Part 4A: Artificial Neural Network Learning

IV. Neural Network Learning

2/23/12

2/23/12

A.
Artificial Neural Network
Learning

2/23/12

Supervised Learning

* Produce desired outputs for training inputs

* Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition
» Feedforward multilayer networks

2/23/12

Feedforward Network

hidden
layers

2/23/12

Typical Artificial Neuron

5 weights

@ connection

inputs <

threshold

2/23/12

Typical Artificial Neuron

linear activation
O 51 combination function

Win T net input
9 (local field)

2/23/12

Part 4A: Artificial Neural Network Learning

Equations

iwijsj) -6
j=1

Net input: h,- =

Neuron output: S, = O(h[.)

2/23/12

Single-Layer Perceptron

2/23/12

Variables

2/23/12

Single Layer Perceptron
Equations

Binary threshold activation function :

1 ifh>0
1)=©(h)=
dlps o) {0, iths0

Honaet (leeapity ijjx, >0
0, otherwise

1, ifw-x>60

S

, ifw-x=<86

2/23/12

2D Weight Vector
W
w- X = |w]||x]|cos ¢ 9 X @
cos¢ = 2
Il Ao
w-x =||wly
9
w x>0 N, k \
< HWHV >0 \/‘6/
©V>H/HWH HWH

2/23/12

M

N-Dimensional Weight Vector
@

normal
W vector
separating
hyperplane

2/23/12

2/23/12

Part 4A: Artificial Neural Network Learning

2/23/12

Goal of Perceptron Learning
 Suppose we have training patterns x', X2,
WP coq e
e where x* € {0, 1}",y» € {0, 1}

e We want to find w, 6 such that
w=0Wwx-0)forp=1,...,P

2/23/12

..., xP with corresponding desired outputs

Treating Threshold as Weight
h= (2 wjxj] -0

2/23/12 14

2/23/12

Treating Threshold as Weight

15

Augmented Vectors

0 -1
= w; - xlp
wW=| . S|

W, Bt

We want y” =®(\7v-i”), p=L....P

2/23/12 16

Reformulation as Positive
Examples

Let z” = X" for positive, z” = —X” for negative

Want w-z” =0, forp=1....,P

2/23/12

Want W- X” > 0 for positive, W- X” <0 for negative

Hyperplane through origin with all z” on one side

We have positive (y” =1) and negative (y” =0) examples

Adjustment of Weight Vector

2/23/12 18

Part 4A: Artificial Neural Network Learning

2/23/12

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:
a) forp=1,...,Pdo:
1) if 27 classified correctly, do nothing

2) else adjust weight vector to be closer to correct
classification

2/23/12 19

Weight Adjustment
W”‘ﬂzpnz"
W Jw
ZP

2/23/12 20

Improvement in Performance

2/23/12 21

Perceptron Learning Theorem

If there is a set of weights that will solve the
problem,

then the PLA will eventually find it
* (for a sufficiently small learning rate)

* Note: only applies if positive & negative
examples are linearly separable

2/23/12 22

NetLogo Simulation of
Perceptron Learning

2/23/12 23

Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates
Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

* Classes can be arbitrary hyperpolyhedra
* Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm

2/23/12 24

Part 4A: Artificial Neural Network Learning

Hyperpolyhedral Classes

2/23/12 25

NetLogo Demonstration of
Back-Propagation Learning

2/23/12 27

2/23/12
Credit Assignment Problem
How do we adjust the weights of the hidden layers?
\
Desired
output
input hidden output
layer layers layer
2/23/12 26
Adaptive System
Evaluation Function
System (Fitness, Figure of Merit)

Control
Algorithm

Control Parameters
2/23/12 28

Gradient

oF p .
—— measures how F is altered by variation of P,

k
or,
o
dF,
N e ons
JF,
P,
VF points in direction of maximum local increase in F

2/23/12 29

Gradient Ascent
on Fitness Surface

2/23/12 30

Part 4A: Artificial Neural Network Learning

2/23/12

QGradient Ascent
by Discrete Step

i

2/23/12

Gradient Ascent is Local

2/23/12 32

Gradient Ascent Process
P =nVF(P)
Change in fitness :

