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Models of Computation,���
Turing Machines,���

and the Limits ���
of Turing Computation	


 Bruce MacLennan	


Models	

•  A model is a tool intended to address a class 

of questions about some domain of 
phenomena	


•  They accomplish this by making 
simplifications (idealizing assumptions) 
relative to the class of questions	


•  As tools, models are:	

–  ampliative (better able to answer these 

questions)	

–  reductive (make simplifying assumptions)	
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Motivation for Models of 
Computation	


•  What questions are models of computation 
intended to answer?	


•  What are the simplifying assumptions of 
models of computation?	


•  Why were models of computation 
developed in the early 20th century, before 
there were any computers?	
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Effective���
Calculability	


•  Mathematicians were ���
interested in effective calculability:	

– What can be calculated by strictly mechanical 

methods using finite resources?	

•  Think of a human “computer” 	


–  following explicit rules that require no 
understanding of mathematics	


–  supplied with all the paper & pencils required	
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Related Issues	


•  Formal mathematics: Can mathematical 
proof & derivation be reduced to purely 
mechanical procedures requiring no use of 
intuition?	


•  Mechanization of thought: Can thinking be 
reduced to mechanical calculation?	
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Formal Logic	

•  Originally developed by Aristotle (384–322 BCE)	

•  A syllogism:	


All men are mortal	

Socrates is a man	

∴ Socrates is mortal	


•  Formal logic: the correctness of the steps depend 
only on their form (syntax), not their meaning 
(semantics):	

All M are P	

S is M	

∴ S is P	


•  More reliable, because more mechanical	
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Calculus	

•  In Latin, calculus means pebble	

•  In ancient times calculi were used for calculating 

(as on an abacus), voting, and may other purposes	

•  Now, a calculus is:	


–  an mechanical method of solving problems	

–  by manipulating discrete tokens	

–  according to formal rules	


•  Examples: algebraic manipulation, integral & 
differential calculi, logical calculi	
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Assumptions of Calculi	

•  Information (data) representation is:	


–  formal (info. represented by arrangements)	

– finite (finite arrangements of atomic tokens)	

–  definite (can determine symbols & syntax)	


•  Information processing (rule following) is:	

–  formal (depends on arrangement, not meaning)	

– finite (finite number of rules & processing time)	

–  definite (know which rules are applicable)	
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Thought as Calculation	

•  “By ratiocination I mean computation.” ���

— Thomas Hobbes (1588–1679)	

•  “Then, in case of a difference of opinion, no 

discussion … will be any longer necessary …  It 
will rather be enough for them to take pen in hand, 
set themselves to the abacus, and … say to one 
another, “Let us calculate!” — Leibniz (1646–1716)	


•  Boole (1815–64): his goal was “to investigate the 
fundamental laws of those operations of mind by 
which reasoning is performed; to give expression 
to them in the symbolical language of a Calculus”	
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Early Investigations in 
Mechanized Thought	


•  Leibniz (1646–1716): mechanical ���
calculation & formal inference	


•  Boole (1815–1864): “laws of thought”	

•  Jevons (1835–1882): logical abacus ���

& logical piano    ⇒	

•  von Neumann (1903–1957): computation & the 

brain	

•  Turing (1912–1954): neural nets, artificial 

intelligence, “Turing test”	
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Some Models of Computation	

•  Markov Algorithms — based on 

replacement of strings by other strings	

•  Lambda Calculus — based on LISP-like 

application of functions to arguments	

•  SK Calculus — based on two operations:	


((K X) Y)  ⇒  X	

(((S X) Y) Z)  ⇒  ((X Z) (Y Z))	


•  Turing Machine — most common	
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Intuitive Basis of���
Turing Machine	

•  What could be done	


–  by a person following explicit  formal rules	

–  with an unlimited supply of paper and pencils?	


•  Assumption:  Any “effective” (mechanical) 
calculation could be carried out in this way	


•  Reduce to bare essentials (for simplicity):	

–  symbols written on a long tape	

–  can read/write only one symbol at a time	

–  limited memory for the “state” of the calculation	


12	
COSC 312 — Turing Machines	




Turing Computation	
 2013/2/18	


COSC 312 - Algorithm Analysis and 
Automata	
 3	


Colossus: A Real���
Turing Machine	


•  Developed in UK in 1943–4 to crack Nazi codes	

•  Although Turing was not directly involved with 

Colossus, he was involved with other 
computerized code-breaking efforts	


•  Turing described the TM model in 1936	
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Defining a Specific TM	

