
	

	

Opposite	 page:	 Mars	 Rover.	 	
Photo	 courtesy	 of	 NASA/JPL-Caltech	
	

	

	

201	
	

8
	

	

	

	

	

	

	

	

Sights & Sounds

	

	

	

Don't make music for some vast, unseen audience or market or ratings share
or even for something as tangible as money. Though it's crucial to make a

living, that shouldn't be your inspiration. Do it for yourself.
-Billy Joel

	

	

Opposite	 page:	 Be	 My	 Valentine	

Fractal	 Art	 by	 Sven	 Geier	 (www.sgeier.net)	

Chapter	 8	

202	
	

We mentioned earlier that the notion of computation these days extends far
beyond simple numerical calculations. Writing robot control programs is
computation, as is making world population projections. Using devices like
iPods you are able to enjoy music, videos, and radio and television shows.
Manipulating sounds and images is also the realm of computation and in this
chapter we will introduce you to these. You have already seen how, using
your robot, you can take pictures of various scenes. You can also take similar
images from your digital camera. Using basic computational techniques you
have learned so far you will see, in this chapter, how you can do computation
on shapes and sound. You will learn to create images using computation. The
images you create can be used for visualizing data or even for aesthetic
purposes to explore your creative side. We will also present some
fundamentals of sound and music and show you how you can also do similar
forms of computation using music.

Sights:	 Drawing1	

If you have used a computer for any amount of time you must have used some
kind of a drawing application. Using a typical drawing application you can
draw various shapes, color them etc. You can also generate drawings using
drawing commands provided in the Myro library module. In order to draw
anything you first need a place to draw it: a canvas or a window. You can
create such a window using the command:

window myCanvas = GraphWin();

If you execute the command above in a C++ program, you will immediately
see a small gray window pop up (see picture on right). This window will be
serving as our canvas for creating drawings. By default, the window created
by the GraphWin command is 200 pixels high and 200 pixels wide and its
name is “Graphics Window”. Not a very inspiring way to start, but the

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 Graphics functions and objects are not implemented in the current
C++/Myro API. The following description is subject to change.

Sights	 &	 Sounds	
	

203	
	

GraphWin command has some other variations as well. First, in order to make
the window go away, you can use the
command:

myCanvas.close();

To create a graphics window of any size and
a name that you specify, you can use the
command below:

window myCanvas = GraphWin
 ("My Masterpiece", 200, 300);

The command above creates a window
named “My Masterpiece” that will be 200
pixels wide and 300 pixels tall (see picture on
right). You can change the background color
of a graphics window as shown below:

myCanvas.setBackground("white");

You can name any of a number of colors in the
command above, ranging from mundane ones
like “red”, “blue”, “gray”, “yellow”, to
more exotic colors ranging from
“AntiqueWhite” to “LavenderBlush” to
“WhiteSmoke”. Colors can be created in many
ways as we will see below. Several thousand
color names have been pre-assigned (Google:
color names list) that can be used in the
command above.

Now that you know how to create a canvas
(and make it go away) and even set a
background color, it is time to look at what we can draw in it. You can create
and draw all kinds of geometrical objects: points, lines, circles, rectangle, and

A	 Graphics	 window	

	

My	 Masterpiece	 200x300	

	

Chapter	 8	
	

204	
	

even text and images. Depending on the type of object you wish to draw, you
have to first create it and then draw it. Before you can do this though, you
should also know the coordinate system of the graphics window.

In a graphics window with width, W and height H (i.e WxH pixels) the pixel
(0, 0) is at the top left corner and the pixel (199, 299) will be at the bottom
right corner. That is, x-coordinates increase as you go right and y-coordinates
increase as you go down.

