
Opposite page: Mars Rover.  
Photo courtesy of NASA/JPL­Caltech 
 

 

19 
 

2
 

 

 

 

 

 

 

 

Personal Robots

 

 

Every Pleo is autonomous. Yes, each one begins life as a newly-hatched baby
Camarasaurus, but that's where predictability ends and individuality begins.
Like any creature, Pleo feels hunger and fatigue - offset by powerful urges to
explore and be nurtured. He'll graze, nap and toddle about on his own -when
he feels like it! Pleo dinosaur can change his mind and his mood, just as you
do.

From: www.pleoworld.com

Opposite page: Pleo robots 
Photo courtesy of UGOBE Inc. 

Chapter 2

20

Most people associate the personal computer (aka the PC) revolution with the
1980’s but the idea of a personal computer has been around almost as long as
computers themselves. Today, on most college campuses, there are more
personal computers than people. The goal of One Laptop Per Child (OLPC)
Project is to “provide children around the world with new opportunities to
explore, experiment, and express themselves” (see www.laptop.org). Personal
robots, similarly, were conceived several decades ago. However, the personal
robot ‘revolution’ is still in its infancy. The picture on the previous page
shows the Pleo robots that are designed to emulate behaviors of an infant
Camarasaurus. The Pleos are marketed mainly as toys or as mechatronic
“pets”. Robots these days are being used in a variety of situations to perform a
diverse range of tasks: like mowing a lawn; vacuuming or scrubbing a floor;
entertainment; as companions for elders; etc. The range of applications for
robots today is limited only by our imagination! As an example, scientists in
Japan have developed a baby seal robot (shown on the opposite page) that is
being used for therapeutic purposes for nursing home patients.

Your Scribbler robot is your personal robot. In this case it is being used as an
educational robot to learn about robots and computing. As you have already
seen, your Scribbler is a rover, a robot that moves around. Such robots have
become more prevalent in the last few years and represent a new dimension of
robot applications. Roaming robots have been used for mail delivery in large
offices and as vacuum cleaners in homes. Robots vary in the ways in which
they move about: they can roll about like small vehicles (like the lawn mower,
Roomba, Scribbler, etc.), or even ambulate on two, three, or more legs (e.g.
Pleo). The Scribbler robot moves on three wheels, two of which are powered.
In this chapter, we will get to know the Scribbler in some more detail and also
learn about how to use its commands to control its behavior.

The Scribbler Robot: Movements

In the last chapter you were able to use the Scribbler robot through Myro to
carry out simple movements. You were able to start the Myro software,
connect to the robot, and then were able to make it beep, give it a name, and
move it around using a joystick. By inserting a pen in the pen port, the

Personal Robots

21

scribbler is able to trace its path of movements
on a piece of paper placed on the ground. It
would be a good idea to review all of these
tasks to refresh your memory before
proceeding to look at some more details about
controlling the Scribbler.

If you hold the Scribbler in your hand and
take a look at it, you will notice that it has
three wheels. Two of its wheels (the big ones
on either side) are powered by motors. Go
ahead turn the wheels and you will feel the
resistance of the motors. The third wheel (in
the back) is a free wheel that is there for
support only. All the movements the Scribbler
performs are controlled through the two motor-driven wheels. In Myro, there
are several commands to control the movements of the robot. The command
that directly controls the two motors is the motors command:

robot.motors(LEFT, RIGHT);

In the command above, LEFT and RIGHT can be any value in the range
[-1.0...1.0] and these values control the left and right motors, respectively.
Specifying a negative value moves the motors/wheels backwards and positive
values move it forward. Thus, the command:

robot.motors(1.0, 1.0);

will cause the robot to move forward at full speed, and the command:

robot.motors(0.0, 1.0);

will cause the left motor to stop and the right motor to move forward at full
speed resulting in the robot turning left. Thus by giving a combination of left
and right motor values, you can control the robot's movements. Myro has also

The Paro Baby Seal Robot.

Photo courtesy of National
Institute of Advanced
Industrial Science and

Technology, Japan (paro.jp).