. dF m JF dP, m g
F= E = Ekﬂfpkditk ol Ek=1(VF)kP/‘

F=VF-P
F =VF-nVF =q|VF|[20

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

2/23/12

General Ascent in Fitness
Note that any adaptive process P(t) will increase
fitness provided :
0<F =VF P =|VF|[P|cosp

where ¢ is angle between VF and P

Hence we need cosgp >0

or |g| < 90

2/23/12 34

General Ascent
on Fitness Surface

i

2/23/12

S

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',...,t°

Suppose for parameters P the corresponding actual outputs

arey'.....y°

Suppose D(t,y) € [0,%) measures difference between

target & actual outputs
LetE? = D(t" ,y") be error on gth sample

Let F(P) = —i E‘(P)= _i D[t‘f,y‘f(P)]

2/23/12 36

Part 4A: Artificial Neural Network Learning

Gradient of Fitness

VF =V,

—ZIEq]=—EVEq
OE" =LD(tq,y") _EaD()ﬁyq

P, P, e
dD(t" ,y") ay*
» dy? P,

-V,.D(t".y’ ‘?Y/

2/23/12 37

2/23/12

Jacobian Matrix
i 4
ng‘ t?y.ﬁpm
@%R (?y%P

Note J* € R™" and VD(t",y") eR™!

Define Jacobian matrix J¢ =

GET oy D[ty
b, Lap, v

Since (VE”)k =

Ei— (Jq)TVD(tq’yq)

2/23/12 38

Derivative of Squared Euclidean
Distance

Suppose D(t,y) =it - y| = Ei(t,- -y)

Dit=3)_ o 5y pu=y)

Gradient of Error on ¢ Input

gE* dD(t'y?) gy
oP, dy' P,

=2(yq _tq).%
k

23, (53-15) 31
oo (-

it WAL it AN S N
2
dz, -y,
=(‘d7y])=_2(tf_yj)
dD(t.y) _
Ay)
Recap

. L 4
P= 7)" (¢4 —y
Y, () (¢ -v)
To know how to decrease the differences between
actual & desired outputs,
a4
P>

which says how jth output varies with kth parameter

we need to know elements of Jacobian,

(given the gth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network
2/23/12 41

2/23/12 40
Multilayer Notation
1
—q 1
—4 \ L e
>y
x4 wW! W2 ‘/ WL2 | Wi y¢
\ \ /
N
—¢ ’
s] SZ «l SLf] SL
2/23/12 42

Part 4A: Artificial Neural Network Learning

Notation

e L layers of neurons labeled 1, ..., L

* N, neurons in layer [

* s’ = vector of outputs from neurons in layer /

* input layer s' = x4 (the input pattern)

« output layer s’ = y? (the actual output)

* W!= weights between layers / and /+1

* Problem: find out how outputs y, vary with
weights ij’ (=1,...,L-1)

2/23/12 43

2/23/12

Typical Neuron

2/23/12 44

Error Back-Propagation

a

: JE ; ;
We will compute 7 starting with last layer (= L-1)
if

and working back to earlier layers (I = L-2,...,1)

2/23/12 45

Delta Values

Convenient to break derivatives by chain rule :
JEY OE Oh!

oWl aw /T
IE"
oh!
JE‘! , oh!

0 7 Rl -1
w, T ow)

Let 8! =

S

2/23/12 46

Output-Layer Neuron

2/23/12 47

Output-Layer Derivatives (1)

q
o/ =%=ﬁzk(sf —z;’)z

d(st -1f)’ ds
=(sdhl.L) = 2(s,.L - tf’)ﬁ
=2(s - 1/)o'(hf)
2/23/12 48

Part 4A: Artificial Neural Network Learning

2/23/12

Output-Layer Derivatives (2)

ﬁhiL izl Ll e
aWL—l= WLIEW
i

W SO 95
ij
where & = 2(SiL =)0’(h;L)

JE* LgL-l

2/23/12 49

Hidden-Layer Neuron

2/23/12 50

Hidden-Layer Derivatives (1)

Jh!
Recall — =6/ —1~
aW,] aw,!
JE’ JE? dn" o
e Wyl L. o NVl
ST Zdh;*' oh! 2 “ on!
gy Wsh Il do(h
‘7th) Em lk d JWk,IS, =W/ (I) Wk,o(h)
oh! oh! oh! dh!
’ 1 1+1 Ly 5N g1 [+1 1
8 = X8/ Wo'(n]) = o'(h]) Y, 8, W,
k k
2/23/12 51