The simplest object that you can create is a point. This is done as follows:

Point p = Point(100, 50);

That is, p is an object that is a Point whose x-coordinate is at 100 and y-
coordinate is at 50. This only creates a Point object. In order to draw it, you
have to issue the command:

p.draw(myCanvas);

The syntax of the above command may seem a little strange at first. You saw
it briefly when we presented lists in Chapter 5 but we didn’t dwell on it.
Certainly it is different from what you have seen so far. But if you think about
the objects you have seen so far: numbers, strings, etc. Most of them have
standard operations defined on them (like +, *, /, etc.). But when you think
about geometrical objects, there is no standard notation. Programming
languages like C++ provide facilities for modeling any kind of object and the
syntax we are using here is standard syntax that can be applied to all kinds of
objects. The general form of commands issued on objects is:

<object>.<function>(<parameters>)

Thus, in the example above, <object> is the name p which was earlier
defined to be a Point object, <function> is draw, and <parameters> is
myCanvas. The draw function requires the graphics window as the parameter.
That is, you are asking the point represented by p to be drawn in the window
specified as its parameter. The Point objects have other functions available:

Sights	 &	 Sounds	
	

205	
	

cout << p.getX() << endl;

100

cout << p.getY() << endl;

50

That is, given a Point object, you can get its x- and y-coordinates. Objects are
created using their constructors like the Point(x, y) constructor above. We
will use lots of constructors in this section for creating the graphics objects. A
line object can be created similar to point objects. A line requires the two end
points to be specified. Thus a line from (0, 0)
to (100, 200) can be created as:

Line L = Line(Point(0,0),
 Point(100,200));

And you can draw the line using the same
draw command as above:

L.draw(myCanvas);

The picture on the right shows the two objects
we have created and drawn so far. As for
Point, you can get the values of a line’s end
points:

Point start = L.getP1();
cout << start.getX << endl;

0

Point end = L.getP2();
cout << end.getY() << endl;

	

Chapter	 8	
	

206	
	

200

Here is a small C++ loop that can be used to create and draw several lines:

for (int n = 0; n < 200; n = n+5) {
 Line L=Line(Point(n,25),
 Point(100,100));
 L.draw(myCanvas);
}

In the loop above (the results are shown on the right), the value of n starts at 0
and increases by 5 after each iteration all the way up to but not including 200
(i.e. 195). For each value of n a new Line object is created with starting co-
ordinates (n, 25) and end point at (100, 100).

Do This: Try out all the commands introduced so far. Then observe the
effects produced by the loop above. Change the increment 5 in the loop above
to different values (1, 3, etc.) and observe the effect. Next, try out the
following loop:

for (int n = 0; n < 200; n = n+5) {
 Line L = Line(Point(n, 25), Point(100, 100));
 L.draw(myCanvas);
 wait(0.3);
 L.undraw();
}

The undraw function does exactly as the name implies. In the loop above, for
each value that n takes, a line is created (as above), drawn, and then, after a
wait of 0.3 seconds, it is erased. Again, modify the value of the increment and
observe the effect. Try also changing the amount of time in the wait
command.

You can also draw several geometrical shapes: circles, rectangles, ovals, and
polygons. To draw a circle, (or any geometrical shape), you first create it and
then draw it:

	

Sights	 &	 Sounds	
	

207	
	

Circle C = Circle(centerPoint, radius);
c.draw(myCanvas);

centerPoint is a Point object and radius is specified in pixels. Thus, to draw
a circle centered at (100, 150) with a radius of 30, you would do the following
commands:

Circle C = Circle(Point(100, 150), 30);
c.draw(myCanvas);

Rectangles and ovals are drawn similarly (see details at the end of the
chapter). All geometrical objects have many functions in common. For
example, you can get the center point of a circle, a rectangle, or an oval by
using the command:

centerPoint = C.getCenter();

By default, all objects are drawn in black. There are several ways to modify or
specify colors for objects. For each object you can specify a color for its
outline as well as a color to fill it with. For example, to draw a circle centered
at (100, 150), radius 30, and outline color red, and fill color yellow:

Circle C = Circle(Point(100, 150), 30);
C.draw(myCanvas);
C.setOutline("red");
C.setFill("yellow");

By the way, setFill and setOutline have the same effect on Point and
Line objects (since there is no place to fill any color). Also, the line or the
outline drawn is always 1 pixel thick. You can change the thickness by using
the command setWidth(<pixels>):

C.setWidth(5);

The command above changes the width of the circle’s outline to 5 pixels.

Chapter	 8	
	

208	
	

Do This: Try out all the commands introduced here. Also, look at the end of
the chapter for details on drawing other shapes.