Chapter 2

22

provided a set of often used movement commands that are easier to remember
and use. Some of them are listed below:

forward(SPEED)
backward(SPEED)
turnLeft(SPEED)
turnRight(SPEED)
stop()

Another version of these commands takes a second argument, an amount of
time in seconds:

forward(SPEED, SECONDS)
backward(SPEED, SECONDS)
turnLeft(SPEED, SECONDS)
turnRight(SPEED, SECONDS)

Providing a number for SECONDS in the commands above specifies how long
that command will be carried out. For example, if you wanted to make your
robot traverse a square path, you could issue the following sequence of
commands:

robot.forward(1, 1);
robot.turnLeft(1, .3);
robot.forward(1, 1);
robot.turnLeft(1, .3);
robot.forward(1, 1);
robot.turnLeft(1, .3);
robot.forward(1, 1);
robot.turnLeft(1, .3);

of course, whether you get a square or not will depend on how much the robot
turns in 0.3 seconds. There is no direct way to ask the robot to turn exactly 90
degrees, or to move a certain specified distance (say, 2 ½ feet). We will return
to this later.

You can also use the following movement commands to translate (i.e. move
forward or backward), or rotate (turn right or left):

Personal Robots

23

translate(SPEED)
rotate(SPEED)

Additionally, you can specify, in a single command, the amount of translation
and rotation you wish use:

move(TRANSLATE_SPEED, ROTATE_SPEED)

In all of these commands, SPEED can be a value between [-1.0...1.0].

You can probably tell from the above list that there are a number of redundant
commands (i.e. several commands can be specified to result in the same
movement). This is by design. You can pick and choose the set of movement
commands that appear most convenient to you. It would be a good idea at this
point to try out these commands on your robot.

Do This: Edit your driver program to connect to the robot and to try out the
following movement commands on your Scribbler:

First make sure you have sufficient room in front of the robot (place it on the
floor with a few feet of open space in front of it).

robot.motors(1, 1);
wait(5);
robot.motors(0, 0);

(The wait command waits for a specified number of seconds.) Observe the
behavior of the robot. Specifically, notice if it does (or doesn't) move in a
straight line after issuing the first command. You can make the robot carry out
the same behavior by issuing the following commands:

robot.move(1.0, 0.0);
wait(5);
robot.stop();

Go ahead and try these. The behavior should be exactly the same. Next, try
making the robot go backwards using any of the following commands:

Chapter 2

24

robot.motors(-1, -1);
robot.move(-1, 0);
robot.backward(1);

Again, notice the behavior closely. In rovers, precise movement, like moving
in a straight line, is difficult to achieve. This is because two independent
motors control the robot's movements. In order to move the robot forward or
backward in a straight line, the two motors would have to issue the exact same
amount of power to both wheels. While this technically feasible, there are
several other factors than can contribute to a mismatch of wheel rotation. For
example, slight differences in the mounting of the wheels, different resistance
from the floor on either side, etc. This is not necessarily a bad or undesirable
thing in these kinds of robots.
Under similar circumstances even
people are unable to move in a
precise straight line. To illustrate
this point, you can try the
experiment shown on right.

For most people, the above
experiment will result in a variable
movement. Unless you really
concentrate hard on walking in a
straight line, you are most likely to
display similar variability as your
Scribbler. Walking in a straight
line requires constant feedback and
adjustment, something humans are
quite adept at doing. This is hard
for robots to do. Luckily, roving
does not require such precise
moments anyway.

Do This: Review all of the other movement commands listed above and try
them out on your Scribbler. Again, note the behavior of the robot from each of
these commands.

Do humans walk straight?

Find a long empty hallway and make
sure you have a friend with you to help
with this. Stand in the center of the

hallway and mark your spot. Looking
straight ahead, walk about 10‐15 paces
without looking at the floor. Stop,

mark your spot and see if you walked
in a straight line.

Next, go back to the original starting
spot and do the same exercise with

your eyes closed. Make sure your
friend is there to warn you in case you
are about to run into an object or a

wall. Again, note your spot and see if
you walked in a straight line.

