Turing Computation

Models of Computation,
Turing Machines,
and the Limits
of Turing Computation

Bruce MacLennan

2013/2/18

Models

* A model is a tool intended to address a class
of questions about some domain of
phenomena

* They accomplish this by making
simplifications (idealizing assumptions)
relative to the class of questions

* As tools, models are:

— ampliative (better able to answer these
questions)
— reductive (make simplifying assumptions)

COSC 312 — Turing Machines 2

Motivation for Models of
Computation
* What questions are models of computation
intended to answer?

e What are the simplifying assumptions of
models of computation?

* Why were models of computation
developed in the early 20" century, before
there were any computers?

COSC 312 — Turing Machines

Effective
Calculability

e Mathematicians were et
interested in effective calculability:
— What can be calculated by strictly mechanical
methods using finite resources?
e Think of a human “computer”

— following explicit rules that require no
understanding of mathematics

— supplied with all the paper & pencils required

COSC 312 — Turing Machines 4

Related Issues

* Formal mathematics: Can mathematical
proof & derivation be reduced to purely
mechanical procedures requiring no use of
intuition?

* Mechanization of thought: Can thinking be
reduced to mechanical calculation?

COSC 312 — Turing Machines

COSC 312 - Algorithm Analysis and

Automata

Formal Logic
* Originally developed by Aristotle (384-322 BCE)
* A syllogism:
All men are mortal
Socrates is a man
.. Socrates is mortal
» Formal logic: the correctness of the steps depend
only on their form (syntax), not their meaning
(semantics):
All M are P
SisM
S SisP
e More reliable, because more mechanical

COSC 312 — Turing Machines 6




Turing Computation

Calculus

In Latin, calculus means pebble
In ancient times calculi were used for calculating
(as on an abacus), voting, and may other purposes
Now, a calculus is:

— an mechanical method of solving problems

— by manipulating discrete tokens

— according to formal rules

Examples: algebraic manipulation, integral &
differential calculi, logical calculi

COSC 312 — Turing Machines 7

Assumptions of Calculi

* Information (data) representation is:
— formal (info. represented by arrangements)
— finite (finite arrangements of atomic tokens)
— definite (can determine symbols & syntax)

¢ Information processing (rule following) is:
— formal (depends on arrangement, not meaning)
— finite (finite number of rules & processing time)

— definite (know which rules are applicable)

o

COSC 312 — Turing Machines

Thought as Calculation

“By ratiocination 1 mean computation.”

— Thomas Hobbes (1588-1679)

“Then, in case of a difference of opinion, no
discussion ... will be any longer necessary ... It
will rather be enough for them to take pen in hand,
set themselves to the abacus, and ... say to one
another, “Let us calculate!” — Leibniz (1646-1716)
Boole (1815-64): his goal was “to investigate the
fundamental laws of those operations of mind by
which reasoning is performed; to give expression
to them in the symbolical language of a Calculus”

COSC 312 — Turing Machines 9

Early Investigations in
Mechanized Thought

¢ Leibniz (1646—1716): mechanical
calculation & formal inference
* Boole (1815-1864): “laws of thought”
* Jevons (1835-1882): logical abacus
& logical piano =

¢ von Neumann (1903-1957): computation & the
brain
e Turing (1912-1954): neural nets, artificial

intelligence, “Turing test”
COSC 312 — Turing Machines 10

Some Models of Computation

Markov Algorithms — based on
replacement of strings by other strings
Lambda Calculus — based on LISP-like
application of functions to arguments

SK Calculus — based on two operations:
(KXY =X

(X)) N2 = (X2 (Y2)

Turing Machine — most common

COSC 312 — Turing Machines 11

Intuitive Basis of
Turing Machine

* What could be done
— by a person following explicit formal rules
— with an unlimited supply of paper and pencils?
 Assumption: Any “effective” (mechanical)
calculation could be carried out in this way
* Reduce to bare essentials (for simplicity):
— symbols written on a long tape
— can read/write only one symbol at a time
— limited memory for the “state” of the calculation

COSC 312 — Turing Machines 12

COSC 312 - Algorithm Analysis and

Automata




Turing Computation

Colossus: A Real
Turing Machine

¢ Developed in UK in 1943—4 to crack Nazi codes

¢ Although Turing was not directly involved with
Colossus, he was involved with other
computerized code-breaking efforts

