
Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 1	

Models of Computation,���
Turing Machines,���

and the Limits ���
of Turing Computation	

 Bruce MacLennan	

Models	

•  A model is a tool intended to address a class

of questions about some domain of
phenomena	

•  They accomplish this by making
simplifications (idealizing assumptions)
relative to the class of questions	

•  As tools, models are:	

–  ampliative (better able to answer these

questions)	

–  reductive (make simplifying assumptions)	

2	

COSC 312 — Turing Machines	

Motivation for Models of
Computation	

•  What questions are models of computation
intended to answer?	

•  What are the simplifying assumptions of
models of computation?	

•  Why were models of computation
developed in the early 20th century, before
there were any computers?	

3	

COSC 312 — Turing Machines	

Effective���
Calculability	

•  Mathematicians were ���
interested in effective calculability:	

– What can be calculated by strictly mechanical

methods using finite resources?	

•  Think of a human “computer” 	

–  following explicit rules that require no
understanding of mathematics	

–  supplied with all the paper & pencils required	

4	

COSC 312 — Turing Machines	

Related Issues	

•  Formal mathematics: Can mathematical
proof & derivation be reduced to purely
mechanical procedures requiring no use of
intuition?	

•  Mechanization of thought: Can thinking be
reduced to mechanical calculation?	

5	

COSC 312 — Turing Machines	

Formal Logic	

•  Originally developed by Aristotle (384–322 BCE)	

•  A syllogism:	

All men are mortal	

Socrates is a man	

∴ Socrates is mortal	

•  Formal logic: the correctness of the steps depend
only on their form (syntax), not their meaning
(semantics):	

All M are P	

S is M	

∴ S is P	

•  More reliable, because more mechanical	

6	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 2	

Calculus	

•  In Latin, calculus means pebble	

•  In ancient times calculi were used for calculating

(as on an abacus), voting, and may other purposes	

•  Now, a calculus is:	

–  an mechanical method of solving problems	

–  by manipulating discrete tokens	

–  according to formal rules	

•  Examples: algebraic manipulation, integral &
differential calculi, logical calculi	

7	

COSC 312 — Turing Machines	

Assumptions of Calculi	

•  Information (data) representation is:	

–  formal (info. represented by arrangements)	

– finite (finite arrangements of atomic tokens)	

–  definite (can determine symbols & syntax)	

•  Information processing (rule following) is:	

–  formal (depends on arrangement, not meaning)	

– finite (finite number of rules & processing time)	

–  definite (know which rules are applicable)	

8	

COSC 312 — Turing Machines	

Thought as Calculation	

•  “By ratiocination I mean computation.” ���

— Thomas Hobbes (1588–1679)	

•  “Then, in case of a difference of opinion, no

discussion … will be any longer necessary … It
will rather be enough for them to take pen in hand,
set themselves to the abacus, and … say to one
another, “Let us calculate!” — Leibniz (1646–1716)	

•  Boole (1815–64): his goal was “to investigate the
fundamental laws of those operations of mind by
which reasoning is performed; to give expression
to them in the symbolical language of a Calculus”	

9	

COSC 312 — Turing Machines	

Early Investigations in
Mechanized Thought	

•  Leibniz (1646–1716): mechanical ���
calculation & formal inference	

•  Boole (1815–1864): “laws of thought”	

•  Jevons (1835–1882): logical abacus ���

& logical piano ⇒	

•  von Neumann (1903–1957): computation & the

brain	

•  Turing (1912–1954): neural nets, artificial

intelligence, “Turing test”	

10	

COSC 312 — Turing Machines	

Some Models of Computation	

•  Markov Algorithms — based on

replacement of strings by other strings	

•  Lambda Calculus — based on LISP-like

application of functions to arguments	

•  SK Calculus — based on two operations:	

((K X) Y) ⇒ X	

(((S X) Y) Z) ⇒ ((X Z) (Y Z))	

•  Turing Machine — most common	

11	

COSC 312 — Turing Machines	

Intuitive Basis of���
Turing Machine	

•  What could be done	

–  by a person following explicit formal rules	

–  with an unlimited supply of paper and pencils?	

•  Assumption: Any “effective” (mechanical)
calculation could be carried out in this way	

•  Reduce to bare essentials (for simplicity):	

–  symbols written on a long tape	

–  can read/write only one symbol at a time	

–  limited memory for the “state” of the calculation	

12	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 3	

Colossus: A Real���
Turing Machine	

•  Developed in UK in 1943–4 to crack Nazi codes	

•  Although Turing was not directly involved with

Colossus, he was involved with other
computerized code-breaking efforts	

•  Turing described the TM model in 1936	

13	

COSC 312 — Turing Machines	

Defining a Specific TM	

•  We must specify the “alphabet” of symbols used

on the tape	

–  typically 0, 1, and b (blank)	

–  this alphabet is always sufficient (binary coding)	

•  We must specify the number of states (memory)	

