
Opposite page: Mars Rover.  
Photo courtesy of NASA/JPLCaltech 
 

 

101 
 

5
 

 

 

 

 

 

 

 

Sensing The World

 

 

 

I see all obstacles in my way.
From the song I can see clearly now,

Johnny Nash, 1972.

 

 

Opposite page: The Senses 
Photo courtesy of Blogosphere (cultura.blogosfere.it) 

Chapter 5

102

In the previous chapter you learned how proprioception: sensing time, stall,
and battery-level can be used in writing simple yet interesting robot behaviors.
All robots also come equipped with a suite of external sensors (or
exteroceptors) that can sense various things in the environment. Sensing
makes the robot aware of its environment and can be used to define more
intelligent behaviors. Sensing is also related to another important concept in
computing: input. Computers act on different kinds of information: numbers,
text, sounds, images, etc. to produce useful applications. Acquiring
information to be processed is generally referred to as input. In this chapter
we will also see how other forms of input can be acquired for a program to
process. First, let us focus on Scribbler’s sensors.

Scribbler Sensors

The Scribbler robot can sense the amount of ambient light, the presence (or
absence) of obstacles around it, and also take pictures from its camera.
Several devices (or sensors) are located on the Scribbler (see picture on the
previous page). Here is a short description of these:

Camera: The camera can take a still picture of whatever the robot is currently
“seeing”.

Light: There are three light sensors present on the robot. These are located in
the three holes present on the front of the robot. These sensors can detect the
levels of brightness (or darkness). These can be used to detect variations in
ambience light in a room. Also, using the information acquired from the
camera, the Scribbler makes available an alternative set of brightness sensors
(left, center, and right).

Proximity: There are two sets of these on the Scribbler: IR Sensors (left and
right) on the front; and Obstacle Sensors (left, center, and right) on the Fluke
dongle. They can be used to detect objects on the front and on its sides.

Sensing the World

103

Getting to know the sensors

Sensing using the sensors provided in the Scribbler is easy. Once you are
familiar with the details of sensor behaviors you will be able to use them in
your programs to design interesting creature-like behaviors for your Scribbler.
But first, we must spend some time getting to know these sensors; how to
access the information reported by them; and what this information looks like.
As for the internal sensors, Myro provides several functions that can be used
to acquire data from each sensor device. Where multiple sensors are available,
you also have the option of obtaining data from all the sensors or selectively
from an individual sensor.

Do This: perhaps the best way to get a quick look at the overall behavior of
all the sensors is to use the Myro function
senses:

robot.senses();

This results in a window (see picture on
right) showing all of the sensor values
(except the camera) in real time. They are
updated every second. You should move the
robot around and see how the sensor values
change. The window also displays the values of the stall sensor as well as the
battery level. The leftmost value in each of the sensor sets (light, IR, obstacle,
and bright) is the value of the left sensor, followed by center (if present), and
then the right.

The Camera

The camera can be used to take pictures of
the robot’s current view. As you can see,
the camera is located on the Fluke dongle.
The view of the image taken by the camera
will depend on the orientation of the robot

Scribbler Sensors

Chapter 5

104

(and the dongle). To take pictures from
the camera you can use the
takePicture command:

takePicture()
takePicture("color")
takePicture("gray")

Takes a picture and returns a picture
object. By default, when no parameters
are specified, the picture is in color.
Using the "gray" option, you can get a
grayscale picture. Example:

picture p = robot.takePicture();
show(p);

Alternately, you can also do:

show(robot.takePicture());

Once you take a picture from the camera, you can do many things with it. For
example, you may want to see if there is a laptop computer present in the
picture. Image processing is a vast subfield of computer science and has
applications in many areas. Understanding an image is quite complex but
something we do quite naturally. For example, in the picture above, we have
no problem locating the laptop, the bookcase in the background, and even a
case for a badminton racket (or, if you prefer racquet). The camera on the
Scribbler is its most complex sensory device that will require a lot of
computational effort and energy to use it in designing behaviors. In the
simplest case, the camera can serve as your remote “eyes” on the robot. We
may not have mentioned this earlier, but the range of the Bluetooth wireless
on the robot is 100 meters. In Chapter 9 we will learn several ways of using
the pictures. For now, if you take a picture from the camera and would like to
save it for later use, you use the Myro command, savePicture, as in:

savePicture(p, "office-scene.jpg");

Sensing the World

105

The file office-scene.jpg will be saved in the same folder as your C++
program. You can also use savePicture to save a series of pictures from the
camera and turn it into an animated “movie” (an animated gif image). This is
illustrated in the example below.

Do This: First try out all the commands for taking and saving pictures. Make
sure that you are comfortable using them. Try taking some grayscale pictures
as well. Suppose your robot has ventured into a place where you cannot see it
but it is still in communication range with your computer. You would like to
be able to look around to see where it is. Perhaps it is in a new room. You can
ask the robot to turn around and take several pictures and show you around.
You can do this using a combination of rotate and takePicture commands
as shown below:

while (timeRemaining(30)) {
 show(robot.takePicture());
 robot.turnLeft(0.5, 0.2);
}

That is, take a picture and then turn for 0.2 seconds, repeating the two steps
for 30 seconds. If you watch the picture window that pops up, you will see
successive pictures of the robot’s views. Try this a few times and see if you
can count how many different images you are able to see. Next, change the
takePicture command to take grayscale images. Can you count how many
images it took this time? There is of course an easier way to do this:

int N = 0;
while (timeRemaining(30)) {
 show(robot.takePicture());
 robot.turnLeft(0.5, 0.2);
 N = N + 1;
}
cout << N << endl;

Now it will output the number of images it takes. You will notice that it is
able to take many more grayscale images than color ones. This is because
color images have a lot more information in them than grayscale images (see

Chapter 5

106

text on right). A 256x192 color image
requires 256x192x3 (= 147, 456) bytes of
data where as a grayscale image requires
only 256x192 (= 49,152) bytes. The more
data you have to transfer from the robot to
the computer, the longer it takes.