•  We must specify the “alphabet” of symbols used 

on the tape	

–  typically 0, 1, and b (blank)	

–  this alphabet is always sufficient (binary coding)	


•  We must specify the number of states (memory)	

•  We must specify a finite set of rules of the form:	


–  (current state, symbol on tape,���
 symbol to write, next state, direction to move)	


–  for example, (3, 1, 0, 2, L)	

–  rules may be represented in diagram:	


3	
2	


1è0, L	
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TM Example: Bit Inverter (1)	


0 1 1 

1	


0è1,R	
1è0,R	
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TM Example: Bit Inverter (2)	


1 1 1 

1	


0è1,R	
1è0,R	


16	
COSC 312 — Turing Machines	


TM Example: Bit Inverter (3)	


1 0 1 

1	


0è1,R	
1è0,R	
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TM Example: Bit Inverter (4)	


1 0 0 

1	


0è1,R	
1è0,R	


halts!	
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Unary Addition	

•  Represent the number N by N+1 marks (1 in 

this case) — unary notation	

•  So the numbers M and N will be represented 

by M+1 and N+1 marks (with a blank 
between)	


•  The sum should be M+N+1 marks	


  

€ 

b1  1
M +1

     b1  1
N +1

     b
  

€ 

b1  1
M +N +1
     b
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TM Example: Addition (1)	


… b 1 1 1 1 b 1 1 1 1 b … 

3	
 4	
2	
1	


1èb,R	
 1èb,R	
 bè1,R	


1è1,R	
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TM Example: Addition (2)	


… b b 1 1 1 b 1 1 1 1 b … 

3	
 4	
2	
1	


1èb,R	
 1èb,R	
 bè1,R	


1è1,R	
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TM Example: Addition (3)	


… b b b 1 1 b 1 1 1 1 b … 

3	
 4	
2	
1	


1èb,R	
 1èb,R	
 bè1,R	


1è1,R	
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TM Example: Addition (4)	


… b b b 1 1 b 1 1 1 1 b … 

3	
 4	
2	
1	


1èb,R	
 1èb,R	
 bè1,R	


1è1,R	
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TM Example: Addition (5)	


… b b b 1 1 b 1 1 1 1 b … 

3	
 4	
2	
1	


1èb,R	
 1èb,R	
 bè1,R	


1è1,R	
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TM Example: Addition (6)	


… b b b 1 1 1 1 1 1 1 b … 

3	
 4	
2	
1	


1èb,R	
 1èb,R	
 bè1,R	


1è1,R	


halts!	
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A Physical Turing Machine	


See http://aturingmachine.com  	
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The Universal Turing Machine	
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Ordinary Turing Machine	

•  We can design a Turing machine M for a 

specific purpose	

•  For each allowable input x it produces the 

corresponding output y	


M	


x	


M	


y	
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Universal Turing Machine	

•  We can design a Turing machine U that can 

emulate any Turing machine M	

•  Let m be an encoding of M (e.g., its rules)	

•  For each allowable input x it produces the 

corresponding output y	


U	


m x	


U	


y	
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Equivalence Between TMs and���
Other Models of Computation	


•  If we can use some model of computation to 
program a UTM, then we can emulate any TM	

–  So this model is at least as powerful as TMs	


•  If can design TM to emulate another kind of 
universal machine, then UTM can emulate it	

–  So other model is no more powerful than TMs	


•  The way to prove equivalent “power” of different 
models of computation	


•  Equivalent in terms of “computability” not space/
time efficiency	
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General-Purpose Computers	


•  The Universal Turing Machine is theoretical 
foundation of general purpose computer	


•  Instead of designing a special-purpose 
computer for each application	


•  Design one general-purpose computer:	

–  interprets program (virtual machine 

description) stored in its memory	

–  emulates that virtual machine	
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Church-Turing Thesis	

•  CT Thesis: The set of effectively calculable 

problems is exactly the set of problems solvable by 
TMs	


•  Empirical evidence: All the independently 
designed models of computation turned out to be 
equivalent to TM in power	


•  Easy to see how any calculus can be emulated by a 
TM	


•  Easy to see how any (digital) computer can be 
emulated by a TM (and vice versa)	


•  But, there is research in non-Turing models of 
computation	
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The Limits of Computation	
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The Liar Paradox	


•  Epimenides the Cretan (7th cent. BCE) said, 
“The men of Crete were ever liars …”	