•  We must specify a finite set of rules of the form:	

–  (current state, symbol on tape,���
 symbol to write, next state, direction to move)	

–  for example, (3, 1, 0, 2, L)	

–  rules may be represented in diagram:	

3	

2	

1è0, L	

14	

COSC 312 — Turing Machines	

TM Example: Bit Inverter (1)	

0 1 1

1	

0è1,R	

1è0,R	

15	

COSC 312 — Turing Machines	

TM Example: Bit Inverter (2)	

1 1 1

1	

0è1,R	

1è0,R	

16	

COSC 312 — Turing Machines	

TM Example: Bit Inverter (3)	

1 0 1

1	

0è1,R	

1è0,R	

17	

COSC 312 — Turing Machines	

TM Example: Bit Inverter (4)	

1 0 0

1	

0è1,R	

1è0,R	

halts!	

18	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 4	

Unary Addition	

•  Represent the number N by N+1 marks (1 in

this case) — unary notation	

•  So the numbers M and N will be represented

by M+1 and N+1 marks (with a blank
between)	

•  The sum should be M+N+1 marks	

€

b1  1
M +1

     b1  1
N +1

     b

€

b1  1
M +N +1
     b

19	

COSC 312 — Turing Machines	

TM Example: Addition (1)	

… b 1 1 1 1 b 1 1 1 1 b …

3	

 4	

2	

1	

1èb,R	

 1èb,R	

 bè1,R	

1è1,R	

20	

COSC 312 — Turing Machines	

TM Example: Addition (2)	

… b b 1 1 1 b 1 1 1 1 b …

3	

 4	

2	

1	

1èb,R	

 1èb,R	

 bè1,R	

1è1,R	

21	

COSC 312 — Turing Machines	

TM Example: Addition (3)	

… b b b 1 1 b 1 1 1 1 b …

3	

 4	

2	

1	

1èb,R	

 1èb,R	

 bè1,R	

1è1,R	

22	

COSC 312 — Turing Machines	

TM Example: Addition (4)	

… b b b 1 1 b 1 1 1 1 b …

3	

 4	

2	

1	

1èb,R	

 1èb,R	

 bè1,R	

1è1,R	

23	

COSC 312 — Turing Machines	

TM Example: Addition (5)	

… b b b 1 1 b 1 1 1 1 b …

3	

 4	

2	

1	

1èb,R	

 1èb,R	

 bè1,R	

1è1,R	

24	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 5	

TM Example: Addition (6)	

… b b b 1 1 1 1 1 1 1 b …

3	

 4	

2	

1	

1èb,R	

 1èb,R	

 bè1,R	

1è1,R	

halts!	

25	

COSC 312 — Turing Machines	

A Physical Turing Machine	

See http://aturingmachine.com 	

26	

COSC 312 — Turing Machines	

The Universal Turing Machine	

27	

COSC 312 — Turing Machines	

Ordinary Turing Machine	

•  We can design a Turing machine M for a

specific purpose	

•  For each allowable input x it produces the

corresponding output y	

M	

x	

M	

y	

28	

COSC 312 — Turing Machines	

Universal Turing Machine	

•  We can design a Turing machine U that can

emulate any Turing machine M	

•  Let m be an encoding of M (e.g., its rules)	

•  For each allowable input x it produces the

corresponding output y	

U	

m x	

U	

y	

29	

COSC 312 — Turing Machines	

Equivalence Between TMs and���
Other Models of Computation	

•  If we can use some model of computation to
program a UTM, then we can emulate any TM	

–  So this model is at least as powerful as TMs	

•  If can design TM to emulate another kind of
universal machine, then UTM can emulate it	

–  So other model is no more powerful than TMs	

•  The way to prove equivalent “power” of different
models of computation	

•  Equivalent in terms of “computability” not space/
time efficiency	

30	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 6	

General-Purpose Computers	

•  The Universal Turing Machine is theoretical
foundation of general purpose computer	

•  Instead of designing a special-purpose
computer for each application	

•  Design one general-purpose computer:	

–  interprets program (virtual machine

description) stored in its memory	

–  emulates that virtual machine	

31	

COSC 312 — Turing Machines	

Church-Turing Thesis	

•  CT Thesis: The set of effectively calculable

problems is exactly the set of problems solvable by
TMs	

•  Empirical evidence: All the independently
designed models of computation turned out to be
equivalent to TM in power	

•  Easy to see how any calculus can be emulated by a
TM	

•  Easy to see how any (digital) computer can be
emulated by a TM (and vice versa)	

•  But, there is research in non-Turing models of
computation	

32	

COSC 312 — Turing Machines	

The Limits of Computation	

33	

COSC 312 — Turing Machines	

The Liar Paradox	

•  Epimenides the Cretan (7th cent. BCE) said,
“The men of Crete were ever liars …”	

•  “If you say that you are lying, and say it
truly, you are lying.” — Cicero (106–43 BCE)���
	

“I am lying.”	