You can also save an animated GIF of the
images generated by the robot by using the
savePicture command by accumulating a
series of images in a vector. This is shown
below:

vector<picture> Pics;
while (timeRemaining(30)) {
 picture pic =
 robot.takePicture();
 show(pic);
 Pics.push_back(pic);
 robot.turnLeft(0.5, 0.2);
}
savePicture(Pics,
 "office-movie.gif");

First we create an empty vector called, Pics.
Then we append each successive picture taken by the camera onto the vector.
This is accomplished by Pics.push_back(pic), which inserts pic at the
back (end) of Pics. Once all the images are accumulated, we use
savePicture to store the entire set as an animated GIF. You will be able to
view the animated GIF inside any web browser. Just load the file into a web
browser and it will play all the images as a movie.

There are many more interesting ways that one can use images from the
camera. In Chapter 9 we will explore images in more detail. For now, let us
take a look at Scribbler’s other sensors.

Pixels

Each image is made up of
several tiny picture elements
or pixels. In a color image,
each pixel contains color
information which is made up
of the amount of red, green,
and blue (RGB). Each of these
values is in the range 0..255
and hence it takes 3 bytes or
24‐bits to store the
information contained in a
single pixel. A pixel that is
colored pure red will have the
RGB values (255, 0, 0).
A grayscale image, on the

other hand only contains the
level of gray in a pixel which
can be represented in a single

byte (or 8‐bits) as a number
ranging from 0..255 (where 0
is black and 255 is white).

Sensing the World

107

Light Sensing

The following function is available to obtain values of light sensors:

getLight(<POSITION>) Returns the
current value in the <POSITION> light
sensor. <POSITION> can either be one
of "left", "center", "right" or
one of the numbers 0, 1, 2. The
positions 0, 1, and 2 correspond to
the left, center, and right sensors.
Examples:

cout << robot.getLight("left") << endl;

135

cout << robot.getLight(0) << endl;

135

cout << robot.getLight("center") << endl;

3716

cout << robot.getLight(1) << endl;

3716

cout << robot.getLight("right") << endl;

75

cout << robot.getLight(2) << endl;

75

The values being reported by these sensors can be in the range [0..5000]
where low values imply bright light and high values imply darkness. The
above values were taken in ambient light with one finger completely covering
the center sensor. Thus, the darker it is, the higher the value reported. In a
way, you could even call it a darkness sensor. Later, we will see how we can
easily transform these values in many different ways to affect robot behaviors.

Chapter 5

108

It would be a good idea to use the senses function to play around with the
light sensors and observe their values. Try to move the robot around to see
how the values change. Turn off the lights in the room, or cover the sensors
with your fingers, etc.

The camera present on the Fluke dongle can also be used as a kind of
brightness sensor. This is done by averaging the brightness values in different
zones of the camera image. In a way, you can think of it as a virtual sensor.
That is, it doesn’t physically exist but is embedded in the functionality of the
camera. The function getBright is similar to getLight in how it can be used
to obtain brightness values:

getBright(<POSITION>) Returns the current value in the <POSITION> light
sensor. <POSITION> can either be one of "left", "center", "right" or one
of the numbers 0, 1, 2. The positions 0, 1, and 2 correspond to the left, center,
and right sensors. Examples:

cout << robot.getBright("left") << endl;

2124047

cout << robot.getBright(0) << endl;

2124047

cout << robot.getBright("center") << endl;

1819625

cout << robot.getBright(1) << endl;

1819625

cout << robot.getBright("right")
 << endl;

1471890

cout << robot.getBright(2) << endl;

1471890

Sensing the World

109

The above values are from the camera image of the Firefox poster (see picture
above). The values being reported by these sensors can vary depending on the
view of the camera and the resulting brightness levels of the image. But you
will notice that higher values imply bright segments and lower values imply
darkness. For example, here is another set of values based on the image
shown on this page.

cout << robot.getBright("left") << ", "
 << robot.getBright("center") << ", "
 << robot.getBright("right") << endl;

1590288, 1736767, 1491282

As we can see, a darker image is likely
to produce lower brightness values. In
the image, the center of the image is
brighter than its left or right sections.

It is also important to note the
differences in the nature of
information being reported by the
getLight and getBright sensors.
The first one reports the amount of
ambient light being sensed by the
robot (including the light above the
robot). The second one is an average of the brightness obtained from the
image seen from the camera. These can be used in many different ways as we
will see later.

Do This: The program shown below uses a normalization function to
normalize light sensor values in the range [0.0..1.0] relative to the values of
ambient light. Then, the normalized left and right light sensor values are used
to drive the left and right motors of the robot.