Earlier, we mentioned that several colors have been assigned names that can
be used to select colors. You can also create colors of your own choosing by
specifying their red, green, and blue values. In Chapter 5 we mentioned that
each color is made up of three values: RGB or red, green and blue color
values. Each of the these values can be in the range 0..255 and is called a 24-
bit color value. In this way of specifying colors, the color with values (255,
255, 255) (that is red = 255, green = 255, and blue = 255) is white; (255, 0, 0)
is pure red, (0, 255, 0), is pure blue, (0, 0, 0) is black, (255, 175, 175) is pink,
etc. You can have as many as 256x256x256 colors (i.e. over 16 million
colors!). Given specific RGB values, you can create a new color by using the
command, color_rgb:

color_rgb myColor = color_rgb(255, 175, 175);

Do This: The program below draws several circles of random sizes with
random colors. Try it out and see its outcome. A sample output screen is show
on the right. Modify the program to input a number for the number of circles
to be drawn. In Chapter 4, Exercise 8, you programmed randrange(m,n) to
returs a random number in range [m..n-1].

// Program to draw a bunch of # random colored circles
#include <cstlib>
#include "Myro.h"
using namespace std;

void makeCircle(double x, double y, double r) {
 // creates a Circle centered at point (x, y) of radius r
 return Circle(Point(x, y), r);
}

color_rgb makeColor() {
 // creates a new color using random RGB values
 int red = randrange(0, 256);
 int green = randrange(0, 256);
 int blue = randrange(0, 256);

Sights	 &	 Sounds	
	

209	
	

 return color_rgb(red, green,blue);
}

int main() {
 // Create and display a
 // graphics window
 int width = 500;
 int height = 500;
 window myCanvas = GraphWin
 ("Circles",width,height);
 myCanvas.
 setBackground("white");

 // draw a bunch of random
 // circles with random
 // colors.
 int N = 500;
 for (int i = 0;
 I < 100; i++) {
 // pick random center
 // point and radius
 // in the window
 int x = randrange(0,width);
 int y = randrange(0,height);
 int r = randrange(5, 25);
 int c = makeCircle(x, y, r);
 // select a random color
 c.setFill(makeColor());

 c.draw(myCanvas);
 }
 return 0;
}

Notice our use of functions to organize the program. From a design
perspective, the two functions makeCircle and makeColor are written
differently. This is just for illustration purposes. You could, for instance,
define makeCircle just like makeColor so it doesn’t take any parameters and
generates the values of x, y, and radius as follows:

	

Chapter	 8	
	

210	
	

Circle makeCircle() {
 // creates a Circle centered at point (x, y) of radius r
 int x = randrange(0,width);
 int y = randrange(0,height);
 int r = randrange(5, 25);

 return Circle(Point(x, y), r);
}

Unfortunately, as simple as this change seems, the function is not going to
work. In order to generate the values of x, and y it needs to know the width
and height of the graphics window. But width and height are defined in the
function main and are not available or accessible in the function above. This is
an issue of scope of names in a C++ program: what is the scope of
accessibility of a name in a program?

C++ defines the scope of a name in a program textually or lexically. That is,
any name is visible in the text of the program/function after it has been
defined. Note that the notion of after is a textual notion. Moreover, C++
restricts the accessibility of a name to the text of the function in which it is
defined. That is, the names width and height are defined inside the function
main and hence they are not visible anywhere outside of main. Similarly, the
variables red, green, and blue are considered local to the definition of
makeColor and are not accessible outside of the function, makeColor.

So how can makeCircle, if you decided it would generate the x and y values
relative to the window size, get access to the width and height of the window?
There are two solutions to this. First, you can pass them as parameters. In that
case, the definition of makeCircle will be:

Circle makeCircle(int w, int h) {
 // creates a Circle centered at point (x, y) of radius r
 // such that (x, y) lies within width, w and height, h
 int x = randrange(0,w);
 int y = randrange(0,h);
 int r = randrange(5, 25);
 return Circle(Point(x, y), r);
}

Sights	 &	 Sounds	
	

211	
	

Then the way you would use the above function in the main program would
be using the command:

Circle C = makeCircle(width, height);

That is, you pass the values of width and height to makeCircle as
parameters. The other way to define makeCircle would be exactly as shown
in the first instance:

Circle makeCircle() {
 // creates a Circle centered at point (x, y) of radius r
 int x = randrange(0,width);
 int y = randrange(0,height);
 int r = randrange(5, 25);

 return Circle(Point(x, y), r);
}

However, you would move the definitions of width and height outside and
before the definitions of all the functions:

#include <cstlib>
#include "Myro.h"
using namespace std;

int width = 500;
int height = 500;

Circle makeCircle() {
 …

color_rgb makeColor() {
 …

int main() {
 …

Since the variables are defined outside of any function and before the
definitions of the functions that use them, you can access their values. You

Chapter	 8	
	

212	
	

may be wondering at this point, which version is better? Or even, why bother?
The first version was just as good. The answer to these questions is similar in
a way to writing a paragraph in an essay. You can write a paragraph in many
ways. Some versions will be more preferable than others. In programming, the
rule of thumb one uses when it comes to the scope of names is: ensure that
only the parts of the program that are supposed to have access to a name are
allowed access. This is similar to the reason you would not share your
password with anyone, or your bank card code, etc. In our second solution, we
made the names width and height globally visible to the entire program that
follows. This implies that even makeColor can have access to them whether it
makes it needs it or not.

You may want to argue at this point: what difference does it make if you
make those variables visible to makeColor as long as you take care not to use
them in that function? You are correct, it doesn’t. But it puts an extra
responsibility on your part to ensure that you will not do so. But what is the
guarantee that someone who is modifying your program chooses to?

We used the simple program here to illustrate simple yet potentially
hazardous decisions that dot the landscape of programming like land mines.
Programs can crash if some of these names are mishandled in a program.
Worse still, programs do not crash but lead to incorrect results. However, at
the level of deciding which variables to make local and which ones to make
global, the decisions are very simple and one just needs to exercise safe
programming practices. We will conclude this section of graphics with some
examples of creating animations.

Any object drawn in the graphics window can be moved using the command
move(dx, dy). For example, you move the circle 10 pixels to the right and 5
pixels down you can use the command:

C.move(10, 5);

Do This: Let us write a program that moves a circle about (randomly) in the
graphics window. First, enter this following program and try it out.

Sights	 &	 Sounds	
	

213	
	

// Moving circle; Animate a circle...
#include <cstlib>
#include "Myro.h"
using namespace std;

int main() {
 // create and draw the graphics window
 window w = GraphWin("Moving Circle", 500, 500);
 w.setBackground("white");

 // Create a red circle
 Circle c = Circle(Point(250, 250), 50);
 c.setFill("red");
 c.draw(w);

 // Do a simple animation for 200 steps
 for (int i = 0; I < 200; i++) {
 c.move(randrange(-4, 5), randrange(-4, 5));
 wait(0.2);
 }
 return 0;
}

Notice, in the above program, that we are moving the circle around randomly
in the x- and y-directions. Try changing the range of movements and observe
the behavior. Try changing the values so that the circle moves only in the
horizontal direction or only in the vertical direction. Also notice that we had
to slow down the animation by inserting the wait command after every move.
Comment the wait command and see what happens. It may appear that
nothing did happen but in fact the 200 moves went so quickly that your eyes
couldn’t even register a single move! Using this as a basis, we can now write
a more interesting program. Look at the program below:

// Moving circle; Animate a circle...
#include <cstlib>
#include "Myro.h"
using namespace std;

Chapter	 8	
	

214	
	

int main() {
 // create and draw the graphics window
 int winWidth = 500, winHeight = 500;
 window w = GraphWin("Bouncing Circle",
 winWidth, winHeight);
 w.setBackground("white");

 // Create a red circle
 int radius = 25;
 Circle c = Circle(Point(53, 250), radius);
 c.setFill("red");
 c.draw(w);

 // Animate it
 int dx = 3, dy = 3;
 while (timeRemaining(15)) {
 // move the circle
 c.move(dx, dy);

 // make sure it is within bounds
 Point center = c.getCenter();
 int cx = center.getX();
 int cy = center.getY();

 if ((cx+radius >= winWidth) || (cx-radius <= 0))
 dx = -dx;

 if ((cy+radius >= winHeight) || (cy-radius <= 0))
 dy = -dy;

 wait(0.01);
 }
 return 0;
}

For 15 seconds, you will see a red circle bouncing around the window. Study
the program above to see how we keep the circle inside the window at all
times and how the direction of the ball bounce is being changed. Each time
you change the direction, make the computer beep:

computer.beep(0.005, 440);

Sights	 &	 Sounds	
	

215	
	

If you are excited about the possibility of animating a circle, imagine what
you can do if you have many circles and other shapes animated. Also, plug in
the game pad controller and see if you can control the circle (or any other
object) using the game pad controls. This is very similar to controlling your
robot. Design an interactive computer game that takes advantage of this new
input modality. You can also design multi-user games since you can connect
multiple game pad controllers to your computer. See the Reference
documentation for details on how to get input from several game pad
controllers.

