globals [ epoch-error ;; average error in this epoch perceptron ;; a single output-node ] ;; A perceptron is modeled by input-node and bias-node agents ;; connected to an output-node agent. ;; Connections from input nodes to output nodes ;; in a perceptron. links-own [ weight ] ;; input-nodes have an activation value of 1 or -1 breed [ input-nodes input-node ] input-nodes-own [ activation ] ;; bias nodes are input-nodes whose activation ;; is always 1. breed [ bias-nodes bias-node ] bias-nodes-own [ activation ] ;; Output nodes compute the weighted some of their ;; inputs and then set their activation to 1 if ;; the sum is greater than their threshold. An ;; output node can also be the input-node for another ;; perceptron. breed [ output-nodes output-node ] output-nodes-own [ threshold activation] ;; set up a perceptron to setup ;; clear the world ca ;; set our background to something more viewable than black ask patches [ set pcolor white - 3 ] ;; set up the shapes for all the entities set-default-shape input-nodes "circle" set-default-shape bias-nodes "bias-node" set-default-shape output-nodes "output-node" ;; create output node create-output-nodes 1 [ set activation random-activation set xcor 6 set size 2 set threshold 0 set perceptron self ] ;; create bias node create-bias-nodes 1 [ set activation 1 setxy 3 7 set size 1.5 my-create-link-to perceptron ] ;; create input nodes let input-node-count 1 create-input-nodes 2 [ set activation random-activation set label (word "Node " input-node-count) set label-color magenta setxy -6 10 - input-node-count * 5 set size 1.5 my-create-link-to perceptron set input-node-count input-node-count + 1 ] ask perceptron [ compute-activation ] end ;; links an input or bias node to an output node to my-create-link-to [ anode ] ;; input or bias node procedure create-link-to anode [ set color red + 1 ;; initialize the weight of the link set weight random-float .1 - .05 ] end to-report perceptron-input-nodes ;; output-node-procedure report in-link-neighbors with [ breed != bias-nodes ] end to-report perceptron-input-links ;; output-node procedure report my-in-links with [ [breed] of end1 != bias-nodes ] end to-report perceptron-bias-node ;; output-node procedure report one-of in-link-neighbors with [ breed = bias-nodes ] end to-report perceptron-bias-links ;; output-node procedure report my-in-links with [ [breed] of end1 = bias-nodes ] end to compute-activation ;; output-node procedure ;; computes activation by summing the inputs * weights and running through step function set activation sign sum [ [activation] of end1 * weight ] of my-in-links recolor end to update-weights [ target-answer ] ;; output-node procedure ;; declare a variable for the output answer let output-answer activation ;; calculate error for output nodes let output-error target-answer - output-answer ;; update the epoch-error set epoch-error epoch-error + (target-answer - sign output-answer) ^ 2 ;; examine input output edges and set their new weight ;; increasing or decreasing it by a value determined by the learning-rate ask my-in-links [ set weight weight + learning-rate * output-error * [activation] of end1 ] end ;; computes the sign function given an input value to-report sign [input] ;; output-node procedure ifelse input > threshold [ report 1 ] [ report -1 ] end to-report random-activation ;; observer procedure ifelse random 2 = 0 [ report 1 ] [ report -1 ] end to-report compute-target-answer ;; observer procedure ;; compute the correct answer ;; this is the parity problem ;; count the number of 1's if its even or 0 return a negative answer if (target-function = "xor") [ report [my-xor] of perceptron ] if (target-function = "or") [ report [my-or] of perceptron ] if (target-function = "nor") [ report [my-nor] of perceptron ] if (target-function = "and") [ report [my-and] of perceptron ] if (target-function = "nand") [ report [my-nand] of perceptron ] end to-report my-or ;; output-node procedure ;; this is or ifelse any? perceptron-input-nodes with [ activation = 1 ] [ report 1 ] [ report -1 ] end to-report my-xor ;; output-node procedure ;; this is xor let ones-count 0 ask perceptron-input-nodes [ if activation = 1 [ set ones-count ones-count + 1 ] ] ifelse ( ones-count = 1 ) [ report 1 ] [ report -1 ] end to-report my-and ;; output-node procedure ;; this is xor let ones-count 0 ask