Chapter 5

110

#include "Myro.h"

double Ambient;
// This function normalizes light sensor values to 0.0..1.0
double normalize (int v) {
 if (v > Ambient) {
 v = Ambient;
 }

 return 1.0 - v/Ambient;
}

int main() {
 connect();

 // record average ambient light values
 Ambient = (robot.getLight("left") +
 robot.getLight("center") +
 robot.getLight("right")) / 3.0;

 // Run the robot for 60 seconds
 while (timeRemaining(60)) {
 int L = robot.getLight("left");
 int R = robot.getLight("right");
 // motors run proportional to light
 robot.motors(normalize(L), normalize(R));
 }
 disconnect();
}

Run the above program on your Scribbler robot and observe its behavior. You
will need a flashlight to affect better reactions. When the program is running,
try to shine the flashlight on one of the light sensors (left or right). Observe
the behavior. Do you think the robot is behaving like an insect? Which one?
Study the program above carefully. We will also return to the idea of making
robots behave like insects in the next chapter.

Sensing the World

111

Proximity Sensing

The Scribbler has two sets of
proximity detectors. There are two
infrared (IR) sensors on the front of
the robot and there are three
additional IR obstacle sensors on the
Fluke dongle. The following
function is available to obtain values
of the front IR sensors:

getIR(<POSITION>) Returns the current value in the <POSITION> IR sensor.
<POSITION> can either be one of "left" or "right" or one of the numbers 0,
1. The positions 0 and 1 correspond to the left, center, and right sensors.
Examples:

cout << robot.getIR("left") << endl;

1

cout << robot.getIR(0) << endl;

1

cout << robot.getIR("right") << endl;

0

cout << robot.getIR(1) << endl;

0

IR sensors return either a 1 or a 0. A value of 1 implies that there is nothing in
close proximity of the front of that sensor and a 0 implies that there is
something right in front of it. These sensors can be used to detect the presence
or absence of obstacles in front of the robot. The left and right IR sensors are
places far enough apart that they can be used to detect individual obstacles on
either side.

Do This: Run the senses function and observe the values of the IR sensors.
Place various objects in front of the robot and look at the values of the IR

Chapter 5

112

proximity sensors. Take your notebook and place it in front of the robot about
two feet away. Slowly move the notebook closer to the robot. Notice how the
value of the IR sensor changes from a 1 to a 0 and then move the notebook
away again. Can you figure out how far (near) the obstacle should be before it
is detected (or cleared)? Try moving the notebook from side to side. Again
notice the values of the IR sensors.

The Fluke dongle has an additional set of obstacle sensors on it. These are
also IR sensors but behave very differently in terms of the kinds of values
they report. The following function is available to obtain values of the
obstacle IR sensors:

getObstacle(<POSITION>) Returns
the current value in the <POSITION>
IR sensor. <POSITION> can either be
one of "left", "center", or
"right" or one of the numbers 0, 1,
or 2. The positions 0, 1, and 2
correspond to the left, center, and
right sensors. Examples:
cout << robot.getObstacle("left") << endl;

1703

cout << robot.getObstacle(0) << endl;

1703

cout << robot.getObstacle("center") << endl;

1128

cout << robot.getObstacle(1) << endl;

1128

cout << robot.getObstacle("right") << endl;

142

cout << robot.getObstacle(2) << endl;

142

Sensing the World

113

The values reported by these sensors range from 0 to 7000. A 0 implies there
is nothing in front of the sensor where as a high number implies the presence
of an object. The sensors on the sides can be used to detect the presence (or
absence of walls on the sides).

Do This: Modify your program that uses the game pad controller
(gamepad()) so that it also issues the senses command to get the real time
sensor display. Place your Scribbler on the floor, turn it on, and run your new
driver program. Our objective here is to really "get into the robot's mind" and
drive it around without ever looking at the robot. Also resist the temptation to
take a picture. You can use the information displayed by the sensors to
navigate the robot. Try driving it to a dark spot, or the brightest spot in the
room. Try driving it so it never hits any objects. Can you detect when it hits
something? If it does get stuck, try to maneuver it out of the jam! This
exercise will give you a pretty good idea of what the robot senses, how it can
use its sensors, and to the range of behaviors it may be capable of. You will
find this exercise a little hard to carry out, but it will give you a good idea as
to what should go into the brains of such robots when you actually try to
design them. We will try and revisit this scenario as we build various robot
programs.

Also do this: Try out the program below. It is very similar to the program
above that used the normalized light sensors.

#include "Myro.h"
int main() {
 connect();
 // Run the robot for 60 seconds
 while (timeRemaining(60)) {
 int L = robot.getIR("left");
 int R = robot.getIR("right");
 // motors run proportional to IR values
 robot.motors(R, L);
 }
 disconnect();
}

Chapter 5

114

Since the IR sensors report 0 or 1 values, you do not need to normalize them.
Also notice that we are putting the left sensor value (L) into the right motor
and the right sensor value (R) into the left motor. Run the program and
observe the robot’s behavior. Keep a notebook handy and try to place it in
front of the robot. Also place it slightly on the left or on the right. What
happens? Can you summarize what the robot is doing? What happens when
you switch the R and L values to the motors?

You can see how simple programs like the ones we have seen above can result
in interesting automated control strategies for robots. You can also define
completely automated behaviors or even a combination of manual and
automated behaviors for robots. In the next chapter we will explore several
robot behaviors. First, it is time to learn about vectors in C++.