Drawing	 Text	 &	 Images	

Like shapes, you can also place text in a graphics window. The idea is the
same. You first create the text using the command:

Text myText = Text(<anchor point>, <string>);

and then draw it. You can specify the type face, size, and style of the text. We
will not detail these here. They are summarized in the reference at the end of
the text. When we get an opportunity, we will use these features below in
other examples.

Images in this system are treated just like any other objects. You can create an
image using the Image command:

Image myPhoto = Image(<centerPoint>, <file name>);

You have to have an already prepared image in one of the common image
formats (like JPEG, GIF, etc.) and stored in a file (<file name>). Once the
image object is created, it can be drawn, undrawn, or moved just like other
shapes.

What you do with all this new found functionality depends on your creativity.
You can use graphics to visualize some data: plotting the growth of world
population, for example; or create some art, an interactive game, or even an

Chapter	 8	
	

216	
	

animated story. You can combine your robot, the game pad controller, or even
sound to enrich the multi-media experience. The exercises at the end of the
chapter present some ideas to explore further. Below, we delve into sounds.

Sound	 	

As we have seen, you can have your robot make beeps by calling the beep()
function, like so:

robot.beep(1, 440);

This command instructs the robot to play a tone at 440 Hz for 1 second. Let us
first try and analyze what is in the 440 Hz tone. First, the letters Hz are an
abbreviation for Hertz. The name itself comes from a German physicist,
Heinrich Rudolph Hertz who did pioneering work in the production of
electromagnetic waves in the late 19th century. Today, we use Hertz (or Hz)
as a unit for specifying frequencies.

1Hertz = 1cycle / second

The most common use of frequencies these days is in specifying the clock
speeds of computer CPU's. For example, a typical PC today runs at clock
speeds of a few GigaHertz (or GHz).

1GigaHertz = 109cycles / second

Frequencies are related to periodic (or repetitive) motions or vibrations. The
time it takes for a motion or vibration to repeat is called its time period.
Frequency and time period are inversely related. That is the number of cycles
or repetitions in a second is called the frequency. Thus 1 Hertz refers to any
motion or vibration that repeats every 1 second. In the case of computer clock
frequencies then, a computer running at 4 Gigahertz is repeating 4 billion
times a second! Other examples of periodic motions include: the earth's
rotation on its axis (1 cycle every 24 * 60 * 60 = 86400 seconds or at a
frequency of 0.00001157 cycles/second), a typical audio CD spins 400 times a

Sights	 &	 Sounds	
	

217	
	

second, a CD drive on your computer rated at 52x spins the CD at 52 * 400 =
20800 times per second, hummingbirds can flap their wings at frequencies
ranging from 20-78 times/second (some can go even as high as 200!).

Sound is a periodic compression and refraction (or return to its original state)
of air (for simplicity, let us assume that the medium is air). One Cycle of a
sound comprises one compression and one refraction. Thus, producing a beep
at 440 Hz represents 440 complete cycles of compression and refraction.
Generally, a human ear is capable for hearing frequencies in the 20 Hz to
20000 Hz (or 20 Kilo Hertz) range. However the capability varies from
person to person. Also, many electronic devices are not capable for producing
frequencies in that entire range. 20-20KHz is considered hi-fidelity for stereo
or home theater audio components. Let us first examine the range of audible
sounds the Scribbler can produce. To make a sound out of the Scribbler, you
have to give a frequency and the duration (in seconds) that the sound should
be played. For example, to play a 440 Hz sound for 0.75 seconds:

robot.beep(0.75, 440);

The human ear is capable of distinguishing sounds that differ only by a few
Hertz (as little as 1 Hz) however this ability varies from person to person. Try
the commands:

robot.beep(1, 440);
robot.beep(1, 450);

Can you distinguish between the two tones? Sometimes it is helpful to place
these in a loop so you can repeatedly hear the alternating tones to be able to
distinguish between them. The next exercise can help you determine what
frequencies you are able to distinguish.

