Part 2D: Excitable Media 2/6/12

D.
Excitable Media
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Examples of Excitable Media

Slime mold amoebas

Cardiac tissue (& other muscle tissue)

Cortical tissue

Certain chemical systems (e.g., BZ reaction)

Hodgepodge machine
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Characteristics of
Excitable Media

* Local spread of excitation

— for signal propagation
* Refractory period

— for unidirectional propagation
e Decay of signal

— avoid saturation of medium
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Behavior of Excitable Media
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Stimulation
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Relay (Spreading Excitation)
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Continued Spreading
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Restimulation
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Circular & Spiral Waves
Observed in:

Slime mold aggregation

Chemical systems (e.g., BZ reaction)

Neural tissue

Retina of the eye

Heart muscle

Intracellular calcium flows

e Mitochondrial activity in oocytes
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Cause of
Concentric Circular Waves

Excitability is not enough

But at certain developmental stages, cells
can operate as pacemakers

When stimulated by cAMP, they begin
emitting regular pulses of cAMP
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Spiral Waves

Persistence & propagation of spiral waves
explained analytically (Tyson & Murray,
1989)

Rotate around a small core of of non-
excitable cells

Propagate at higher frequency than circular

Therefore they dominate circular in
collisions

But how do the spirals form initially?
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Some Explanations

of Spiral Formation

* “the origin of spiral waves remains
obscure” (1997)

* Traveling wave meets obstacle and is
broken

* Desynchronization of cells in their
developmental path

* Random pulse behind advancing wave front
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Step 0: Passing Wave Front
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Step 1: Random Excitation
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Step 2: Beginning of Spiral
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Step 3
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Step 4
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Step 5
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Step 6: Rejoining & Reinitiation
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Step 8
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Formation of Double Spiral
25 35

L
60 ;5 :
2/6/12 from Pélsson & Cox (1996) 23

NetLogo Simulation

Of Spiral Formation
Amoebas are immobile at timescale of wave
movement
A fraction of patches are inert (grey)

A fraction of patches has initial
concentration of cAMP

At each time step:

— chemical diffuses

— each patch responds to local concentration
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Response of Patch

if patch is not refractory (brown) then
if local chemical > threshold then
set refractory period
produce pulse of chemical (red)
else
decrement refractory period
degrade chemical in local area
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Demonstration of NetLogo
Simulation of Spiral Formation

Run SlimeSpiral.nlogo
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Observations

» Excitable media can support circular and spiral
waves

* Spiral formation can be triggered in a variety of
ways

e All seem to involve inhomogeneities (broken
symmetries):
— 1n space
— in time

— 1n activity
* Amplification of random fluctuations
» Circles & spirals are to be expected

1. if chemical > movement threshold then
take step up chemical gradient

2. else if chemical > relay threshold then
produce more chemical (red)
become refractory

3. else wait
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NetLogo Simulation of
Streaming Aggregation
1. chemical diffuses
2. if cell is refractory ( )
3. then chemical degrades
4. else (it’s excitable, colored white)

28
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Demonstration of NetLogo
Simulation of Streaming

Run SlimeStream.nlogo
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Typical Equations for
Excitable Medium
(ignoring diffusion)

e Excitation variable:

u= f(u,y)

* Recovery variable:

v =g(u,v)
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Nullclines

-

recovery

excitation
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Local Linearization

-

recovery

excitation
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Fixed Points & Eigenvalues

stable unstable

: 5 saddle point
fixed point fixed point P
real parts of real parts of one positive real &
eigenvalues eigenvalues one negative real
are negative are positive eigenvalue
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FitzHugh-Nagumo Model

» A simplified model of action potential
generation in neurons

¢ The neuronal membrane i1s an excitable
medium

* B is the input bias:
3
: u
u=u-—-v+B
2!

v=¢b,+bu-v)
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Netl.ogo Simulation of
Excitable Medium
in 2D Phase Space

(EM-Phase-Plane.nlogo)
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Elevated Thresholds During
Recovery

-
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Type II Model
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* Soft threshold with critical regime
* Bias can destabilize fixed point

2/6/12 fig. < Gerstner & Kistler 37

Poincaré-Bendixson Theorem
v =0
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Type I Model

stable manifold
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Type I Model (Elevated Bias)
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Type I Model (Elevated Bias 2)
ii=0

41

Type 1 vs. Type 11
e 3
I I

e Continuous vs. threshold behavior of frequency

* Slow-spiking vs. fast-spiking neurons

2/6/12 fig. < Gerstner & Kistler 0

2/6/12

21



Part 2D: Excitable Media

Modified Martiel & Goldbeter
Model for Dicty Signalling

Variables (functions of x, y, 7):

B = intracellular concentration

of cAMP
v = extracellular concentration i
of cAMP
p = fraction of receptors in active state
2/6/12 43
Equations
dBxyyt)
o=y~ Bk (1]
Rate of change in __ Production Intracellular Secretion
intracellular [CAMP] — of cAMP " hydrolysis ~ of cAMP
dV(x%t) kt
= - +DV?y 2
dr A key Viy 121
Rate of change in __ Secretion Extracellular | Diffusion
extracellular [CAMP] = of cAMP ™ hydrolysis + of cAMP
dp(x.y,t)
di =M1 -p  —fily)e [3]
Rate of change in frac- __ Dephospho- Phosphorylation
tion of active receptor — rylation of receptor ~ of receptor
2/6/12 e 44
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Positive Feedback Loop

Extracellular cAMP increases
(y increases)
=> Rate of synthesis of intracellular cAMP
increases
(® increases)
=> Intracellular cAMP increases
(P increases)
=> Rate of secretion of cCAMP increases

(= Extracellular cAMP increases)

2/6/12 See Equations 45

Negative Feedback Loop

Extracellular cAMP increases
(y increases)
= cAMP receptors desensitize
(f; increases, f, decreases, p decreases)
=> Rate of synthesis of intracellular cAMP
decreases
(P decreases)
=> Intracellular cAMP decreases
(B decreases)
=> Rate of secretion of cAMP decreases
=> Extracellular cAMP decreases
(y decreases)

2/6/12 See Equations 46
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Dynamics of Model

Unperturbed
= cAMP concentration reaches steady state

Small perturbation in extracellular cAMP
=> returns to steady state

Perturbation > threshold
=> large transient in cAMP,

then return to steady state

Or oscillation (depending on model
parameters)

47
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