Vectors and Lists in C++

You have seen above that we used vectors to accumulate a series of pictures
from the camera to generate an animated GIF. Vectors are a very useful way
of collecting a bunch of information and C++ provides a whole host of useful
operations and functions that enable manipulation of vectors. In C++, a vector
is a sequence of objects of the same type. The objects could be anything:
numbers, letters, strings, images, etc. To use vectors, you need to include their
header file:

#include <vector>
using namespace std;

Then an empty vector of integers called N can be defined:

vector<int> N;
cout << N << endl;

{}

Sensing the World

115

(The output of vectors is not built into C++, but is defined in the C++/Myro
API.) An empty vector does not contain anything initially, but things can be
added to it later. For example,

<VECTOR>.push_back(<VALUE>);

pushes <VALUE> onto the back (end) of <VECTOR>:

N.push_back(7);
N.push_back(14);
cout << N << endl;

{7, 14}

A more convenient way to initialize a vector is:

int N_init[] = {7, 14, 17, 20, 27};
vector<int> N (N_init, N_init + 5);
cout << N << endl;

{7, 14, 17, 20, 27}

The first line initializes a C++ “array” (a feature we haven’t discussed) to the
five specified numbers. The second line initializes the vector N to the values of
the array between N_init (the location of the first element) and N_init + 5
(the location after the last). This may seem a bit mysterious (and it is), but it is
not too hard to get used to. You can have vectors of any type, for example of
strings or doubles:

string Cities_init[] =
 {"New York", "Dar es Salaam", "Moscow"};
vector<string> Cities (Cities_init, Cities_init + 3);

double FN_init[] = {3.14159, 2.718, 42};
vector<double> FamousNumbers (FN_init, FN_init + 3);

cout << Cities << endl;
cout << FamousNumbers << endl;

Chapter 5

116

{New York, Dar es Salaam, Moscow}
{3.14159, 2.718, 42}

C++ provides several useful functions that enable manipulation of vectors.
Below, we will show some examples using the variables defined above:

cout << N.size() << endl;

5

From the above, you can see that the function size() takes a vector and
returns the size or the number of objects in the vector. An empty vector has
zero objects in it. You can also access individual elements in a vector using
the indexing operation (as in FamousNumbers[0]). The first element in a list
has index 0 and the last element in a list of n elements will have an index n-1:

cout << FamousNumbers[0] << endl;

3.14159

You can insert the elements from one vector into another. For example, to
insert the elements of N at the beginning of FamousNumbers:

FamousNumbers.insert (FamousNumbers.begin(),
 N.begin(), N.end());
cout << FamousNumbers << endl;

{7, 14, 17, 20, 27, 3.14159, 2.718, 42}

The first argument to insert specifies where to insert the elements, namely,
at the beginning of FamousNumbers. The second and third arguments specify
the elements to be inserted, namely those from the beginning up to the end of
N. You can also insert new elements at the end of a vector:

N.insert (N.end(), FamousNumbers.begin(),
 FamousNumbers.end());
cout << N << endl;

Sensing the World

117

{7, 14, 17, 20, 27, 7, 14, 17, 20, 27, 3, 2, 42}

The eight values from FamousNumbers are inserted before the end of N.
However, because N is an integer vector, the values from FamousNumbers are
converted from double to int.

These operations are summarized in more detail at the end of the chapter. The
vector types are examples of standard sequence containers provided by C++;
different types of sequences provide different operations. As we have seen,
vectors permit arbitrary elements to be accessed by the indexing operation
(denoted by square brackets). Indexing is efficient because the vector
elements are stored in contiguous memory locations, but that means that it is
inefficient to insert elements anywhere but at the beginning or end of the
vector.

C++ provides several other sequence containers, including the list. It is
similar to the vector, but is stored differently in memory (in doubly linked,
rather than contiguous, locations), and so it provides different, efficient
operations. For example, it doesn’t allow indexing, but it provides other
useful list operations, such as sort and reverse:

int SwankeyZips_init[] = {90210, 33139, 60611, 10036};
list<int> SwankeyZips (SwankeyZips_init, SwankeyZips_init+4);
cout << SwankeyZips << endl;

[90210, 33139, 60611, 10036]

(Again, printing of lists is not built into C++, but is defined in the C++ Myro
API.)

SwankyZips.sort();
cout << SwankyZips << endl;

[10036, 33139, 60611, 90210]

Chapter 5

118

SwankyZips.reverse()
cout << SwankyZips << endl;

[90210, 60611, 33139, 10036]

SwankyZips.push_back(19010);
cout << SwankyZips << endl;

[90210, 60611, 33139, 10036, 19010]

sort rearranges elements in the list in ascending order. reverse reverses the
order of elements in the list, and push_back appends an element to the back
(end) of the list. Some other useful list operations are listed at the end of the
chapter.

