.

Chapter	
 2	

	

#include "FILE NAME"

Includes the contents of the file named FILE NAME just as though it had been
typed at this location in the current file. The file is sought in the same
directory as your other C++ programs.

void <FUNCTION NAME>(<PARAMETERS>)
{
 <SOMETHING>
 ...
 <SOMETHING>
}

Defines a new command/function named <FUNCTION NAME>. A function
name should always begin with a letter and can be followed by any sequence
of letters, numbers, or underscores (_), and not contain any spaces. Try to
choose names that appropriately describe the command being defined.

C++	
 Overview	

	

340	

	

Chapter	
 3	

Values
Values in C++ include numbers (integers or floating point numbers) and
strings. Each type of value can be used in an expression by itself or using a
combination of operations defined for that type (for example, +, -, *, /, % for
numbers). Strings are considered sequences of characters (or letters).

Names
A name in C++ must begin with either an alphabetic letter (a-z or A-Z) or the
underscore (i.e. _) and can be followed by any sequence of letters, digits, or
underscore letters.

cin >> <variable>;

Waits for the user to type a value compatible with the type of the variable.
This value becomes the new value of the variable.

#include "Myro.h"
<any other includes>
<function definitions>
int main() {
 connect();
 <do something>
 <do something>
 ...

 disconnect();
} // end of main program

This is the basic structure of a robot control program in C++. Without the
#include line and the connect and disconnect commands, it is the basic
structure of all C++ programs.

C++	
 Overview	

	

341	

	

cout << <expression> << <expression> << … << <expression>;
This function prints out the values of the expressions (one or more) in the
console window. If any of the expressions are endl, the output will go to a
new line at that point.

<type> <variable name> = <expression>;
This is how C++ defines a variable of the specified type (e.g., double, int,
string). The value generated by <expression> will become the initial value
of <variable name>.

<variable name> = <expression>;
This is how C++ assigns values to variables. The value generated by
<expression> will become the new value of <variable name>.

<expression> <= <expression>
This condition is true if the first expression is less than or equal to the second.
Other relations include >= (greater or equal), <, >, == (equal) and != (not
equal).

<variable>++
Increments <variable>, that is, increases the value of <variable> by 1.

Repetition

for (<initialization>; <continuation>; <incrementation>) {
 <do something>
 <do something>
 ...
}

while (timeRemaining(<seconds>)) {
 <do something>
 <do something>
 ...
}

C++	
 Overview	

	

342	

	

while (true) {
 <do something>
 <do something>
 ...
}

These are different ways of doing repetition in C++. The first version will
initialize a variable and repeat the loop body, executing the
<incrementation> at the end of each repetition, and continue repeating so
long as the continuation condition remains true. The second version will carry
out the body for <seconds> amount of time. timeRemaining is a Myro
function (see above). The last version specifies an un-ending repetition.

Chapter	
 4	

true, false

These are Boolean or logical values in C++. C++ also defines true as 1 and
false as 0 and they can be used interchangeably.

<, <=, >, >=, ==, !=	

These are relational operations in C++. They can be used to compare values.
See text for details on these operations.	

	

&&, ||, !	

These are logical operations. They can be used to combine any expression that
yields Boolean values.	

%

The modulus operator. The expression <dividend> % <divisor> returns the
remainder after dividing integer <dividend> by integer <divisor>.

rand()

Returns a random integer between 0 and RAND_MAX (inclusive). This function
is a part of the cstdlib library in C++.	

	

C++	
 Overview	

	

343	

	

RAND_MAX

A constant, which is the maximum random integer that can be returned by the
rand() function in C++.

Chapter	
 5	

if (<CONDITION>) {
 <statement-1>
 ...
 <statement-N>

}
If the condition evaluates to true, all the statements are performed.
Otherwise, all the statements are skipped.

return <expression>;

Can be used inside any function to return the result of the function.

