
Pop Quiz:

Define a C++ function printRev(S) with a string argument. It should print the string

S (whatever it is) in reverse order on a line by itself. For example,

printRev("Hello");

prints

olleH

Ans:

void printRev (string S) {

for (int X = S.size()-1; X >= 0; X--) {

cout << S[X];

}

cout << endl;

}

Example: reverse(S) returns the reverse of S:

string reverse (string S) {

string R = "";

for (int X = S.size()-1; X >= 0; X--) {

R.push_back(S[X]);

}

return R;

}

Homework (hand in, in your next lab):

Read in numbers from a file called "data.txt" until you reach an end of file. Sort the

data into ascending order using the list sort() function (see LCR 4). Print out the

numbers, one per line, on the console in descending order.

Data Types:

C++, like most PLs, has several different kinds of data type:

Simple (non-composite) data types: they have no parts. Examples: ints, doubles,

bools, chars.

Compound data types: these have parts, which could be simple data types or

compound data types.

Two primary kinds of compound data types: homogeneous (e.g., C-arrays and

vectors) and heterogeneous (e.g. structs and classes).

In a heterogeneous data structure, the components do not have to be of the same

type. This gives you more flexibility in what you can put into it, but less flexibility in

the way you access it, because you can't compute the index of a component.

What is a struct? It's a group of instance variables, member variables, or fields that

together make up one structure, class, or record.

Suppose we want to set up an employee database. Think of each record as standing

for an employee. (We think of the structs as objects belonging to the type or class

employee.) So in OOP we think of the computer objects as representing or

simulating objects in some world. The objects belong to classes that behave in a

similar way.

Parameter Passing Modes

There are several different ways to pass parameters to functions in C++. Two of

them:

Pass by Value: what you normally get. A copy of the parameter is passed to the

function, and discarded on function return.

Pass by Reference: what you get if you put "&" between the parameter's type and

name. A reference to (or the address of) the actual parameter is passed to the

function, instead of a copy. This permits the function to modify the original. It's also

more efficient if the parameter is big.