Exercise: Using the example above, try to see how close you can get in
distinguishing close frequencies. As suggested, you may want to play the
tones alternating for about 5-10 seconds. Start with 440 Hz. Can you hear the
difference between 440 and 441? 442? Etc. Once you have established your

Chapter	 8	
	

218	
	

range, try another frequency, say 800. Is the distance that you can distinguish
the same?

Do This: You can program the Scribbler to create a siren by repeating two
different tones (much like in the example above). You will have to experiment
with different pairs of frequencies (they may be close together or far apart) to
produce a realistic sounding siren. Write your program to play the siren for 15
seconds. The louder the better!

You can also have Myro make a beep directly out of your computer, rather
than the robot, with the command:

computer.beep(1, 440);

Unfortunately, you can't really have the robot and computer play a duet. Why
not? Try these commands:

robot.beep(1, 440);
computer.beep(1, 440);
robot.beep(1, 880);
computer.beep(1, 880);
robot.beep(1, 440);
computer.beep(1, 440);

What happens? Try your solutions to the above exercises by making the
sounds on the computer instead of the Scribbler.

Musical	 Scales	 	

In western music, a scale is divided into 12 notes (from 7 major notes:
ABCDEFG). Further there are octaves. An octave in C comprises of the 12
notes shown below:

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B

C# (pronounced "C sharp") is the same tone as Db (pronounced "D flat").

Sights	 &	 Sounds	
	

219	
	

Frequencies corresponding to a specific note, say C, are multiplied (or
divided) by 2 to achieve the same note in a higher (or lower) octave. On a
piano there are several octaves available on a spread of keys. What is the
relationship between these two tones?

robot.beep(1, 440);
robot.beep(1, 880);

The second tone is exactly one octave the first. To raise a tone by an octave,
you simply multiply the frequency by 2. Likewise, to make a tone an octave
lower, you divide by 2. Notes indicating an octave can be denoted as follows:

C0 C1 C2 C3 C4 C5 C6 C7 C8

That is, C0 is the note for C in the lowest (or 0) octave. The fifth octave
(numbered 4) is commonly referred to as a middle octave. Thus C4 is the C
note in the middle octave. The frequency corresponding to C4 is 261.63 Hz.
Try playing it on the Scribbler. Also try C5 (523.25) which is twice the
frequency of C4 and C3 (130.815). In common tuning (equal temperament)
the 12 notes are equidistant. Thus, if the frequency doubles every octave, each
successive note is 21 / 12 apart. That is, if C4 is 261.63 Hz, C# (or Db) will be:

C#4/Db4 = 261.63 * 21 / 12 = 277.18

Thus, we can compute all successive note frequencies:

D4 = 277.18 * 21 / 12 = 293.66

D#4/Eb = 293.66 * 21 / 12 = 311.13

etc.

The lowest tone that the Scribbler can play is A0 and the highest tone is C8.
A0 has a frequency of 27.5 Hz, and C8 has a frequency of 4186 Hz. That's
quite a range! Can you hear the entire range?

Chapter	 8	
	

220	
	

robot.beep(1, 27.5);
robot.beep(1, 4186);

Exercise: Write a Scribbler program to play all the 12 notes in an octave
using the above computation. You may assume in your program that C0 is
16.35 and then use that to compute all frequencies in a given octave (C4 is
16.35 * 24). Your program should input an octave (a number from 0 through
8), produce all the notes in that octave and also printout a frequency chart for
each note in that octave.

Making	 Music	 	

Playing songs by frequency is a bit of a pain. Myro contains a set of functions
to make this task a bit more abstract.2 A Myro song is a string of characters
composed like so:

NOTE1 [NOTE2] WHOLEPART

where [] means optional. Each of these notes/chords is composed on its own
line, or separated by semicolons where:

 NOTE1 is either a frequency or a NOTENAME
 NOTE2 is the same, and optional. Use for Chords.
 WHOLEPART is a number representing how much of
 a whole note to play.