Personal Robots

25

Defining New Commands

Trying out simple commands by modifying Driver.cpp is a nice way to get
to know your robot's basic features. We will continue to use this each time we
want to try out something new. However, making a robot carry out more
complex behaviors requires several series of commands. Having to type these
over and over in a control program can get tedious. C++ provides a
convenient way to package a series of commands into a brand new command
called a function. For example, if we wanted the Scribbler to move forward
and then move backward (like a yoyo), we can define a new command
(function) called yoyo as follows:

void yoyo() // Move robot forward and backward once
{
 robot.forward(1);
 robot.backward(1);
 robot.stop();
}

The first line defines the name of the new command/function to be yoyo. (We
will explain later the exact significance of the word void, which indicates that
we are defining a command.) The left and right curly braces ({}) mark the
beginning and end of the function’s body. The lines in between are slightly
indented and contain the commands that make up the yoyo behavior. That is,
to act like a yoyo, move forward and then backward and then stop. The
indentation is important and is used in all programming languages to improve
readability. We will have more to say about this later.

Put the definition of yoyo into Driver.cpp before the definition of main.
After the new command has been defined, you can try it by entering the
command into the usual place in main as shown below:

yoyo();

Chapter 2

26

After you have done this editing, your Driver.cpp file should look like the
following figure:

Do This: If you have your Scribbler ready, go ahead and try out the new
definition above by modifying your driver to include the definition and
command yoyo() as shown above.

Observe the robot's behavior when you run the control program. You may
need to run the program several times. The robot momentarily moves and then
stops. If you look closely, you will notice that it does move forward and
backwards.

In C++, you can define new commands (functions) by using the syntax as
shown above. Note also that defining a new command doesn't mean that the
commands inside it get carried out. You have to explicitly issue the new
command to do this. This is useful because it gives you the ability to use the
command over and over again (for example, writing yoyo() more than once).
Issuing the new function like this in C++ is called, invocation. Upon
invocation, all the commands that make up the function's definition are
executed in the sequence in which they are listed in the definition.

Personal Robots

27

How can we make the robot's yoyo behavior more pronounced? That is, make
it move forward for, say 1 second,
and then backwards for 1 second,
and then stop? You can use the
SECONDS option in forward and
backward movement commands as
shown below:

void yoyo() /* Move robot
forward and backward for 1
sec. */
{
 robot.forward(1,1);
 robot.backward(1,1);
}

The same behavior can also be
accomplished by using the command wait, which is used as shown below:

wait(SECONDS);

where SECONDS specifies the amount of time the robot waits before moving on
to the next command. (Note that wait is not a command to the robot, and
therefore it is not preceded by “robot.”.) In effect, the robot continues to do
whatever it had been asked to do just prior to the wait command for the
amount of time specified in the wait command. That is, if the robot was asked
to move forward and then asked to wait for 1 second, it will move forward for
1 second before applying the command that follows the wait. Here is the
complete definition of yoyo that uses the wait command:

void yoyo() // Move robot forward and backward for 1 sec.
{
 robot.forward(1);
 wait(1);
 robot.backward(1);
 wait(1);
 robot.stop();
}

Scribbler Tip:

Remember that your Scribbler runs on
batteries and with time they will get
drained. When the batteries start to

run low, the Scribbler may exhibit
erratic movements. Eventually it stops
responding. When the batteries start

to run low, the Scribbler's red LED light
starts to blink. This is your signal to
replace the batteries.

Chapter 2

28

Do This: Go ahead and try out the new definitions exactly as above and issue
the command to the scribbler. What do you observe? In both cases you should
see the robot move forward for 1 second followed by a backward movement
for 1 second and then stop.

Adding Parameters to Commands

Take a look at the definition of the yoyo function above and you will notice
the use of parentheses, (), both when defining the function as well as when
using it. You have also used other functions earlier with parentheses in them
and probably can guess their purpose. Commands or functions can specify
certain parameters (or values) by placing them within parentheses. For
example, all of the movement commands, with the exception of stop have
one or more numbers that you specify to indicate the speed of the movement.
The number of seconds you want the robot to wait can be specified as a
parameter in the invocation of the wait command. Similarly, you could have
chosen to specify the speed of the forward and backward movement in the
yoyo command, or the amount of time to wait. Below, we show three
definitions of the yoyo command that make use of parameters:

void yoyo1(double speed)
{
 robot.forward(speed, 1);
 robot.backward(speed, 1);
}

void yoyo2(double waitTime)
{
 robot.forward(1, waitTime);
 robot.backward(1, waitTime);
}

void yoyo3(double speed, double waitTime)
{
 robot.forward(speed, waitTime);
 robot.backward(speed, waitTime);
}