<TYPE> <NAME> [] = { <VALUES> };
Declares a C++ array called <NAME> with elements of type <TYPE>. The array
is initialized to the specified <VALUES>.

char <NAME>;
Declares character variable <NAME> (able to hold one character).

Vectors and Lists:

#include <vector>
#include <list>

Includes definitions for C++ vectors or lists, which are both examples
sequence containers.

vector< <TYPE> > <NAME>;

Defines an initially empty vector called <NAME> with elements of type <TYPE>.

C++	
 Overview	

	

344	

	

list< <TYPE> > <NAME>;
Defines an initially empty list called <NAME> with elements of type <TYPE>.

vector< <TYPE> > <NAME> (<ARRAY START>, <ARRAY END>);
list< <TYPE> > <NAME> (<ARRAY START>, <ARRAY END>);
Defines a vector or list called <NAME> with elements of type <TYPE> initialized
with values from location <ARRAY START> up to, but not including, <ARRAY
END>. These may be of the form <ARRAY NAME> + <CONSTANT>.

<seq>.size()

Returns the current size (length) of the vector, list, or string <seq>.	

<vector>[i]
<string>[i]
Returns the ith element in the <vector> or <string>. Indexing starts from 0.
(Strings are a lot like vectors of characters.)

<seq>.push_back(<value>);
Appends the <value> at the back (end) of vector, list, or string <seq>.

<list>.push_front(<value>);
Appends the <value> at the front (beginning) of <list>.

<list>.sort();

Sorts the <list> in ascending order.

<list>.reverse();
Reverses	
 the	
 elements	
 in	
 the	
 list.	

<seq>.begin()

Returns an iterator referring to the first element of the vector, list, or string	

<seq>.	

<seq>.end()

Returns an iterator referring the last element of the vector, list, or string
<seq>.	

C++	
 Overview	

	

345	

	

	

vector< <TYPE> >::const_iterator <NAME>;
vector< <TYPE> >::iterator <NAME>;
list< <TYPE> >::const_iterator <NAME>;
list< <TYPE> >::iterator <NAME>;
string::const_iterator <NAME>;
string::iterator <NAME>;

Declares an iterator called <NAME>, which can refer to locations in a vector/list
with elements of type <TYPE> or in a string. A const (constant) iterator does
not allow the elements of the vector or list to be modified, whereas a non-
const iterator does.

<iterator>++

Increments <iterator> to refer to the next element of a vector, list, or string.

* <iterator>

Returns the value stored in the vector, list, or string element referred to by
<iterator>.

<seq>.insert(<it1>, <it2-begin>, <t2-end>);

Inserts elements from one vector, list, or string into the vector, list, or string
<seq>. The new elements are inserted at a location specified by iterator
<it1>. For example, use <seq>.begin() to insert at the beginning of <seq>
or use <seq>.end() to insert at its end. The elements to be inserted are
specified by iterators <it2-begin> and <it2-end>. For example, to insert all
the elements from vector, list, or string <seq2>, use <seq2>.begin() and
<seq2>.end().

for (<it> = <seq>.begin(); <it> != <seq>.end(); <it>++) {
 … STATEMENTS using <it> or *<it> …
}

Executes the loop body with iterator <it> referring to the elements of vector
or list <seq> from its beginning up to its end.

C++	
 Overview	

	

346	

	

Streams:

#include <fstream>

Includes definitions for C++ streams for file input/output.

ifstream <name> (<string>);	

Declares <name> to be an input file stream connected to file name <string>.

ofstream <name> (<string>);

Declares <name> to be an output file stream connected to file name <string>.

<ifstream> >> <var>;

Reads input value from stream <ifstream> and stores it in variable <var>.

<ofstream> << <expression>

Outputs values of <expression> to output stream <ofstream>.

<stream>.close();

Closes (input or output) file stream <stream>, thus completing operation on it.
You should close files when you are done with them.

<ifstream>.get (<chvar>);

Puts the next character from input stream <ifstream> into character variable	

<chvar>.	