•  “If you say that you are lying, and say it 
truly, you are lying.” — Cicero (106–43 BCE)���
	


“I am lying.”	
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Undecidabilty of the Halting 
Problem (Informal)	


•  Assume we have procedure Halts that decides 
halting problem for any program/input pair	


•  Let P (X) represent the execution of program P on 
input X	


•  Halts (P, X) = true if and only if program P halts 
on input X	


•  Halts (P, X) = false if and only if program P 
doesn’t halts on input X	


•  Program P encoded as string or other legal input 
to programs	
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Assumed Turing Machine for 
Halting Problem	


•  We can design a Turing machine Halts that can 
decide, for any Turing machine P and input x, 
whether P halts on x	


•  Let p be an encoding of P (e.g., its rules)	

•  If P halts on x:	


Halts	


p x	


Halts	


true 
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Assumed Turing Machine for 
Halting Problem (2)	


•  If P doesn’t halt on x:	


Halts	


p x	


Halts	


false 
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Undecidabilty of the Halting 
Problem (2)	


•  Define the “paradoxical procedure” Q:	

1.  procedure Q (P):	

2.      if Halts (P, P) then	

3.          go into an infinite loop	

4.      else // Halts (P, P) is false, so	

5.          halt immediately	


•  Now Q is a program that can be applied to 
any program string P	
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Turing Machine Q	

•  After running TM Halts on p and p, if result was 

true, go into an infinite loop	


Halts	


p p	


Halts	


true 

Q	


true	


Q	


0000… 
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Turing Machine Q (2)	

•  After running TM Halts on p and p, if result was 

false, halt immediately	


Halts	


p p	


Halts	


false 

Q	


false	


Q 
halts!	


false 
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TM Q Applied to q	

•  After running TM Halts on q and q, if result was 

true, go into an infinite loop	


Halts	


q q	


Halts	


true 

Q	


true	


Q	


0000… 
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TM Q Applied to q (2)	

•  After running TM Halts on q and q, if result was 

false, halt immediately	


Halts	


q q	


Halts	


false 

Q	


false	


Q 
halts!	


false 
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Undecidabilty of the Halting 
Problem (3)	


•  What will be the effect of executing Q (Q)?	

•  If Halts (Q, Q) = true, then go into an infinite 

loop, that is, don’t halt	

–  But Halts (Q, Q) = true iff Q (Q) halts	


•  If Halts (Q, Q) = false, then halt immediately	

–  But Halts (Q, Q) = false iff Q (Q) doesn’t halt	


•  So Q (Q) halts if and only if Q (Q) doesn’t halt	

•  A contradiction!	

•  Our assumption (that Halts exists) was false	
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Rice’s Theorem (Informal)	

•  Suppose that B is any behavior that a 

program might exhibit on a given input	

–  examples: print a 0, open a window, delete a 

file, generate a beep	

•  Assume that we have a procedure ���

DoesB (P, X) that decides whether P (X) 
exhibits behavior B	


•  As in Turing’s proof, we show a 
contradiction	
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Rice’s Theorem (2)	

•  Define a paradoxical procedure Q:	


1.  procedure Q (P):	

2.      if DoesB (P, P) then	

3.          don’t do B	

4.      else	

5.          do B	


•  Note that B must be a behavior that we 
can control	
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Rice’s Theorem (3)	

•  Consider the result of executing Q (Q)	

•  Q (Q) does B if and only if ���

Q (Q) doesn’t do B	

•  Contradiction shows our assumption of 

existence of decision procedure DoesB was 
false	


•  A TM cannot decide any “controllable” 
behavior for all program/input combinations	
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Gödel’s Incompleteness 
Theorem���

(informally)	

•  By constructing a “paradoxical proposition” that asserts 

own unprovability, can prove:	

•  In any system of formal logic (powerful enough to define 

arithmetic) there will be a true proposition that be neither 
proved nor disproved in that system	


•  Yet by reasoning outside the system, we can prove it’s 
true	


•  Does this imply that human reasoning cannot be captured 
in a formal system (calculus)?  Or reduced to calculation?	


•  Philosophers have been grappling with this problem since 
the 1930s	


47	
COSC 312 — Turing Machines	


Hypercomputation	

•  CT Thesis says “effectively calculable” = 

“Turing-computable”	

•  Some authors equate “computable” with 

Turing-computable	

•  If true, then the limits of the TM are the 

limits of computation	

•  Is human intelligence “effectively 

calculable”?	

•  Hypercomputation = computation beyond 

the “Turing limit”	
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