Personal Robots

29

In the first definition, yoyo1, we specify the speed of the forward or backward
movement as a parameter. The word double means that the following
parameter can be a fractional number, such as 0.5. (The exact significance of
the word double will not concern us now.) Using this definition, you can
control the speed of movement with each invocation. For example, if you
wanted to move at half speed, you can issue the command:

yoyo1(0.5);

Similarly, in the definition of yoyo2 we have parameterized the wait time. In
the last case, we have parameterized both speed and wait time. For example, if
we wanted the robot to move at half speed and for 1 ½ seconds each time, we
would use the command:

yoyo3(0.5, 1.5);

This way, we can customize individual commands with different values
resulting in different variations on the yoyo behavior. Notice in all of the
definitions above that we did not have to use the stop() command at all.
Why?

Saving New Commands in Files

As you can imagine, while working with different behaviors for the robot, you
are likely to end up with a large collection of new functions. It would make
sense then that you do not have to type in the definitions over and over again.
C++ enables you to define new functions and store them in files in a folder on
your computer, which can then be easily used over and over again. Let us
illustrate this by defining two behaviors: a parameterized yoyo behavior and a
wiggle behavior that makes the robot wiggle left and right. The two
definitions are given below:

Chapter 2

30

// File: moves.h
// Purpose: Two useful robot commands to try out as a file.

void yoyo(double speed, double waitTime)
{
 robot.forward(speed);
 wait(waitTime);
 robot.backward(speed);
 wait(waitTime);
 robot.stop();
}

void wiggle(double speed, double waitTime)
{
 robot.rotate(-speed);
 wait(waitTime);
 robot.rotate(speed);
 wait(waitTime);
 robot.stop();
}

All lines beginning with the “//” characters are called comments. These are
simply annotations that help us understand and document programs in C++.
You can place these comments anywhere, including right after a command.
The // signs clearly mark the beginning of the comment and anything
following it on that line is not interpreted as a command by the computer.
C++ also permits multi-line comments, which extend from the characters “/*”
to the next occurrence of “*/”. You have already seen several examples of
this style of comments. Comments are quite useful and we will make liberal
use of them in all our programs.

Do This: To store the yoyo and wiggle behaviors in a file, you can use your
program editor to enter the text containing the two definitions and then save
them in a file (let’s call it moves.h) in your Myro folder (same place you have
the Driver.cpp file). All files containing C++ definitions of this kind will
end with the filename extension .h (for header file) and you should make sure
they are always saved in the same folder as the Driver.cpp file. This will
make it easy for you as well as the C++ compiler to locate your files when
you use them.

Personal Robots

31

Once you have created the file, there is a simple way you can use it. In
Driver.cpp, just enter the directive:

#include "moves.h"

in front of the definition of main, where the two new commands will be used.
For example, the following shows how to use the yoyo function after
including the moves module:

As you can see from above, accessing the commands defined in a file is
similar to accessing the capabilities of Myro in the Myro.h file. This is a nice
feature of C++. In C++, you are encouraged to extend the capabilities of any
system by defining your own functions, storing them in files and then using
them by including them. Thus including definitions from the moves.h file is
no different than including definitions from the Myro.h file. The directive

#include "Myro.h"

includes everything in the Myro.h file, just as though you had typed it at that
place in the driver program. Everything defined in the Myro.h library is listed
and documented in the C++ Myro Reference Manual. The nice thing that this
facility provides is that you can now define your own set of commands that

Chapter 2

32

extend the basic commands available in Myro to customize the behavior of
your robot. We will be making use of this over and over again in this course.