* Turing described the TM model in 1936

COSC 312 — Turing Machines

2013/2/18

Defining a Specific TM

» We must specify the “alphabet” of symbols used
on the tape
— typically 0, 1, and b (blank)
— this alphabet is always sufficient (binary coding)
¢ We must specify the number of states (memory)
* We must specify a finite set of rules of the form:

— (current state, symbol on tape,
symbol to write, next state, direction to move)

— for example, (3,1,0,2,L) 190.L

— rules may be represented in diagram: m

COSC 312 — Turing Machines 14

TM Example: Bit Inverter (1)

190R 0 1R

COSC 312 — Turing Machines

TM Example: Bit Inverter (2)

COSC 312 — Turing Machines 16

TM Example: Bit Inverter (3)

20R 02>1R

COSC 312 — Turing Machines

COSC 312 - Algorithm Analysis and

Automata

TM Example: Bit Inverter (4)

120R 0>1R

COSC 312 — Turing Machines 18




Turing Computation 2013/2/18

Unary Addition TM Example: Addition (1)
* Represent the number N by N+1 marks (1 in
this case) — unary notation o
* So the numbers M and N will be represented D ~b1111b1111b .
by M+1 and N+1 marks (with a blank

between)
¢ The sum should be M+N+1 marks

BL -+ 1bl o Wby bl e b

—_— ——
N+l

M +1 M +N +1
TM Example: Addition (2) TM Example: Addition (3)
B .bbll1l1b1l111b. B .bbbllb1l111lb.
TM Example: Addition (4) TM Example: Addition (5)
B .bbbllb1l11l1lb. B .bbbllb1l111lb.

COSC 312 — Turing Machines 23 COSC 312 — Turing Machines 24

COSC 312 - Algorithm Analysis and
Automata 4



Turing Computation 2013/2/18

. A Physical Turing Machine
TM Example: Addition (6) y &
B +.bbb11111115b . z J
, ATTuring MAchine
19b,R 19b,R b-)l,R In the Classic Style
c e ‘e e - By Mike Davey
191R
See http://aturingmachine.com
COSC 312 — Turing Machines 25 COSC 312 — Turing Machines 26
Ordinary Turing Machine
* We can design a Turing machine M for a
specific purpose
* For each allowable input x it produces the
The Universal Turing Machine corresponding output y

COSC 312 — Turing Machines 27 COSC 312 — Turing Machines 28

Equivalence Between TMs and
Other Models of Computation

If we can use some model of computation to
program a UTM, then we can emulate any TM

— So this model is at least as powerful as TMs

If can design TM to emulate another kind of
universal machine, then UTM can emulate it

— So other model is no more powerful than TMs

The way to prove equivalent “power” of different
models of computation

Equivalent in terms of “computability” not space/
time efficiency

Universal Turing Machine

¢ We can design a Turing machine U that can
emulate any Turing machine M

¢ Let m be an encoding of M (e.g., its rules)

¢ For each allowable input x it produces the
corresponding output y

U > v %)g(
I I

COSC 312 — Turing Machines 29 COSC 312 — Turing Machines 30

COSC 312 - Algorithm Analysis and
Automata 5



Turing Computation

2013/2/18

General-Purpose Computers

* The Universal Turing Machine is theoretical
foundation of general purpose computer

* Instead of designing a special-purpose
computer for each application

» Design one general-purpose computer:

— interprets program (virtual machine
description) stored in its memory

— emulates that virtual machine

COSC 312 — Turing Machines 31

Church-Turing Thesis

CT Thesis: The set of effectively calculable
problems is exactly the set of problems solvable by
TMs

Empirical evidence: All the independently
designed models of computation turned out to be
equivalent to TM in power

Easy to see how any calculus can be emulated by a
™

Easy to see how any (digital) computer can be
emulated by a TM (and vice versa)

But, there is research in non-Turing models of
computation

COSC 312 — Turing Machines 32

The Limits of Computation

COSC 312 — Turing Machines 33

The Liar Paradox
 Epimenides the Cretan (7t cent. BCE) said,
“The men of Crete were ever liars ...”
 “If you say that you are lying, and say it
truly, you are lying.” — Cicero (106-43 BCE)

“I am lying.”