<ifstream>.eof()

Returns true if input stream <ifstream> is at the end of the file, and false if	

not.

C++	
 Overview	

	

347	

	

Chapter	
 6	

The if-statement in C++ has the following forms:

if (<condition>) {
 <this>
}

if (<condition>) {
 <this>
} else {
 <that>
}

if (<condition-1>) {
 <this>
} else if (<condition-2>) {
 <that>
} else if (<condition-3>) {
 <something else>
...
...
} else {
 <other>
}

The conditions can be any expression that results in a true, false, 1, or 0
value. Review Chapter 4 for details on writing conditional expressions.

C++	
 Overview	

	

348	

	

Chapter	
 7	

struct <structure name> { <declaration>; <declaration>; … };

Defines a structure called <structure name> with members declared by the
<declarations>s (usually variable and function declarations).

<structure name> <variable name>, <variable name>, …;

Defines variables belonging to a structured type. Each variable has the
members declared in the preceding <structure name> definition.

<structure>.<variable name>
<structure>.<function name> (<arguments>)

Accesses named member-variable (field) or member-function of a
<structure>, which must have a structured type that declares the referenced
member variable or function.

printf (<format string>, <expression>, …);

Prints the <expression>s according to the <format string>. Within it,
%W.Df prints a floating-point number in a field of minimum width W with D
digits after the decimal point, %Wd prints an integer in a field of minimum
width W, and %Ws prints a string in a field of minimum width W. The value is
right-justified in the field, unless a minus sign follows the % (e.g., %-W.Df, %-
Wd, %-Ws), in which case it’s left-justified. There are many other format
specifications besides these. In a <format string>, %% prints a single percent
sign.

The math library module provides several useful mathematics functions.
Some of the commonly used functions are listed below:

ceil(x) Returns the ceiling of x as a float, the smallest integer value greater
than or equal to x.

C++	
 Overview	

	

349	

	

floor(x) Returns the floor of x as a float, the largest integer value less than
or equal to x.

exp(x) Returns ex.

log(x[, base]) Returns the logarithm of x to the given base. If the base is
not specified, return the natural logarithm of x (i.e., loge x).

log10(x) Returns the base-10 logarithm of x (i.e. log10 x).

pow(x, y) Returns xy.

sqrt(x) Returns the square root of x (√x).

Trigonometric functions

acos(x) Returns the arc cosine of x, in radians.

asin(x) Returns the arc sine of x, in radians.

atan(x) Returns the arc tangent of x, in radians.

cos(x) Returns the cosine of x radians.

sin(x) Returns the sine of x radians.

tan(x) Returns the tangent of x radians.

cosh(x) Returns the hyperbolic cosine of x.

sinh(x) Returns the hyperbolic sine of x.

tanh(x) Returns the hyperbolic tangent of x.

C++	
 Overview	

	

350	

	

Chapter	
 8	

In this chapter we presented informal scope rules for names in C++ programs.
While these can get fairly complicated, for our purposes you need to know the
distinction between a local name that is local within the scope of a function
versus a global name defined outside of the function. The text ordering
defines what is accessible.

Chapter	
 9	

There were no new C++ features introduced in this chapter.

Chapter	
 10	

TYPE & NAME
Indicates that the specified parameter is to be passed by reference (rather than
passed by value), which allows it to be modified from within the function.

typedef TYPE NAME
Allows NAME to be used as an abbreviation for TYPE.

Chapter	
 11	

exit(EXIT_MODE);
May be invoked anywhere to exit the program immediately. If EXIT_MODE is
EXIT_SUCCESS then the program exits normally (equivalent to invoking
return(0) from main()); if it is EXIT_FAILURE then the program signals
abnormal termination to the operating system.

#include "FILENAME.h"
Inserts the contents of FILENAME.h at the above point in your code, which is a
simple way of including function and other definitions in your program.

C++	
 Overview	

	

351	

	