Both vectors and lists are sequences and hence they can be used to perform
repetitions. For example, we can use indexing to get the individual strings in
Cities:

for (int i = 0; i < Cities.size(); i++) {
 cout << Cities[i] << endl;
}

New York
Dar es Salaam
Moscow

However, there is a more general way to iterate through any sequence
container, including vectors:

vector<string>::const_iterator city;
for (city = Cities.begin(); city != Cities.end(); city++) {
 cout << *city << endl;
}

New York
Dar es Salaam
Moscow

Sensing the World

119

The first line declares city to be a constant iterator for string vectors; making
it const means that it can be used to read the vector, but not write into it. The
iterator city points at consecutive values in the vector Cities, from
Cities.begin() up to Cities.end(), and the statements inside the loop are
executed once for each value of city. The “*” in front of city means that we
will use the value pointed to by the iterator, rather than the iterator itself.
(Pointers are discussed in more detail elsewhere.) The same approach can be
used for iterating through lists; for example:

list<int>::const_iterator zip;
for (zip = SwankeyZipsList.begin();
 zip != SwankeyZipsList.end(); zip++) {
 cout << *zip << " ";
}

90210 60611 33139 10036 19010

Strings are sequences and have properties similar to vectors. That is, the
string:

string ABC = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

is a sequence of 26 letters. You can write a loop that runs through each
individual letter in the string and speaks it out as follows:

for (string::const_iterator letter = ABC.begin();
 letter < ABC.end(); letter++) {
 speak(*letter);
}

In light of the list operations presented above review some of the sensing
examples from earlier in the chapter. We will be using vectors and lists in
many examples in the remainder of the text. For now, let us return to the topic
of sensing.

Chapter 5

120

Extrasensory Perception?

You have seen many ways of acquiring sensory information using the robot’s
sensors. In addition to the robot itself, you should be aware that your
computer also has several “sensors” or devices to acquire all kinds of data.
For example, you have already seen how, using the cin input stream, you can
input some values into your C++ programs:

int N;
cout << "Enter a number: ";
cin >> N;
cout << "You entered " << N << endl;

Enter a number: 42
You entered 42

Indeed, there are other ways you can acquire information into your C++
programs. For example, you can input some data from a file in your folder. In
Chapter 1 you also saw how you were able to control your robot using the
game pad controller. The game pad was actually plugged into your computer
and was acting as an input device. Additionally, your computer is most likely
connected to the internet using which you can access many web pages. It is
also possible to acquire the content of any web page using the internet.
Traditionally, in computer science people refer to this is a process of input.
Using this view, getting sensory information from the robot is just a form of
input. Given that we have at our disposal all of the input facilities provided by
the computer, we can just as easily acquire input from any of the modalities
and combine them with robot behaviors if we wish. Whether you consider this
as extra sensory perception or not is a matter of opinion. Regardless, being
able to get input from a diverse set of sources can make for some very
interesting and useful computer and robot applications.

Sensing the World

121

Game Pad Controllers1

The game pad controller you used in
Chapter 1 is a typical device that
provides interaction facilities when
playing computer games. These
devices have been standardized
enough that, just like a computer
mouse or a keyboard, you can
purchase one from a store and plug it
into a USB port of your computer.
Myro provides some very useful input
functions that can be used to get input
from the game pad controller. Game pads come is all kinds of flavors and
configurations with varying numbers of buttons, axes, and other devices on
them. In the examples below, we will restrict ourselves to a basic game pad
shown in the picture on previous page.

The basic game pad has eight buttons (numbered 1 through 8 in the picture)
and an axis controller (see picture on right). The buttons can be pressed or
released (on/off) which are represented by 1.0 (for on) and 0.0 (for off). The
axis can be pressed in many different orientations represented by a pair of
values (for the x-axis and y-axis) that range from -1.0 to 1.0 with [0.0, 0.0]
representing no activity on the axis. Two Myro functions are provided to
access the values of the buttons and the axis:

getGamepad(<device>)
getGamepadNow(<device>)
returns a vector of double values indicating
the status of the specified <device>.
<device> can be "axis" or "button".

1 The game pad controller is not implemented in the current C++/Myro API.

Game Pad’s A

xis
Control

Chapter 5

122

The getGamepad function returns only after <device> has been used by the
user. That is, it waits for the user to press or use that device and then returns
the values associated with the device at that instant. getGamepadNow does not
wait and simply returns the device status right away. Here are some examples:

cout << robot.getGamepadNow("axis") << endl;

{0.0, 0.0}

cout << robot.getGamepad("axis") << endl;

{0.0, -1.0}

cout << robot.getGamepadNow("button") << endl;

{0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0}

Both getGamepad and getGamepadNow return the same vector of values: axis
values are returned as a double vector {x-axis, y-axis} (see picture on right
for orientation) and the button values are returned as a double vector of 0.0’s
and 1.0’s. The first value in the list is the status of button#1, followed by 2, 3,
and so on. See picture above for button numbering.

Do This: Modify your game pad controller to try out the game pad commands
above and observe the values. Here is another way to better understand the
operation of the game pad and the game pad functions:

while (timeRemaining(30)) {
 cout << robot.getGamepad("button") << endl;
}

Try out different button combinations. What happens when you press more
than one button? Repeat the above for axis control and observe the values
returned (keep the axes diagram handy for orientation purposes).

Game Pad’s Axes

Sensing the World

123

The game pad controller can be used for all kinds of interactive purposes,
especially for robot control as well as in writing computer games (see Chapter
X). Let us write a simple game pad based robot controller. Enter the program
below and run it.