Functions as Building Blocks

Now that you have learned how to define new commands using existing ones,
it is time to discuss a little more C++. The basic syntax for defining a C++
function takes the form:

void <FUNCTION NAME>(<PARAMETERS>)
{
 <SOMETHING>
 ...
 <SOMETHING>
}

That is, to define a new function, start by using the word void followed by the
name of the function (<FUCTION NAME>) followed by <PARAMETERS> enclosed
in parenthesis followed by a left curly brace ({). (You will learn later that
function definitions do not have to begin with void.) This line is followed by
the commands that make up the function definition (<SOMETHING> ...
<SOMETHING>). A right curly brace (}) completes the definition. Usually each
command is placed on a separate line, and all lines that make up the definition
should be indented (aligned) the same amount. The number of spaces that
make up the indentation is not that important as long as they are all the same.
This may seem a bit awkward and too restricting at first, but you will soon see
the value of it, for it makes the definition(s) more readable. For example, look
at the following definitions for the yoyo function:

void yoyo(double speed, double waitTime) {
 robot.forward(speed);
 wait(waitTime);
 robot.backward(speed);
 wait(waitTime);
 robot.stop(); }

Personal Robots

33

void yoyo(double speed, double waitTime)
 { robot.forward(speed); wait(waitTime);
 robot.backward(speed); wait(waitTime);
 robot.stop(); }

Some program editors and integrated design environments (IDEs) help you in
making your indentations consistent by automatically indenting the next line
like the previous.

Another feature built into some IDEs and program editors, which improves
readability of C++ programs, is the use of color highlighting. Notice in the
above examples (where we use screen shots from an IDE) that pieces of your
program appear in different colors. For example, the word void in a function
definition appears in blue, and the name of your function, yoyo, appears in
black. Other colors are also used in different situations, look out for them.
This particular IDE displays all C++ words (like void) in blue and all names
defined by you (like yoyo) in black. What do you think the other colors
indicate?

The idea of defining new functions by using existing functions is very
powerful and central to computing. By defining the function yoyo as a new
function using the existing functions (forward, backward, wait, stop)
you have abstracted a new behavior for your robot. You can define further
higher-level functions that use yoyo if you want. Thus, functions serve as
basic building blocks in defining various robot behaviors, much like the idea
of using building blocks to build bigger structures. As an example, consider
defining a new behavior for your robot: one that makes it behave like a yoyo
twice, followed by wiggling twice. You can do this by defining a new
function as follows:

void dance()
{
 yoyo(0.5, 0.5);
 yoyo(0.5, 0.5);
 wiggle(0.5, 1);
 wiggle(0.5, 1);
}

Chapter 2

34

Do This: Go ahead and add the dance function to your moves.h file. Put it
after the definitions of yoyo and wiggle, since in C++ we have to define
things before we use them. Try the dance command on the robot. Now you
have a very simple behavior that makes the robot do a little shuffle dance.

Guided by Automated Controls

Earlier we agreed that a robot is a “mechanism guided by automated
controls”. You can see that by defining functions that carry out more complex
movements, you can create modules for many different kinds of behaviors.
The modules make up the programs you write, and when they are invoked on
the robot, the robot carries out the specified behavior. This is the beginning of
being able to define automated controls for a robot. As you learn more about
the robot’s capabilities and how to access them via functions, you can design
and define many kinds of automated behaviors.

Summary

In this chapter, you have learned several commands that make a robot move in
different ways. You also learned how to define new commands by defining
new C++ functions. Functions serve as basic building blocks in computing
and defining new and more complex robot behaviors. C++ has specific syntax
rules for writing definitions. You also learned how to save all your function
definitions in a file and then using them as a module by including it. While
you have learned some very simple robot commands, you have also learned
some important concepts in computing that enable the building of more
complex behaviors. While the concepts themselves are simple enough, they
represent a very powerful and fundamental mechanism employed in almost all
software development. In later chapters, we will provide more details about
writing functions and also how to structure parameters that customize

Personal Robots

35

individual function invocations. Make sure you do some or all of the exercises
in this chapter to review these concepts.

Myro Review

robot.backward(SPEED);
Move backwards at SPEED (value in the range -1.0…1.0).

robot.backward(SPEED,SECONDS);

Move backwards at SPEED (value in the range -1.0…1.0) for a time given in
SECONDS, then stop.

robot.forward(SPEED);

Move forward at SPEED (value in the range -1.0..1.0).

robot.forward(SPEED,TIME);
Move forward at SPEED (value in the range -1.0…1.0) for a time given in
seconds, then stop.

robot.motors(LEFT,RIGHT);
Turn the left motor at LEFT speed and right motor at RIGHT speed (value in the
range -1.0…1.0).

robot.move(TRANSLATE, ROTATE);

Move at the TRANSLATE and ROTATE speeds (value in the range -1.0…1.0).