NOTENAMES are case-insensitive strings. Here is an entire scale of NOTENAMES:

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C

This is the default octave. It is also the 5th octave, which can also be written
as:

C5 C#5/Db5 D5 D#5/Eb5 E5 F5 F#5/Gb5 G5 G#5/Ab5 A5 A#5/Bb5 B5
C6

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 These functions are not implemented in the current C++/Myro interface.

Sights	 &	 Sounds	
	

221	
	

The Myro Song Format replicates the keys on the piano, and so goes from A0
to C8. The middle octave on a keyboard is number 4, but we use 5 as the
default octave. See http://en.wikipedia.org/wiki/Piano_key_frequencies for
additional details. Here is a scale:

"C 1; C# 1; D 1; D# 1; E 1; F 1; F# 1; G 1; G# 1; A 1; A# 1; B
1; C 1;"

The scale, one octave lower, and played as a polka:

"C4 1; C#4 1/2; D4 1/2; D#4 1; E4 1/2; F4 1/2; F#4 1; G4 1/2;
G#4 1/2; A4 1; A#4 1/2; B4 1/2; C4 1;"

There are also a few other special note names, including PAUSE, REST, you can
leave the octave number off of the default octave notes if you wish. Use "#"
for sharp, and "b" for flat.

WHOLEPART can either be a decimal notation, or division. For example:

Ab2 .125

or

Ab2 1/8

represents the A flat in the second octave (two below middle).

As an example, try playing the following:

c 1
c .5
c .5
c 1
c .5
c .5
e 1
c .5
c .5

Chapter	 8	
	

222	
	

c 2
e 1
e .5
e .5
e 1
e .5
e .5
g 1
e .5
e .5
e 2

Do you recognize it??

You may leave blank lines, and comments should begin with a # sign. Lines
can also be separated with a semicolon.

Using	 a	 song	 	

For the following exercises, you will need to have an object to play the song.
Now that you have a song, you probably will want to play it. If your song is in
a file, you can read it:3

song s = readSong(filename);

and play it on the robot:

robot.playSong(s);

or on the computer:

computer.playSong(s);

You can also use makeSong(text) to make a song. For example:

song s = makeSong

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 These functions are not implemented in the current C++/Myro interface.

Sights	 &	 Sounds	
	

223	
	

 ("c 1; d 1; e 1; f 1; g 1; a 1; b 1; c7 1;");

and then play it as above.

If you want to make it play faster or slower, you could change all of the
WHOLENOTE numbers. But, if we just want to change the tempo, there is an
easier way:

robot.playSong(s, .75);

The second argument to playSong is the duration of a whole note in seconds.
Standard tempo plays a whole note in about .5 seconds. Larger numbers will
play slower, and smaller numbers play faster.

Summary	

You can use the graphics window as a way of visualizing anything. In the
graphics window you can draw all kinds of shapes: points, line, circles,
rectangles, ovals, polygons, text, and even images. You can also animate these
shapes as you please. What you can do with these basic drawing capabilities is
limited only by your creativity and your programming ability. You can
combine the sights you create with sounds and other interfaces, like the game
pad controller, or even your robot. The multimedia functionalities introduced
in this chapter can be used in all kinds of situations for creating interesting
programs.

Myro	 Reference	 	

Below, we summarize all of the graphics commands mentioned in this
chapter. You are urged to review the reference manual for more graphics
functionality.

GraphWin()
GraphWin(<title>, <width>, <height>)
Returns a graphics window object. It creates a graphics window with title,

Chapter	 8	
	

224	
	

<title> and dimensions <width> x <height>. If no parameters are specified,
the window created is 200x200 pixels.

<window>.close();
Closes the displayed graphics window <window>.

<window>.setBackground(<color>);
Sets the background color of the window to be the specified color. <color>
can be a named color (Google: color names list), or a new color created using
the color_rgb command (see below).

color_rgb(<red>, <green>, <blue>)
Creates a new RGB color object using the specified <red>, <green>, and
<blue> values. The values can be in the range 0..255.

Point(<x>, <y>)
Creates a Point object at (<x>, <y>) location in the window.

<point>.getX()
<point>.getY()
Returns the x and y coordinates of the Point object <point>.

Line(<start point>, <end point>)

Creates a Line object starting at <start point> and ending at <end point>.

