COSC 317 Worksheet 2
Bruce MacLennan, Fall 2014

2. Lattices

DEFINITION 2.1 (meet and join). For x,y € P, their meet is defined to be their
greatest lower bound (if it exists): x Ay = glb{x,y}. Likewise, the join is defined
x Vy = lub{z,y}.

PROBLEM 2.1. For the poset (R, <) describe the results of the meet and join
operations.

PROBLEM 2.2. Let P be a set of sets. What are the meet and join operations in
the poset (P, C)7

PROBLEM 2.3. Let P be a set of sets. What are the meet and join operations in
the poset (P,2)? (Be careful! This means that x C y if and only if D y.)

PROBLEM 2.4. What are the meet and join operations in the poset of truth values
(2,=)7

DEFINITION 2.2 (lattice). A poset P is called a lattice if for each z,y € P, both
r Ay and x V y exist.

DEFINITION 2.3 (complete lattice). A lattice is complete if each of its subsets has
both an lub and a glb.

PROBLEM 2.5. Give an example of a lattice that is not complete.

PROBLEM 2.6. Which of the example posets in Worksheet 1 are lattices? Which
are complete?

THEOREM 2.1. Any nonempty complete lattice has a greatest element T and a
least element L.

THEOREM 2.2. The dual of a lattice is a lattice; the dual of a complete lattice is
a complete lattice.

THEOREM 2.3. Let P(S) be the set of all subsets of S. Then (P(S5),C) is a
complete lattice. (What are its top and bottom elements?)

Whenever we define new operators, we should investigate immediately their prop-
erties. The meet and join operations satisfy a number of algebraic properties.

THEOREM 2.4. In any poset, the meet and join operations, whenever they exist,

satisfy the following algebraic laws:
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L1 (Idempotent): xt Az =z, zVaz=ux.
L2 (Commutative): t Ay =y Az, zVy=yVz.
L3 (Associative): z A(yAz)=(zAy)Az, zV(yVz)=(xVy)V =z
L4 (Absorption): z A (xVy) =z =2z V (x Ay).
THEOREM 2.5 (consistency). x C y if and only if t Ay = x if and only if zVy = y.

THEOREM 2.6. If a poset P has a top element T, then forallz € P, xt AT ==«
and x VT = T. Similarly for L.

THEOREM 2.7 (isotone property). The meet and join operations in a lattice are
isotone; that is, if y C 2z, thenx AyCxAzandzVyCzV 2.
THEOREM 2.8 (distributive inequalities). In any lattice,
zA(yVz) J (zAy)V(zAz),
zV(yAz) C (zVy A(zV=2).

PRrROBLEM 2.7. You might be surprised that these are inequalities and not equal-
ities. Find a lattice for which equality does not apply.

THEOREM 2.9 (modular inequality). In a lattice, z T z implies  V (y A z) C
(xVy)Az.

THEOREM 2.10. In a lattice, (a VD) A (cVd) J(aAc)V (bAd).

DEFINITION 2.4 (semilattice). A semilattice (X, o) is a set X and a binary oper-
ation ¢ on X that is idempotent, commutative, and associative.

THEOREM 2.11. If P is a poset in which every pair of elements has a meet, then
(P,A) is a semilattice. Likewise for V.

THEOREM 2.12. In a semilattice (X, ) define x C y to mean z ¢y = =. Then
(X, C) is a poset with z oy = glb{z, y}.

THEOREM 2.13. A set with two binary operations obeying laws L1-L4 (Thm.
2.4) is a lattice, and conversely.

DEFINITION 2.5 (sublattice). If L is a lattice, then S C L is a sublattice if every
pair of elements of S has both a meet and a join in S (i.e., using the same meet and
join as L).

THEOREM 2.14. Both the empty set and the singleton sets are sublattices of a
lattice. (Always check “degenerate” cases such as these.)

PROBLEM 2.8. Give examples of (non-degenerate) sublattices of the example
lattices from Worksheet 1.



THEOREM 2.15. If L is a complete lattice and S C L, and if (1) T € S and (2)
glbR € S for every R C S, then S is a complete lattice.

PROBLEM 2.9. Give counter-examples showing that each of the two conditions
in the preceding theorem are required.

DEFINITION 2.6 (direct product of posets). If P, Q) are posets, their direct product
PxQ@ is defined (z,y) C (2/,y/) if and only if x C 2/ in P and y C ¢/ in Q.

THEOREM 2.16. The direct product of two lattices is a lattice.