#include "Myro.h"
int main() {
 // A simple game pad based robot controller
 connect();
 while (timeRemaining(30)) {
 vector<double> XY = robot.getGamePadNow("axis");
 robot.motors(XY[0], XY[1]);
 }
 disconnect();
}

The program above will run for 30 seconds. In that time it will repeatedly
sample the values of the axis controller and since those values are in the range
-1.0..1.0, it uses them to drive the motors. When you run the above program
observe how the robot moves in response to pressing various parts of the axis.
Do the motions of the robot correspond to the directions shown in the game
pad picture on previous page? Try changing the command from motors to
move (recall that move takes two values: translate and rotate). How does it
behave with respect to the axes? Try changing the command to
robot.move(-XY[0], -XY[1]). Observe the behavior.

As you can see from the simple example above, it is easy to combine input
from a game pad to control your robot. Can you expand the program above to
behave exactly like the gamepad controller function you used in Chapter 1?
(See Exercise 5).

The World Wide Web and file I/O

If your computer is connected to the internet, you can also save a web page to
disk and use it as input to your program. Web pages are written using markup
languages like HTML and so when you save the content of a web page you
will get the content with the markups included. In this section we will show

Chapter 5

124

you how to access the content of a simple web page and print it out. Later we
will see how you could use the information contained in it to do further
processing.

Go to a web browser and take a look at the web page:

http://www.fi.edu/weather/data/jan07.txt

This web page is hosted by the Franklin Institute of Philadelphia and contains
recorded daily weather data for Philadelphia for January 2007. You can
navigate from the above address to other pages on the site to look at daily
weather data for other dates (the data goes back to 1872!). You will see
something like this:

January 2007
Day Max Min Liquid Snow Depth
1 57 44 1.8 0 0
2 49 40 0 0 0
3 52 35 0 0 0
… … … … … …
31 31 22 0 0 0
#days 31
Sum 1414 1005 4.18 1.80 1.10

Use your browser to save this file to your computer’s disk in the same
directory where you put your C++ programs. We will use it learn how to do
file input/output in C++.

By now you are familiar with using cin and cout for input/output to the
console (keyboard and monitor). They are both examples of streams (the
console-input stream and the console-output stream), and input/output to files
is also handled by connecting the files to streams. The required definitions
are in a standard library called <fstream>, which you must #include in your
program. For example, to read the file jan07.txt you would put this
declaration in main:

ifstream in ("jan07.txt");

Sensing the World

125

This defines an input file steam called in, which is connected to the file
jan07.txt. You can read from this file just as from cin; for example, the
following will read and print the first word of the file:

string word;
in >> word;
cout << word << endl;

January

The operation in >>, like cin >>, reads “meaningful units” (such as integers,
floating point numbers, and words), so it stops when it encounters white
space, and skips the white space to get to the next unit. To avoid this, you can
use get(), which reads a single character from the stream. For example, the
following code prints the contents of the file:

char ch; // declare a variable to hold a single character
while (!in.eof()) { // continue while not at end of file
 in.get(ch);
 cout << ch;
}

Notice that we used the member function eof(), which tells us whether we
have reached the end of the file. Can you write a program to compute the
average of the maximum temperatures recorded in a file such as jan07.txt?
How about a program to compare two files to see if they are identical?

Writing to an output file is very similar. Consider:

ofstream out ("output-file.txt");
...
out << "Here's some output: " << 2+2 << endl;
...
out.close(); // close the file when you are done with it

Between the file declaration and the close command, you can use out << just
the way you are used to using cout <<. C++ provides many more facilities

Chapter 5

126

for doing input and output, including careful control of formatting; you will
learn some of them in Chapter 7.

A little more about C++ functions

Before we move on, it would be good to take a little refresher on writing C++
commands/functions. In Chapter 2 we learned that the basic syntax for
defining new commands/functions is:

void <FUNCTION NAME>(<PARAMETERS>) {
 <SOMETHING>
 ...
 <SOMETHING>
}

The Myro module provides you with several useful functions (forward,
turnRight, etc.) that enable easy control of your robot's basic behaviors.
Additionally, using the syntax above, you learned to combine these basic
behaviors into more complex behaviors (like wiggle, yoyo, etc.). By using
parameters you can further customize the behavior of functions by providing
different values for the parameters (for example, forward(1.0) will move the
robot faster than forward(0.5)). You should also note a crucial difference
between the movement commands like forward, turnLeft, and commands
that provide sensory data like getLight or getStall, etc. The sensory
commands always return a value whenever they are issued. That is:

cout << robot.getLight("left") << endl;

221

cout << robot.getStall() << endl;

0

Commands that return a value when they are invoked are called functions
since they actually behave much like mathematical functions. None of the
movement commands return any value, but they are useful in other ways. For
instance, they make the robot do something. In any program you typically

Sensing the World

127

need both kinds of functions: those that do something but do not return
anything as a result; and those that do something and return a value. You can
already see the utility of having these two kinds of functions from the
examples you have seen so far. Functions are an integral and critical part of
any program and part of learning to be a good programmer is to learn to
recognize abstractions that can then be packaged into individual functions
(like drawPolygon, or degreeTurn), which can be used over and over again.