34	

COSC 312 — Turing Machines	

Undecidabilty of the Halting
Problem (Informal)	

•  Assume we have procedure Halts that decides
halting problem for any program/input pair	

•  Let P (X) represent the execution of program P on
input X	

•  Halts (P, X) = true if and only if program P halts
on input X	

•  Halts (P, X) = false if and only if program P
doesn’t halts on input X	

•  Program P encoded as string or other legal input
to programs	

35	

COSC 312 — Turing Machines	

Assumed Turing Machine for
Halting Problem	

•  We can design a Turing machine Halts that can
decide, for any Turing machine P and input x,
whether P halts on x	

•  Let p be an encoding of P (e.g., its rules)	

•  If P halts on x:	

Halts	

p x	

Halts	

true

36	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 7	

Assumed Turing Machine for
Halting Problem (2)	

•  If P doesn’t halt on x:	

Halts	

p x	

Halts	

false

37	

COSC 312 — Turing Machines	

Undecidabilty of the Halting
Problem (2)	

•  Define the “paradoxical procedure” Q:	

1.  procedure Q (P):	

2.  if Halts (P, P) then	

3.  go into an infinite loop	

4.  else // Halts (P, P) is false, so	

5.  halt immediately	

•  Now Q is a program that can be applied to
any program string P	

38	

COSC 312 — Turing Machines	

Turing Machine Q	

•  After running TM Halts on p and p, if result was

true, go into an infinite loop	

Halts	

p p	

Halts	

true

Q	

true	

Q	

0000…

39	

COSC 312 — Turing Machines	

Turing Machine Q (2)	

•  After running TM Halts on p and p, if result was

false, halt immediately	

Halts	

p p	

Halts	

false

Q	

false	

Q
halts!	

false

40	

COSC 312 — Turing Machines	

TM Q Applied to q	

•  After running TM Halts on q and q, if result was

true, go into an infinite loop	

Halts	

q q	

Halts	

true

Q	

true	

Q	

0000…

41	

COSC 312 — Turing Machines	

TM Q Applied to q (2)	

•  After running TM Halts on q and q, if result was

false, halt immediately	

Halts	

q q	

Halts	

false

Q	

false	

Q
halts!	

false

42	

COSC 312 — Turing Machines	

Turing Computation	

 2013/2/18	

COSC 312 - Algorithm Analysis and
Automata	

 8	

Undecidabilty of the Halting
Problem (3)	

•  What will be the effect of executing Q (Q)?	

•  If Halts (Q, Q) = true, then go into an infinite

loop, that is, don’t halt	

–  But Halts (Q, Q) = true iff Q (Q) halts	

•  If Halts (Q, Q) = false, then halt immediately	

–  But Halts (Q, Q) = false iff Q (Q) doesn’t halt	

•  So Q (Q) halts if and only if Q (Q) doesn’t halt	

•  A contradiction!	

•  Our assumption (that Halts exists) was false	

43	

COSC 312 — Turing Machines	

Rice’s Theorem (Informal)	

•  Suppose that B is any behavior that a

program might exhibit on a given input	

–  examples: print a 0, open a window, delete a

file, generate a beep	

•  Assume that we have a procedure ���

DoesB (P, X) that decides whether P (X)
exhibits behavior B	

•  As in Turing’s proof, we show a
contradiction	

44	

COSC 312 — Turing Machines	

Rice’s Theorem (2)	

•  Define a paradoxical procedure Q:	

1.  procedure Q (P):	

2.  if DoesB (P, P) then	

3.  don’t do B	

4.  else	

5.  do B	

•  Note that B must be a behavior that we
can control	

45	

COSC 312 — Turing Machines	

Rice’s Theorem (3)	

•  Consider the result of executing Q (Q)	

•  Q (Q) does B if and only if ���

Q (Q) doesn’t do B	

•  Contradiction shows our assumption of

existence of decision procedure DoesB was
false	

•  A TM cannot decide any “controllable”
behavior for all program/input combinations	

46	

COSC 312 — Turing Machines	

Gödel’s Incompleteness
Theorem���

(informally)	

•  By constructing a “paradoxical proposition” that asserts

own unprovability, can prove:	

•  In any system of formal logic (powerful enough to define

arithmetic) there will be a true proposition that be neither
proved nor disproved in that system	

•  Yet by reasoning outside the system, we can prove it’s
true	

•  Does this imply that human reasoning cannot be captured
in a formal system (calculus)? Or reduced to calculation?	

•  Philosophers have been grappling with this problem since
the 1930s	

47	

COSC 312 — Turing Machines	

Hypercomputation	

•  CT Thesis says “effectively calculable” =

“Turing-computable”	

•  Some authors equate “computable” with

Turing-computable	

•  If true, then the limits of the TM are the

limits of computation	

•  Is human intelligence “effectively

calculable”?	

•  Hypercomputation = computation beyond

the “Turing limit”	

48	

COSC 312 — Turing Machines	