<line>.getP1()
<line>.getP2()
Returns an endpoint (Point object) of a Line object.

Circle(<center point>, <radius>)
Creates a Circle object centered at <center point> with radius <radius>
pixels.

Rectangle(<point1>, <point2>)
Creates a Rectangle object with opposite corners located at <point1> and
<point2>.

Sights	 &	 Sounds	
	

225	
	

Oval(<point1>, <point2>)
Creates an Oval object in the bounding box defined by the corner points
<point1> and <point2>.

Polygon(<point1>, <point2>, <point3>,…)
Polygon([<point1>, <point2>, …])

Creates a Polygon object with the given points as vertices.

Text(<anchor point>, <string>)

Creates a Text object anchored (bottom-left corner of text) at <anchor
point>. The text itself is defined by <string>.

Image(<centerPoint>, <file name>)
Creates an Image centered at <center point> from the image file <file
name>. The image can be in GIF, JPEG, or PNG format.

All of the graphics objects respond to the following commands:

<object>.draw(<window>);

Draws the <object> in the specified graphics window <window>.

<object>.undraw();
Undraws <object>.

<object>.getCenter()
Returns the center point of the <object>.

<line-object>.getP1()
<line-object>.getP2()
Returns the end points of the <line-object>.

<object>.setOutline(<color>);
<object>.setFill(<color>);

Sets the outline and the fill color of the <object> to the specified <color>.

<object>.setWidth(<pixels>);

Sets the thickness of the outline of the <object> to <pixels>.

Chapter	 8	
	

226	
	

<object>.move(<dx>, <dy>);

Moves the object <dx>, <dy> from its current position.

The following sound-related functions were presented in this chapter.

<robot/computer object>.beep(<seconds>, <frequency>);
<robot/computer object>.beep(<seconds>, <f1>, <f2>);

Makes the robot or computer beep for <seconds> time at frequency specified.
You can either specify a single frequency <frequency> or a mix of two: <f1>
and <f2>.

robot.playSong(<song>) ;
Plays the <song> on the robot.

readSong(<filename>)
Reads a song object from <filename>.

song2text(song)

Converts a song to text format.

makeSong(<text>)
text2song(<text>)

Converts <text> to a song format.

C++	 reference	

In this chapter we presented informal scope rules for names in C++ programs.
While these can get fairly complicated, for our purposes you need to know the
distinction between a local name that is local within the scope of a function
versus a global name defined outside of the function. The text ordering
defines what is accessible.

Sights	 &	 Sounds	
	

227	
	

	

Exercises	

1. Using the graphics commands learned in this chapter, write a program to
generate a seasonal drawing: winter, summer, beach, or a festival
scene.

2. Write a program that has a function drawRobot(x, y, w)
such that it draws the figure of a robot shown on the right. The
robot is anchored at (x, y) and is drawn in the window, w. Also
notice that the robot is entirely made up of
rectangles (8 of them).

3. Using the drawRobot function from the
previous exercise, draw a pyramid of robot as
shown on the right.

4. Suppose that each robot from the previous
exercise is colored using one of the colors: red,
blue, green, and yellow. Each time a robot is
drawn, it uses the next color in the sequence.
Once the sequence is exhausted, it recycles. Write a program to draw the
above pyramid so robots appear in these colors as they are drawn. You may
decide to modify drawRobot to have an additional parameter: drawRobot(x,
y, c, w) or you can write it so that drawRobot decides which color it
chooses. Complete both versions and compare the resulting programs. Discuss
the merits and/or pitfalls of these versions with friends. [Hint: Use a vector of
color names.]

5. The beep command can play two tones simultaneously. In this exercise we
will demonstrate an interesting phenomena. First, Try the following
commands:

	

	

Chapter	 8	
	

228	
	

robot.beep(2, 660);
robot.beep(2, 665);

You may or may not be able to tell the two tones apart. Next, try playing the
two tones together using the command:

robot.beep(2, 660, 665);

You will hear pulsating beats. This phenomenon called beating is very
common when you play pure tone together. Explain why this happens.

6. Do a web search on fractals and write programs to draw some simple
fractals. For example, Koch Snowflakes, Sierpinski Triangles, Mandelbrot
Sets, Julia Sets, etc.

Sights	 &	 Sounds	
	

229	
	