perceptron-input-nodes [ if activation = 1 [ set ones-count ones-count + 1 ] ] ifelse ( ones-count = 2 ) [ report 1 ] [ report -1 ] end to-report my-nor ;; output-node procedure ;; this is xor let ones-count 0 ask perceptron-input-nodes [ if activation = 1 [ set ones-count ones-count + 1 ] ] ifelse ( ones-count = 0 ) [ report 1 ] [ report -1 ] end to-report my-nand ;; output-node procedure ;; this is xor let ones-count 0 ask perceptron-input-nodes [ if activation = 1 [ set ones-count ones-count + 1 ] ] ifelse ( ones-count != 2 ) [ report 1 ] [ report -1 ] end ;; train sets the input nodes to a random input ;; it then computes the output ;; it determines the correct answer and back propagates the weight changes to train ;; observer procedure let counter 0 set epoch-error 0 while [counter < examples-per-epoch] [ ;; set the input nodes randomly ask perceptron [ ask perceptron-input-nodes [ set activation random-activation ] ] ;; distribute error ask perceptron [ compute-activation update-weights compute-target-answer recolor ] ;; increment the counter set counter counter + 1 ] ;; plot stats set epoch-error epoch-error / examples-per-epoch set epoch-error epoch-error * 0.5 tick plot-error plot-learned-line end ;; test runs one instance and computes the output to test ;; observer procedure ;; initialize the input nodes ask perceptron [ (foreach sort perceptron-input-nodes (list test-input-node-1-value test-input-node-2-value) [ ask ?1 [ set activation ?2 ] ]) ] ;; compute the correct answer let target-answer compute-target-answer ;; color the nodes ask perceptron [ compute-activation ] ;; compute the answer let output-answer [activation] of perceptron ;; output the result ifelse output-answer = target-answer [ user-message (word "Output: " output-answer "\nTarget: " target-answer "\nCorrect Answer!") ] [ user-message (word "Output: " output-answer "\nTarget: " target-answer "\nIncorrect Answer!") ] end ;; Sets the color of the perceptron's nodes appropriately ;; based on activation to recolor ;; output, input, or bias node procedure ifelse activation = 1 [ set color white ] [ set color black ] ask in-link-neighbors [ recolor ] ifelse show-weights? [ resize-recolor-links ] [ ask my-in-links [ set thickness 0 set label "" set color red + 1 ] ] end ;; plot the error from the training to plot-error ;; observer procedure set-current-plot "Error vs. Epochs" plotxy ticks epoch-error end ;; plot the decision line learned to plot-learned-line ;; observer procedure set-current-plot "Rule Learned" ;; clear the previous plot clear-plot if ( target-function = "or" ) [ set-current-plot-pen "positives" plotxy -1 1 plotxy 1 1 plotxy 1 -1 set-current-plot-pen "negatives" plotxy -1 -1 ] if ( target-function = "xor" ) [ set-current-plot-pen "positives" plotxy -1 1 plotxy 1 -1 set-current-plot-pen "negatives" plotxy 1 1 plotxy -1 -1 ] if ( target-function = "and" ) [ set-current-plot-pen "positives" plotxy 1 1 set-current-plot-pen "negatives" plotxy 1 -1 plotxy -1 1 plotxy -1 -1 ] if ( target-function = "nor" ) [ set-current-plot-pen "positives" plotxy -1 -1 set-current-plot-pen "negatives" plotxy 1 1 plotxy 1 -1 plotxy -1 1 ] if ( target-function = "nand" ) [ set-current-plot-pen "positives" plotxy -1 -1 plotxy 1 -1 plotxy -1 1 set-current-plot-pen "negatives" plotxy 1 1 ] ;; cycle through all the x-values and plot the corresponding x-values let x1 -2 let edges sort [perceptron-input-links] of perceptron let edge1 first edges let edge2 item 1 edges while [x1 <= 2] [ ;; calculate w0 (the bias weight) let w0 sum [weight] of ([perceptron-bias-links] of perceptron) ;; put it all together let x2 ( (- w0 - [weight] of edge1 * x1) / [weight] of edge2 ) ;; plot x1, x2 set-current-plot-pen "rule" plotxy x1 x2 ;; increment x set x1 x1 + 1 ] end ;; resize and recolor the edges ;; resize to indicate weight ;; recolor to indicate positive or negative to resize-recolor-links ask links [ set label precision weight 4 set thickness .1 + 4 * abs weight ifelse (weight > 0) [ set color red + 1 ] [ set color blue ] ] end ; *** NetLogo 4.0.3 Model Copyright Notice *** ; ; Copyright 2006 by Uri Wilensky. All rights reserved. ; ; Permission to use, modify or redistribute this model is hereby granted, ; provided that both of the following requirements are followed: ; a) this copyright notice is included. ; b) this model will not be redistributed for profit without permission ; from Uri Wilensky. ; Contact Uri Wilensky for appropriate licenses for redistribution for ; profit. ; ; To refer to this model in academic publications, please use: ; Rand, W. and Wilensky, U. (2006). NetLogo Perceptron model. ; http://ccl.northwestern.edu/netlogo/models/Perceptron. ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL. ; ; In other publications, please use: ; Copyright 2006 Uri Wilensky. All rights reserved. ; See http://ccl.northwestern.edu/netlogo/models/Perceptron ; for terms of use. ; ; *** End of NetLogo 4.0.3 Model Copyright Notice *** @#$#@#$#@ GRAPHICS-WINDOW 217 11 455 246 9 8 12.0 1 10 1 1 1 0 0 0 1 -9 9 -8 8 1 1 1 ticks CC-WINDOW 5 368 674 463 Command Center 0 BUTTON 143 37 209 70 setup setup NIL 1 T OBSERVER NIL NIL NIL NIL BUTTON 143 78 206 111 train train T 1 T OBSERVER NIL NIL NIL NIL BUTTON 584 41 647 74 test test NIL 1 T OBSERVER NIL NIL NIL NIL CHOOSER 468 90 660 135 test-input-node-1-value test-input-node-1-value -1 1 1 CHOOSER 468 144 660 189 test-input-node-2-value test-input-node-2-value -1 1 1 MONITOR 218 254 275 299 output [activation] of perceptron 3 1 11 SLIDER 5 160 205 193 learning-rate learning-rate 0.0 1.0 0.0050 1.0E-4 1 NIL HORIZONTAL PLOT 4 204 204 354 Error vs. Epochs Epochs Error 0.0 10.0 0.0 1.0 true false PENS "default" 1.0 0 -16777216 true SLIDER 6 119 205 152 examples-per-epoch examples-per-epoch 1.0 1000.0 100 1.0 1 NIL HORIZONTAL PLOT 465 203 665 353 Rule Learned x1 x2 -2.0 2.0 -2.0 2.0 false false PENS "rule" 1.0 0 -16777216 true "negatives" 1.0 2 -2674135 true "positives" 1.0 2 -10899396 true CHOOSER 282 256 454 301 target-function target-function "or" "xor" "and" "nor" "nand" 0 SWITCH 218 314 455 347 show-weights? show-weights? 0 1 -1000 TEXTBOX 9 79 129 97 2. Train perceptron: 11 0.0 0 TEXTBOX 465 41 579 59 3. Test perceptron: 11 0.0 0 TEXTBOX 9 39 133 57 1. Setup perceptron: 11 0.0 0 @#$#@#$#@ WHAT IS IT? ----------- Artificial Neural Networks (ANNs) are computational parallels of biological neurons. The "perceptron" was the first attempt at this particular type of machine learning. It attempts to classify input signals and output a result. It does this by being given a lot of examples and attempting to classify them, and having a supervisor tell it if the classification was right or wrong. Based on this information the perceptron updates its weights until it classifies all inputs correctly. For a while it was thought that perceptrons might make good general pattern recognition units. However, it was discovered that a single perceptron can not learn some basic tasks like 'xor' because they are not linearly separable. This model illustrates this case. HOW IT WORKS ------------ The nodes on the left are the input nodes. They can have a value of 1 or -1. These are how one presents input to the perceptron. The node in the middle is the bias node. Its value is constantly set to '1' and allows the perceptron to use a constant in its calculation. The one output node is on the right. The nodes are connected by links. Each link has a weight. To determine its value, an output node computes the weighted sum of its input nodes. The value of each input node is multiplied by the weight of the link connecting it to the output node to give a weighted value. The weighted values are then all added up. If the result is above a threshold value, then the value is 1, otherwise it is -1. The threshold value for the output node in this model is 0. While the network is training, inputs are presented to the perceptron. The output node value is compared to an expected value, and the weights of the links are updated in order to try and correctly classify the inputs. HOW TO USE IT ------------- SETUP will initialize the model and reset any weights to a small random number. Pressing the TRAIN button will present a group of examples to the perceptron and weight will be updated. Moving the EXAMPLES-PER-EPOCH slider changes the number of training examples presented to the perceptron during each step of the TRAIN event. Moving the LEARNING-RATE slider changes the maximum amount of movement that any one example can have on a particular weight. Pressing TEST will input the values of TEST-INPUT-NODE-1-VALUE and TEST-INPUT-NODE-2-VALUE to the perceptron and compute the output. If SHOW-WEIGHTS? is on then the size