COSC 312 — Turing Machines 34

Undecidabilty of the Halting
Problem (Informal)

* Assume we have procedure Halts that decides
halting problem for any program/input pair

¢ Let P (X) represent the execution of program P on
input X

¢ Halts (P, X) = true if and only if program P halts
on input X

* Halts (P, X) = false if and only if program P
doesn’ t halts on input X

¢ Program P encoded as string or other legal input
to programs

COSC 312 — Turing Machines 35

Assumed Turing Machine for
Halting Problem

* We can design a Turing machine Halts that can
decide, for any Turing machine P and input x,
whether P halts on x

* Let p be an encoding of P (e.g., its rules)

e [If P halts on x:

COSC 312 — Turing Machines 36

COSC 312 - Algorithm Analysis and

Automata



Turing Computation

Assumed Turing Machine for
Halting Problem (2)

e If P doesn’ t halt on x:

COSC 312 — Turing Machines 37

Undecidabilty of the Halting
Problem (2)

» Define the “paradoxical procedure” Q:
1. procedure Q (P):
2. if Halts (P, P) then
3. go into an infinite loop
4, else // Halts (P, P) is false, so
5. halt immediately
e Now Q is a program that can be applied to
any program string P

COSC 312 — Turing Machines 38

Turing Machine Q

¢ After running TM Halts on p and p, if result was
true, go into an infinite loop

%,.
= :> Halts
U

Halts ’K-.K‘

COSC 312 — Turing Machines 39

Turing Machine Q (2)

¢ After running TM Halts on p and p, if result was
false, halt immediately

Halts

IIIZII:> Halts
!
*: &
© "[":> %& gilts!
! 1!

COSC 312 — Turing Machines 40

TM Q Applied to g

¢ After running TM Halts on g and ¢, if result was
true, go into an infinite loop

%,.
= :> Halts
U

Halts ’K-.K‘

COSC 312 — Turing Machines 41

TM Q Applied to g (2)

¢ After running TM Halts on g and ¢, if result was
false, halt immediately

Halts

IIIZII:> Halts
!
*: &
© "[":> %& gilts!
! 1!

COSC 312 — Turing Machines 42

COSC 312 - Algorithm Analysis and

Automata




Turing Computation

2013/2/18

Undecidabilty of the Halting
Problem (3)

What will be the effect of executing Q (Q)?
If Halts (O, Q) = true, then go into an infinite
loop, that is, don’ t halt
— But Halts (Q, Q) = true iff Q (Q) halts
If Halts (Q, Q) = false, then halt immediately
— But Halts (Q, Q) = false iff O (Q) doesn’ t halt
So Q (Q) halts if and only if Q (Q) doesn’t halt
A contradiction!
Our assumption (that Halts exists) was false

COSC 312 — Turing Machines 43

Rice’ s Theorem (Informal)

Suppose that B is any behavior that a

program might exhibit on a given input

— examples: print a 0, open a window, delete a
file, generate a beep

Assume that we have a procedure
DoesB (P, X) that decides whether P (X)
exhibits behavior B

As in Turing’ s proof, we show a
contradiction

COSC 312 — Turing Machines 44

Rice’ s Theorem (2)

Define a paradoxical procedure Q:

1. procedure Q (P):

2 if DoesB (P, P) then
3. don’t do B

4 else

5 do B

Note that B must be a behavior that we
can control

COSC 312 — Turing Machines 45

Rice’ s Theorem (3)

Consider the result of executing Q (Q)

0 (Q) does B if and only if

0 (Q) doesn’ t do B

Contradiction shows our assumption of
existence of decision procedure DoesB was
false

A TM cannot decide any “controllable”
behavior for all program/input combinations

COSC 312 — Turing Machines 46

Godel’ s Incompleteness
Theorem
(informally)

By constructing a “paradoxical proposition” that asserts
own unprovability, can prove:

In any system of formal logic (powerful enough to define
arithmetic) there will be a true proposition that be neither
proved nor disproved in that system

Yet by reasoning outside the system, we can prove it’s
true

Does this imply that human reasoning cannot be captured
in a formal system (calculus)? Or reduced to calculation?
Philosophers have been grappling with this problem since
the 1930s

COSC 312 — Turing Machines 47

Hypercomputation

CT Thesis says “effectively calculable” =
“Turing-computable”

Some authors equate “computable” with
Turing-computable

If true, then the limits of the TM are the
limits of computation

Is human intelligence “effectively
calculable”?

Hypercomputation = computation beyond
the “Turing limit”

COSC 312 — Turing Machines 48

COSC 312 - Algorithm Analysis and

Automata