Writing functions that return values

C++ provides a return-statement that you can use inside a function to return
the results of a function. For example:

int triple(int x) {
 // Returns x*3
 return x * 3;
}

The word int that begins the function definition tells us the type of value
returned by triple. (As you have seen, definitions of commands, which do
not return a value, begin with the word void.) The function above can be used
just like the ones you have been using:

cout << triple(3) << endl;

9

cout << triple(5000) << endl;

15000

The general form of a return-statement is:

return <expression>;

That is, the function in which this statement is encountered will return the
value of the <expression>. Thus, in the example above, the return-
statement returns the value of the expression 3*x, as shown in the example

Chapter 5

128

invocations. By giving different values for the parameter x, the function
simply triples it. This is the idea we used in normalizing light sensor values in
the example earlier where we defined the function normalize to take in light
sensor values and normalize them to the range 0.0..1.0 relative to the observed
ambient light values:

// This function normalizes light sensor values to 0.0..1.0
double normalize (int v) {
 if (v > Ambient) {
 v = Ambient;
 }

 return 1.0 - v/Ambient;
}

In defining the function above, we are also using a new C++ statement: the
if-statement. This statement enables simple decision making inside computer
programs. The simplest form of the if-statement has the following structure:

if (<CONDITION>) {
 <do something>
 <do something>
 ...
}

That is, if the condition specified by <CONDITION> is true then whatever is
specified in the body of the if-statement is carried out. In case the
<condition> is false, all the statements under the if-command are skipped
over.

Functions can have zero or more return-statements. Some of the functions
you have written, like wiggle do not have any. Technically, when a non-void
function does not have any return-statement that returns a value, the function
returns an undefined value (that is, an unpredictable and possibly illegal
value). This is bad programming and a cause of unpredictable program
behavior.

Sensing the World

129

Functions, as you have seen, can be used to package useful computations and
can be used over and over again in many situations. Before we conclude this
section, let us give you another example of a function. Recall from Chapter 4
the robot behavior that enables the robot to go forward until it hits a wall. One
of the program fragments we used to specify this behavior is shown below:

while (! getStall()) {
 robot.forward(1);
}
robot.stop();

In the above example, we are using the value returned by getStall to help us
make the decision to continue going forward or stopping. We were fortunate
here that the value returned is directly usable in our decision making.
Sometimes, you have to do little interpretation of sensor values to figure out
what exactly the robot is sensing. You will see that in the case of light
sensors. Even though the above statements are easy to read, we can make
them even better, by writing a function called stuck() as follows:

bool stuck() {
 /* Is the robot stalled?
 Returns true if it is and false otherwise. */

 return robot.getStall() == 1;
}

The function above is simple enough, since getStall already gives us a
usable Boolean value (0/false or 1/true). But now if we were to use stuck
to write the robot behavior, it would read:

while (! stuck()) {
 robot.forward(1);
}
robot.stop();

As you can see, it reads much better. Programming is a lot like writing in this
sense. As in writing, there are several ways of expressing an idea in words.

Chapter 5

130

Some are better and more readable than others. Some are downright poetic.
Similarly, in programming, expressing something in a program can be done in
many ways, some better and more readable than others. Programming is not
all about functionality, there can be poetry in the way you write a program.

Summary

In this chapter you have learned all about obtaining sensory data from the
robot’s perceptual system to do visual sensing (pictures), light sensing, and
proximity sensing. The Scribbler provides a rich set of sensors that can be
used to design interesting robot behaviors. You also learned that sensing is
equivalent to the basic input operation in a computer. You also learned how to
get input from a game pad, the World Wide Web, and from data files.
Programs can be written to make creative use of the input modalities available
to define robot behaviors, computer games, and even processing data. In the
rest of the book you will learn how to write programs that make use of these
input modalities in many different ways.

Myro Review

robot.getBright(<POSITION>)
Returns the current value in the <POSITION> light sensor. <POSITION> can
either be one of "left", "center", "right" or one of the numbers 0, 1, 2.

robot.getGamepad(<device>)
robot.getGamepadNow(<device>)
Returns a double vector indicating the status of the specified <device>.
<device> can be "axis" or "button". The getGamepad function waits for an
event before returning values. getGamepadNow immediately returns the
current status of the device.

robot.getIR(<POSITION>)
Returns the current value in the <POSITION> IR sensor. <POSITION> can
either be one of "left" or "right" or one of the numbers 0, 1.

Sensing the World

131

robot.getLight(<POSITION>)
Returns the current value in the <POSITION> light sensor. <POSITION> can
either be one of "left", "center", "right" or one of the numbers 0, 1, 2.
The positions 0, 1, and 2 correspond to the left, center, and right sensors.

robot.getObstacle(<POSITION>)
Returns the current value in the <POSITION> IR sensor. <POSITION> can
either be one of "left", "center", "right" or one of the numbers 0, 1, or 2.

savePicture(<picture>, <file>);
savePicture(<picture vector>, <file>);
Saves the picture in the file specified. The extension of the file should be
“.gif” or “.jpg”. If the first parameter is a vector of pictures, the file name
should have an extension “.gif” and an animated GIF file is created using
the pictures provided.

robot.senses();

Displays Scribbler’s sensor values in a window. The display is updated every
second.

show(<picture>);
Displays the picture in a window. You can click the left mouse anywhere in
the window to display the (x, y) and (r, g, b) values of the point in the
window’s status bar.

robot.takePicture()
robot.takePicture("color")
robot.takePicture("gray")
Takes a picture and returns a picture object. When no parameters are
specified, the picture is in color.

cout << <vector>
cout << <list>
Print vector <vector> or list <list>.

Chapter 5

132

C++ review

if (<CONDITION>) {
 <statement-1>
 ...
 <statement-N>
}

If the condition evaluates to true, all the statements are performed.
Otherwise, all the statements are skipped.

return <expression>;

Can be used inside any function to return the result of the function.