robot.rotate(SPEED);
Rotates at SPEED (value in the range -1.0…1.0). Negative values rotate right
(clockwise) and positive values rotate left (counter-clockwise).

robot.stop();

Stops the robot.

robot.translate(SPEED);
Move in a straight line at SPEED (value in the range -1.0…1.0). Negative

Chapter 2

36

values specify backward movement and positive values specify forward
movement.

robot.turnLeft(SPEED);

Turn left at SPEED (value in the range -1.0…1.0)

robot.turnLeft(SPEED,SECONDS);
Turn left at SPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

robot.turnRight(SPEED);
Turn right at SPEED (value in the range -1.0..1.0)

robot.turnRight(SPEED,SECONDS);
Turn right at SPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

wait(TIME)
Pause for the given amount of TIME seconds. TIME can be a decimal number.

C++ Review

#include "FILE NAME"
Includes the contents of the file named FILE NAME just as though it had been
typed at this location in the current file. The file is sought in the same
directory as your other C++ programs.

void <FUNCTION NAME>(<PARAMETERS>)
{
 <SOMETHING>
 ...
 <SOMETHING>
}
Defines a new command/function named <FUNCTION NAME>. A function
name should always begin with a letter and can be followed by any sequence
of letters, numbers, or underscores (_), and not contain any spaces. Try to
choose names that appropriately describe the command being defined.

Personal Robots

37

Exercises

1. Compare the robot's movements in the commands turnLeft(1),
turnRight(1) and rotate(1) and rotate(-1). Closely observe the robot's
behavior and then also try the motor commands:

robot.motors(-0.5, 0.5);
robot.motors(0.5, -0.5);
robot.motors(0, 0.5);
robot.motors(0.5, 0);

Do you notice any difference in the turning behaviors? The rotate
commands make the robot turn with a radius equivalent to the width of the
robot (distance between the two left and right wheels). The turn command
causes the robot to spin in the same place.

2. Insert a pen in the scribbler's pen port and then issue it commands to go
forward for 1 or more seconds and then backwards for the same amount. Does
the robot travel the same distance? Does it traverse the same trajectory?
Record your observations.

3. Measure the length of the line drawn by the robot in Exercise 2. Write a
function travel(DISTANCE) to make the robot travel the given DISTANCE.
You may use inches or centimeters as your units. Test the function on the
robot a few times to see how accurate the line is.

4. Suppose you wanted to turn/spin your robot a given amount, say 90
degrees. Before you try this on your robot, do it yourself. That is, stand in one
spot, draw a line dividing your two feet, and then turn 90 degrees. If you have
no way of measuring, your turns will only be approximate. You can study the
behavior of your robot similarly by issuing it turn/spin commands and making
them wait a certain amount. Try and estimate the wait time required to turn 90
degrees (you will have to fix the speed) and write a function to turn that
amount. Using this function, write a behavior for your robot to transcribe a
square on the floor (you can insert a pen to see how the square turns out).

Chapter 2

38

5. Generalize the wait time obtained in Exercise 3 and write a function called
degreeTurn(DEGREES). Each time it is called, it will make the robot turn the
specified degrees. Use this function to write a set of instructions to draw a
square.

6. Using the functions travel and degreeTurn, write a function to draw the
Bluetooth logo (See Chapter 1, Exercise 9).

7. Choreograph a simple dance routine for your robot and define functions to
carry it out. Make sure you divide the tasks into re-usable moves and as much
as possible parameterize the moves so they can be used in customized ways in
different steps. Use the building block idea to build more and more complex
series of dance moves. Make sure the routine lasts for at least several seconds
and it includes at least two repetitions of the entire sequence. You may also
make use of the beep command you learned from the last section to
incorporate some sounds in your choreography.

8. Record a video of your robot dance and then dub it with a soundtrack of
your choosing. Use whatever video editing software is accessible to you. Post
the video online on sites like YouTube to share with friends.

9. Lawn mower robots and even vacuuming robots can use specific
choreographed movements to ensure that they provide full coverage of the
area to be serviced. Assuming that the area to be mowed or cleaned is
rectangular and without any obstructions, can you design a behavior for your
Scribbler to provide full coverage of the area? Describe it in writing. [Hint:
Think about how you would mow/vacuum yourself.]

Personal Robots

39