of the edges will indicate the weight, and the color will indicate the sign. Blue indicates negative edges, and red indicates positive edges. The TARGET-FUNCTION chooser allows you to decide which function the perceptron is trying to learn. THINGS TO NOTICE ---------------- The perceptron will quickly learn the 'or' function. However it will never learn the 'xor' function. Not only that but when trying to learn the 'xor' function it will never settle down to a particular set of weights as a result it is completely useless as a pattern classifier for non-linearly separable functions. This problem with perceptrons can be solved by combining several of them together as is done in multi-layer networks. For an example of that please examine the ANN Neural Network model. The RULE LEARNED graph visually demonstrates the line of separation that the perceptron has learned, and presents the current inputs and their classifications. Dots that are green represent points that should be classified positively. Dots that are red represent points that should be classified negatively. The line that is presented is what the perceptron has learned. Everything on one side of the line will be classified positively and everything on the other side of the line will be classified negatively. As should be obvious from watching this graph, it is impossible to draw a straight line that separates the red and the green dots in the 'xor' function. This is what is meant when it is said that the 'xor' function is not linearly separable. The ERROR VS. EPOCHS graph displays the relationship between the squared error and the number of training epochs. THINGS TO TRY ------------- Try different learning rates and see how this affects the motion of the RULE LEARNED graph. Try training the perceptron several times using the 'or' rule and turning on SHOW-WEIGHTS? Does the model ever change? How does modifying the number of EXAMPLES-PER-EPOCH affect the ERROR graph? EXTENDING THE MODEL ------------------- Add additional target functions beside 'or' and 'xor.' Can you come up with a new learning rule to update the edge weights that will always converge even if the function is not linearly separable? Can you modify the LEARNED RULE graph so it is obvious which side of the line is positive and which side is negative? NETLOGO FEATURES ---------------- This model makes use of some of the link features. It also treats each node and link as an individual agent. This is distinct from many other languages where the whole perceptron would be treated as a single agent. RELATED MODELS -------------- Artificial Neural Net shows how arranging perceptrons in multiple layers can overcomes some of the limitations of this model (such as the inability to learn 'xor') CREDITS AND REFERENCES ---------------------- Several of the equations in this model are derived from Tom Mitchell's book "Machine Learning" (1997). Perceptrons were initially proposed in the late 1950s by Frank Rosenblatt. A standard work on perceptrons is the book Perceptrons by Marvin Minsky and Seymour Paper (1969). The book includes the result that single-layer perceptrons cannot learn XOR. The discovery that multi-layer perceptrons can learn it came later, in the 1980s. Thanks to Craig Brozefsky for his work in improving this model. To refer to this model in academic publications, please use: Rand, W. and Wilensky, U. (2006). NetLogo Perceptron model. http://ccl.northwestern.edu/netlogo/models/Perceptron. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. In other publications, please use: Copyright 2006 Uri Wilensky. All rights reserved. See http://ccl.northwestern.edu/netlogo/models/Perceptron for terms of use. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 bias-node false 0 Circle -16777216 true false 0 0 300 Circle -7500403 true true 30 30 240 Polygon -16777216 true false 120 60 150 60 165 60 165 225 180 225 180 240 135 240 135 225 150 225 150 75 135 75 150 60 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 output-node false 1 Circle -7500403 true false 0 0 300 Circle -2674135 true true 30 30 240 Polygon -7500403 true false 195 75 90 75 150 150 90 225 195 225 195 210 195 195 180 210 120 210 165 150 120 90 180 90 195 105 195 75 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 4.0.3 @#$#@#$#@ setup @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@