<TYPE> <NAME> [] = { <VALUES> };

Declares a C++ array called <NAME> with elements of type <TYPE>. The array
is initialized to the specified <VALUES>.

char <NAME>;
Declares character variable <NAME> (able to hold one character).

Vectors and Lists:

#include <vector>
#include <list>
Includes definitions for C++ vectors or lists, which are both examples
sequence containers.

vector< <TYPE> > <NAME>;
Defines an initially empty vector called <NAME> with elements of type <TYPE>.

list< <TYPE> > <NAME>;
Defines an initially empty list called <NAME> with elements of type <TYPE>.

vector< <TYPE> > <NAME> (<ARRAY START>, <ARRAY END>);
list< <TYPE> > <NAME> (<ARRAY START>, <ARRAY END>);

Sensing the World

133

Defines a vector or list called <NAME> with elements of type <TYPE> initialized
with values from location <ARRAY START> up to, but not including, <ARRAY
END>. These may be of the form <ARRAY NAME> + <CONSTANT>.

<seq>.size()
Returns the current size (length) of the vector, list, or string <seq>.

<vector>[i]
<string>[i]
Returns the ith element in the <vector> or <string>. Indexing starts from 0.
(Strings are a lot like vectors of characters.)

<seq>.push_back(<value>);
Appends the <value> at the back (end) of vector, list, or string <seq>.

<list>.push_front(<value>);
Appends the <value> at the front (beginning) of <list>.

<list>.sort();
Sorts the <list> in ascending order.

<list>.reverse();
Reverses the elements in the list.

<seq>.begin()
Returns an iterator referring to the first element of the vector, list, or string
<seq>.

<seq>.end()
Returns an iterator referring the last element of the vector, list, or string
<seq>.

vector< <TYPE> >::const_iterator <NAME>;
vector< <TYPE> >::iterator <NAME>;
list< <TYPE> >::const_iterator <NAME>;
list< <TYPE> >::iterator <NAME>;
string::const_iterator <NAME>;
string::iterator <NAME>;

Chapter 5

134

Declares an iterator called <NAME>, which can refer to locations in a vector/list
with elements of type <TYPE> or in a string. A const (constant) iterator does
not allow the elements of the vector or list to be modified, whereas a non-
const iterator does.

<iterator>++
Increments <iterator> to refer to the next element of a vector, list, or string.

* <iterator>
Returns the value stored in the vector, list, or string element referred to by
<iterator>.

<seq>.insert(<it1>, <it2-begin>, <it2-end>);
Inserts elements from one vector, list, or string into the vector, list, or string
<seq>. The new elements are inserted at a location specified by iterator
<it1>. For example, use <seq>.begin() to insert at the beginning of <seq>
or use <seq>.end() to insert at its end. The elements to be inserted are
specified by iterators <it2-begin> and <it2-end>. For example, to insert all
the elements from vector, list, or string <seq2>, use <seq2>.begin() and
<seq2>.end().

for (<it> = <seq>.begin(); <it> != <seq>.end(); <it>++) {
 … STATEMENTS using <it> or *<it> …
}
Executes the loop body with iterator <it> referring to the elements of vector
or list <seq> from its beginning up to its end.

Streams:

#include <fstream>
Includes definitions for C++ streams for file input/output.

ifstream <name> (<string>);
Declares <name> to be an input file stream connected to file name <string>.

Sensing the World

135

ofstream <name> (<string>);

Declares <name> to be an output file stream connected to file name <string>.

<ifstream> >> <var>;

Reads input value from stream <ifstream> and stores it in variable <var>.

<ofstream> << <expression>

Outputs values of <expression> to output stream <ofstream>.

<stream>.close();

Closes (input or output) file stream <stream>, thus completing operation on
it. You should close files when you are done with them.

<ifstream>.get (<chvar>);

Puts the next character from input stream <ifstream> into character variable
<chvar>.

<ifstream>.eof()

Returns true if input stream <ifstream> is at the end of the file, and false
if not.

Chapter 5

136

Exercises

1. The numbers assigned to the variable FamousNumbers in this chapter all
have names. Can you find them? What other famous numbers do you know?

2. Besides text, the speak command can also vocalize numbers. Try
speak(42) and also speak(3.1419). Try some really large whole numbers,
like speak(4537130980). How is it vocalized? Can you find out the limits of
numerical vocalization?

3. The Fluke camera returns pictures that are 256x192 (= 49,152) pixels.
Typical digital cameras are often characterized by the number of pixels they
use for images. For example, 8 megapixels. What is a megapixel? Do some
web search to find out the answer.

4. All images taken and saved using the Fluke camera can also be displayed in
a web page. In your favorite browser, use the Open File option (under the File
menu) and navigate to a saved picture from the Scribbler. Select it and view it
in the browser window. Try it with an animated GIF image file.

5. Modify the game pad input program from this chapter to make the axis
controller behave so that when the top of the axis is pressed, the robot goes
forward and when the bottom of the axis is pressed, it goes backward.

6. Write a program that reads in the names of two files, and then compares the
two files character-by-character to see if they are identical.

7. Write a program that reads in a monthly weather report, such as
jan07.txt, and computes the average maximum temperature and average
minimum temperature for the month.

Sensing the World

137

