
Exam comments:

If it looks like you have a correct answer, and for some reason we marked it wrong, 

by all means, tell us. However, begin with your TA.

Please don't haggle over partial credit. The TAs and I have decided in advance how 

much partial credit to give for various sorts of mistakes, and we try to be consistent 

across the whole class. 

Ensembles of Data and Data Structures:

Computers are often most useful manipulating large amounts of data, but the way 

the data is organized can have a significant effect on how easy and efficient it is to 

manipulate the data. So different ways of organizing the data are called data 

structures, and much of what we study in CS is data structures (beginning with 

CS140).

What are some of the considerations in data structures?

(1) How is the data going to be accessed? Is it sequential access? Or "random 

access"? For sequential access, can you go in both directions or only one? With 

sequential access, it's most efficient to access whatever comes next in order. And 

the further away it is, the less efficient it is. Random access means that it's equally 

efficient to access any element of the data structure. The efficient way to process 

the data in a sequential data structure is in order from front to back. In a random-

access structure, it is equally efficient to process it in any order (in this sense 

"random").

So when you are selecting or designing a data structure for some application, you 

have to think about how you will want to access it (e.g., sequential or random), and 



pick the appropriate one.

(2) Is the data only readable, or can you modify it?

(3) Is the structure fixed (static) or can it be changed (dynamic)? In particular, can 

the data structure grow or shrink in size. (Sometimes we don't know in advance 

how big the data structure should be.)

(4) Does all data have to be of the same type? For example, in a given data 

structure, does it have to be all doubles? Or can can you have doubles, ints, strings, 

etc. all in one data structure. I.e., is the data structure homogeneous or 

heterogeneous. Think of various kinds of forms that a business might have to 

process (orders, bills, payments, etc.). Do we have one stack containing all 

different kinds of forms, or a different stack for each kind?

(5) Does the order of the data matter? I.e., is it more like a sequential list or row of 

things, or like a bag of things?

These are some of the main considerations.

Which data structures you pick is an engineering decision, in which you the various 

pros and cons of a data structure and try to pick the best ones for what you are 

trying to do.

An important CS rule of thumb: "Pick the right data structure, and the algorithm 

will design itself."

What this means is that if you make a good choice of data structure, it will be very 

easy to design an efficient algorithm for the task. So you need to think carefully 



about how to structure the data to make what we want to do as simple and efficient 

as possible.

Where do you get data structures?

(1) There are some built into the programming language (in the case of C++, there 

are C-arrays and structs).

(2) There are standard libraries, that have been implemented by expert 

programmers, so that they are efficient and reliable to use. In C++ there is the STL 

(Standard Template Library).

(3) You may buy it or get it somewhere else.

(4) You may invent and implement your own new data structure.

Examples: A stack (or LIFO) is a last-in first-out data structure.

A queue (or FIFO) is a first-in first-out data structure.

Vectors are a random-access, ordered homogeneous data structure.

You know about 2D and 3D vectors in math, such as (3, 4), or (3, 4, -10). Notice 

that order matters: (3, 4) and (4, 3) are two different vectors. Suppose V = (3, 4, 

-10), we can talk about the vector as a whole by the name V. We can also talk 

about the elements of the vector, e.g., V1 = 3, and V3 = -10.

The idea in C++ is very similar, but:



(1) Vectors can be of any dimension (e.g., 365 for a vector of the rainfall on each 

day of the year).

(2) C++ uses 0-origin indexing (whereas in math we usually 1-origin). So if V is the 

vector (3, 4, -10), then V[0] == 3, V[1] == 4, V[2] == -10.

(3) C++ allows vectors of any type of data, e.g., doubles, ints, strings, bools, and 

even other vectors. But the vector data structure is homogeneous, so all the 

elements of any one vector must be the same type. This is so the compiler can 

calculate the location of vector elements efficiently and give you the random access 

property. Accessing any particular vector takes "constant time"; that is, time 

independent of the position of the element in the vector.