Hidden-Layer Derivatives (2)

&h[l 4 zwllll_dW“”=sl‘-1
&Wil{fl Wl 1 Wl 1)

9E* e

w0

ij
where 8] = G’(hi’)z s'w
k
2/23/12 52

Derivative of Sigmoid

1

— (logistic sigmoid
1+exp(txh) (og g)

Suppose s =o(h) =

D,s=D, [l + exp(—och)]ﬁI o —[l + exp(—ozh)]ﬁ2 D, (1 + e’“”)

~ah
e

(1 + e"‘h)2

I N S S 1
Tl | i 1 Tope | b Yons

=as(l-s)

=—(1+e’°"') (—ae""") o

2/23/12 53

Summary of Back-Propagation

Algorithm
Output layer : 8/ =2as; (1 —st)(Y,L - tf’)
el

2/23/12 54

Part 4A: Artificial Neural Network Learning

Output-Layer Computation

2/23/12 55

2/23/12

Hidden-Layer Computation

AW, =nd)s!!

S =as! (1 = sf)Eé,ﬁ”Wk’l
k

2/23/12 56

Training Procedures

¢ Batch Learning
— on each epoch (pass through all the training pairs),
— weight changes for all patterns accumulated
— weight matrices updated at end of epoch
— accurate computation of gradient
¢ Online Learning
— weight are updated after back-prop of each training pair
— usually randomize order for each epoch
— approximation of gradient
¢ Doesn’t make much difference

2/23/12 57

Summation of Error Surfaces

Gradient Computation
in Batch Learning

2/23/12 59

B
EI
E
Gradient Computation
in Online Learning
B
EI
E

10

Part 4A: Artificial Neural Network Learning

Testing Generalization

Training

Data
——

Test
Data
——

2/23/12 61

2/23/12

Problem of Rote Learning

error

€error on
test data

error on
training
data

epoch

stop training here

2/23/12 62

Improving Generalization

2/23/12 63

A Few Random Tips

¢ Too few neurons and the ANN may not be able to
decrease the error enough

¢ Too many neurons can lead to rote learning

¢ Preprocess data to:
— standardize
— eliminate irrelevant information
— capture invariances
— keep relevant information

o If stuck in local min., restart with different random
weights

2/23/12 64

Run Example BP Learning

2/23/12 65

Beyond Back-Propagation

* Adaptive Learning Rate
* Adaptive Architecture
— Add/delete hidden neurons
— Add/delete hidden layers
¢ Radial Basis Function Networks
¢ Recurrent BP
¢ Etc.,etc., etc....

2/23/12 66

11

Part 4A: Artificial Neural Network Learning 2/23/12

What is the Power Of Can ANNSs Exceed the “Turing Limit”?

Artificial Neural Networks?

* With respect to Turing machines?

* As function approximators?

2/23/12 67

¢ There are many results, which depend sensitively on
assumptions; for example:

¢ Finite NNs with real-valued weights have super-Turing
power (Siegelmann & Sontag ‘94)

¢ Recurrent nets with Gaussian noise have sub-Turing power
(Maass & Sontag ‘99)

* Finite recurrent nets with real weights can recognize all
languages, and thus are super-Turing (Siegelmann ‘99)

* Stochastic nets with rational weights have super-Turing
power (but only P/POLY, BPP/log") (Siegelmann ‘99)

* But computing classes of functions is not a very relevant
way to evaluate the capabilities of neural computation

2/23/12 68

A Universal Approximation Theorem

Suppose fis a continuous function on [0,1]"

Suppose o'is a nonconstant, bounded,
monotone increasing real function on i.

For any ¢ >0, there is an m such that

JaeR", beER", WE R such that if

F(xl,...,x,,) = "E’aio[iww'xj +b/)

[i.e., F(x)=a~a(Wx+b)]
then ‘F(x) - f(x)‘ <eforallx € [0,1]"

223/12 3 69
(see, e.g., Haykin, N.Nets 2/e, 208-9)

One Hidden Layer is Sufficient

* Conclusion: One hidden layer is sufficient
to approximate any continuous function
arbitrarily closely

2/23/12 70

The Golden Rule of Neural Nets

Neural Networks are the
second-best way
to do everything!

12

